
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Fleet learning of thermal error compensation in 
machine tools 

 

Fabian Stoop  
Institute of Machine Tools and 

Manufacturing (IWF) 
ETH Zürich 

Zürich, Switzerland 
stoop@iwf.mavt.ethz.ch 

Friedrich Bleicher 
Institute of Production Engineering and 

Photonic Technologies (IFT) 
TU Wien 

Vienna, Austria 
bleicher@ift.at

Josef Mayr 
inspire AG 

Zürich, Switzerland 
mayr@iwf.mavt.ethz.ch 

 

Konrad Wegener  
Institute of Machine Tools and 

Manufacturing (IWF) 
ETH Zürich 

Zürich, Switzerland 
wegener@iwf.mavt.ethz.ch

Clemens Sulz 
Institute of Production Engineering and 

Photonic Technologies (IFT) 
TU Wien 

Vienna, Austria 
sulz@ift.at 

Abstract— Thermal error compensation of machine tools 
promotes sustainable production. The thermal adaptive 
learning control (TALC) and machine learning approaches are 
the required enabling principals. Fleet learnings are key 
resources to develop sustainable machine tool fleets in terms of 
thermally induced machine tool error. The target is to integrate 
each machine tool of the fleet in a learning network. Federated 
learning with a central cloud server and dedicated edge 
computing on the one hand keeps the independence of each 
individual machine tool high and on the other hand leverages 
the learning of the entire fleet. The outlined concept is based on 
the TALC, combined with a machine agnostic and machine 
specific characterization and communication. The proposed 
system is validated with environmental measurements for two 
machine tools of the same type, one situated at ETH Zurich and 
the other one at TU Wien. 
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I. INTRODUCTION 

Thermal error compensation is a rising topic regarding the 
precision of machine tools (MT) in various environments. 
Thermal errors have a major influence on the geometrical 
shape of the finalized workpiece and therefore, also on the 
overall productivity of the machine tool. Referring to Mayr et 
al. [1], the behaviour of the thermal machine tool state is 
described in a thermal model. Blaser et al. [2] introduced a 
Thermal Adaptive Learning Control (TALC) to build a 
thermal model by on-machine measurements and uses this 
information for compensation. The model can handle changes 
in the environmental temperature and load-dependent 
changes. This rule-based model parameter adaption is 
increased over time to long-term robustness with an adaptive 
input selection, as presented by Zimmermann et al. [3]. 

A Fleet Learning Architecture (FLA) for driver assistance 
systems under challenging external conditions is presented by 
Wirthmüller et al. [4]. The data in such an architecture is 
collected from the fleet of vehicles and not only from the 
initial testing vehicle at the beginning of the process. 
Federated learning allows shared models to be trained from a 
bigger amount of decentralized systems and doesn’t need to 
be centrally stored, as described by McMahan et al. [5]. This 
approach for machine learning in a federation of participating 
peers, together with a central server, is applied for systems, 
where only the main model is maintained from the centralized 

server. This paradigm reduces the amount of data that needs 
to be transferred between the server and each specific client. 
In machine tools especially client specific, private data 
produced by the machine tool, are not allowed to be shared 
with the other clients connected to the network. Federated 
learning approaches allow a high level of safety and security, 
which is mandatory for production. For example, it must not 
be possible to draw conclusions about the machining strategy 
or the components produced. In addition, people and 
employees specific data must also be handled in accordance 
with labour law. 

Industry 4.0 promotes the transformation of physical 
assets to digital representation. Stoop et al. [6] describes that 
the model and communication architecture of such a 
representation are distinguished between model specific and 
model agnostic association. The information of each specific 
machine on the factory floor needs to be modelled according 
to this paradigm. Furthermore, the technological requirements 
must also be able to reflect this issue down to the program 
language and basic communication layer. Also, the scalability 
of such an architecture needs to be considered in all parts. This 
approach is also followed down to the auxiliary units of a 
machine tool and, referring to Gittler et al. [7], necessary for 
further studies like condition monitoring of the whole system. 

This study aims to enhance the possibilities of thermal 
error compensation in machine tools with a fleet learning 
paradigm. The benefits of possible learnings from each 
machine tool in a whole fleet will leverage the productivity 
and performance of the entire fleet. This will result in a more 
economic and ecological production of parts and the operation 
of the fleet itself. 

II. METHOD 

To achieve the interchangeability of model data between 
machines, the interfaces designed must be powerful, to 
achieve a maximum of benefit, and of general acceptance in 
order to connect as many as possible clients to the network. 
Some TALC and machine specific aspects need to be 
considered. Initially, the TALC was always be implemented 
in the machine tools control or an edge device connected to 
the machine tool and is pre-set for the specific type. 
Nevertheless, the general approach of the TALC core is 
machine agnostic. 



A. Thermal Adaptive Learning Control 

The TALC procedure differentiates between an upstream 
calibration phase, followed by a compensation phase. In the 
first phase, the errors of the tool centre point (TCP) are 
determined by processing data from an on-machine 
measurement cycle. This cycle measures, according to Blaser 
[8], the deviation at the TCP with the built-in MT touch probe 
and a reference sphere, interrupting the manufacturing 
process. The determined relative errors are stored 
chronologically. Parallel to this, various temperatures sensors 
on the machine tool and its surrounding as well as machine 
tool performing data from the control are recorded. Precisely 
the environment temperature (ENV), the workspace 
temperature (WS), metal working fluid temperature and the 
inner cooling circuits temperatures are continuously recorded 
and stored. Further information like switch on/switch off of 
the metal working fluid, process interruptions, measurement 
raw data, etc. are stored additionally on the machine tools own 
edge devise. 

TALC uses an autoregressive model with exogenous 
inputs (ARX) for prediction and compensation of the TCP-
errors. The ARX Model consists of past and present inputs and 
past system outputs for the calculation of the current 
prediction, as described by Blaser [8]. The frequency of 
temperature inputs, although, are much higher than real TCP 
deviation feedback. The algorithm chose past predictions, 
together with available temperature measurements and control 
data, to predict the current deviations. 

Fig. 1 illustrates the conceptual integration of the cloud 
integration in the TALC process. Machine tool 1 starts at its 
own time with the initial cloud model provided to each 
machine in the network from the cloud. This model is used 
during the first calibration phase. Afterwards, the initial cloud 
model is updated with machine specific parts and used for the 
actual compensation, as first machine tool 1 model. If the 
compensation reaches a threshold, the model is updated 
another time, to provide the best possible compensation again. 
At every model update, a set of new parameters are sent to the 
cloud, in order to enable that other machines can benefit from 
this information. 

For example, if machine tool 2 is later connected to the 
network, it starts with the new advanced initial cloud model, 
that already is enhanced using the inputs from MT 1. This 
procedure is continuously repeated after every model update 
of each machine connected to the cloud. This procedure 
ensures the steady enhancements of the TALC model during 
the whole lifetime of the machine tool fleet.  

 
Fig. 1. Conceptual integration of the cloud data in the TALC 

B. Federated Learning 

The approach of Federated Learning (FL) uses a single 
model, which is shared between the central cloud and the 
distributed edges. According to Fernandes [9], the FL 
approach, in combination with Fleet Learning, reduces the 
required bandwidth of data in each direction and increases the 
general safety since the model is computed locally. 
Furthermore, only the model itself is shared with the cloud 
service and the data is stored and analysed locally, what is 
important to ensure the safety and secure of manufacturing 
data. If machine tools exchange data with a network privacy 
must be ensured. The data must not be usable for drawing 
conclusions to the manufactured parts or manufacturing 
strategies. Further on, it must be ensured, that the date could 
not be used for controlling machine tool users by giving 
information about e.g. breaks or set-up times. 

Using TALC in the cloud this safety and secure level is 
reached by not exchanging raw data. The TCP error 
measurements are processed at the edge device describing the 
change of position and orientation errors of the machine tool 
as well as axis movement errors. Without knowledge about 
the previous data exchange, no information to the actual 
thermal error is possible. Noisy data, like the temperature 
measurements, are filtered and described by a discrete curve 
before exchanging. The data sent back to the machine tool, 
include the determined polynomial order of the thermal error 
model and the computed model parameters. 

Fig. 2 shows a schematic of such a FL which is used for 
thermal error compensation of the described machine tool. 
The developed machine tool at the original equipment 
manufacturer (OEM) is used for the development of an initial 
TALC model based on the given states during development. 
The initial model is implemented during serial production of 
the MT. Each MT of this fleet will send only the model data 
to the central cloud server and gets the aggregated model data 
back. This global model, therefore, consists of each learning 
in every machine tool.  

III. IMPLEMENTATION / INTEGRATION 

The presented method is implemented on a 5-axis machine 
tool. One located at ETH Zürich (ZRH) and the other one 
located at TU Wien (VIE). This type of MT consists of three 
tool sided linear axes, and a workpiece sided rotary and 
swivelling axes unit, as illustrated in Fig. 3. The thermal 
behaviour of this particular machine tool ZRH is investigated 
by Gebhardt [10]. Both machine tools are of the same type and 
about ten years old, having different history, with different 
signs of wear and different MT accessories. 

 
Fig. 2. Schematic of the federated learning with thermal error compensation 



 
Fig. 3. Schematic of the 5-axis machine tool shown in Blaser et al. [2] 

The workshop environment of both machine tools are also 
very different. In Zurich, for example, the machine is located 
in a non-air-conditioned workshop, right next to the hall door. 
While in Vienna, the manufacturing hall in which the machine 
tool is located is fully air-conditioned. Nevertheless, this 
aspect adequately represents the real-world conditions of an 
exemplary machine tool fleet. 

A. Cloud Communication 

The communication to the central TALC cloud is 
distinguished between machine agnostic and machine specific 
data. Fig. 4 illustrates the general communication setup. On 
the right side, the proof of concept machine tools from Zurich 
and Vienna are illustrated. The green parts represent the model 
parameter communication between the central TALC model 
and the representative on each machine. The gray parts are the 
machine specific temperature and error data, which have low 
information and can be stored optional in the cloud for further 
analysis. 

The connection from the machine tool control to the cloud 
is realized through a distributed numerical control (DNC) 
interface on the MT side. This DNC acquires information 
about the machine status, TCP-error and general process 
information through the FOCAS 2 protocol from Fanuc. This 
information is communicated with the edge node represented 
by a PC, which is running MATLAB and communicating to 
the ThingSpeak Internet-of-Things (IoT) cloud. Furthermore, 
the temperature data is also acquired by temperature sensors, 
which are arranged in a bus network.  

The advantage of this edge node setup is in the reliability 
and security of the proposed approach. The machine tool is 
still up and running in case of connection loss to the central 
server. This is an important aspect for the robustness in real 
world application. Also, the security of sensible data about the 
workshop condition and NC program are not forced to leave 
the environment of the MT user, which is a potential and 
severe security issue. 

 
Fig. 4. Cloud communication concept with machine tool specific and 
machine tool agnostic data according to Stoop et al. [6] 

IV. RESULTS 

The results of the proposed fleet learning are acquired on 
the two proof of concept machine tools in Zurich and Vienna. 

A. Environment Test 

The performed environment tests are evaluated for a 70-
hour period on the MT in Vienna and for 96-hour in Zurich. 
The added TCP-errors based on the measurements and 
temperatures are presented in Fig. 5 for Vienna and Fig. 6 for 
Zurich. The resulting environment temperatures (ENV) 
directly shows the difference regarding the air-conditioning in 
Vienna and the typical daytime cycle in Zurich. The 
workspace temperature (WS) also indicates the amplitude and 
phase shifted dependence on the ambient temperature in this 
no-load test procedure. 

The uncompensated relative error, which is based on the 
measurements and the predicted error, shows a short warm-up 
period of a few hours and afterwards a strong dependency 
between the error Y0C and the environment temperature. It is 
also stated that the error Z0T is always negative in the case of 
the machine tool in Vienna and mostly positive in the case of 
Zurich. This result is directly linked with the environment start 
temperature, which is, in the case of VIE, mostly higher than 
during the measurement and ZHRs mostly lower. The 
behaviour is described therefore, as inversely proportional. 

B. Compensation 

The machine tool is compensated with the TALC in the 
cloud procedure during the described environment test. Fig. 7 
shows this compensation based on the model built by the 
machine itself. The static drift is compensated very well, right 
from the beginning of the compensation period. Although, 
there are some peaks, for example, of the error Z0T after 10 
hours and the error R0T around 40 hours, which are worse 
than the relative uncompensated values. The initial model and 
the following updates are compared to the model built 
according to the FL schematic. 

Fig. 8 presents the thermal error compensated machine 
tool in Vienna after the first federated model built with the 
input from the machine tool in Zurich. 

 

 
Fig. 5. Machine Tool VIE Environment Variation Error Test 



 

 
Fig. 6. Machine tool ZRH Environment Variation Error Test 

The results are already much more robust compared to the 
first compensation model. Also, the significant temperature 
changes between 45 hours and 60 hours are compensated very 
well and do not make the model drift away for the last 10 
hours. Furthermore, the anomaly between 30 – 40 hours of the 
VIE compensation model is not present. This is due to the 
learnings regarding the slow temperature changes from the 
ZRH model. The thermal error in the machine tool is reduced 
by 67 % in the first case with a single model compensation 
and by 86 % in the case of the federated learning model. 

V. DISCUSSION AND OUTLOOK 

The presented fleet learning approach for thermal error 
compensation of machine tools is described in this paper. The 
thermal stability of machine tools is an important factor to 
prevent severe production downtime, scrap to enable a 
sustainable production. Fleet learning is an important and 
challenging step towards the further development of state-of-
the-art algorithm like TALC towards the digital 
representation. This step also leverages the performance of 
each machine tool with the intelligence of the whole fleet 
around the world. The combination and integration of thermal 
states in the same type of machine tool is characterized using 
a cloud-based communication model. The proof of concept is 
illustrated with two real world machine tools and represented 
with their digital description of the thermal model. This is 
done without compromising the security and robustness of the 
implementation on each machine tool. The results are already 
promising and show a significant reduction of the thermal 
induced error with the two machines shown. 

 
Fig. 7. Machine Tool Vienna real time compensated with their own model 

 
Fig. 8. Machine Tool Vienna simulative compensated with the initial 
Model from Zurich 

Further research should be dedicated to the deployment of 
the federated learning under various load cases and with 
numerous of machines. Furthermore, the feature should be 
implemented in future control and machine tools in terms of 
Industry 4.0 ready and continuous learning over the whole 
machine tool lifetime. This step will further accelerate 
sustainable production and significantly influence the 
production of the future. 
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