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SUMMARY 

Local energy community networks and microgrids are built to meet current challenges 

in the power system such as reducing CO2 emissions by increasing the share of re-

newables, increasing economic benefits, and enhancing power supply resiliency. One 

lever that can be pulled is to deploy controllers that presciently schedule the operation 

of all controllable assets in advance. Control algorithms may range from simple rules 

that include predicted load and infeed to complex optimization problems that minimize 

operation costs such that a resilient operation is guaranteed. Often several modelling 

assumptions are made to quantify volatile generation within the scheduling horizon and 

to optimally operate the assets. In case these assumptions are violated, the economic 

performance as well as the resiliency of the power systems can be seriously affected. 

This work addresses the impact of common assumptions regarding meteorological in-

puts. It uses an exemplary meteorological dataset to assess the impact the assump-

tions have on the forecasted renewable energy generation. These forecasts are partic-

ularly needed to optimally schedule local energy community/microgrid assets and are 

thus vital for the system performance. Additionally, the paper showcases the impact of 

plant models on the eligibility of studied input assumptions and assesses the value of 

scheduling-time information such as numerical weather forecasts. Therefore, several 

models of wind speed and global horizontal irradiation are trained and evaluated on two 

independent sets of measurements. The accumulated daily wind speed, irradiation, as 

well as the daily capacity factor are calculated to estimate the quality of the input as-

sumptions in predicting renewable infeed within a typical scheduling horizon.  
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One common modelling assumption is that a meteorological observable is independent 

from previous observations. It is demonstrated that the probability of days with high 

and low solar irradiation and wind speed is considerably underestimated on using the 

independence assumption. Consequently, probabilities of days with high and low re-

newable generation are systematically underestimated. It is shown that discrete Mar-

kov models that additionally consider one previous observation can ameliorate the 

goodness of fit and accurately estimate the distribution of infeed. 

To quantify the effects of scheduling-time information on the accuracy, a re-forecasting 

dataset is used to estimate the distribution of meteorological observables given a fore-

casted value. Although it is demonstrated that scheduling-time forecasts can reduce 

underestimation of extreme values, their main benefit is found in reducing the uncer-

tainty when predicting the most likely observation. Such a reduction may directly result 

in an improved economic performance in case reserves can be safely reduced. 

By applying two exemplary plant models that estimate the infeed, the effects of the 

meteorological assumptions on the infeed distribution, and the prediction errors are 

demonstrated. It is shown that the plant model can influence target metrics such as the 

prediction error significantly. Hence, the plant characteristics need to be considered 

when assessing the eligibility of assumptions. By assessing common input models, 

their implications, and alternative formulations, it is believed that this work aids the 

design and validation of scheduling algorithms in the context of local energy commu-

nities and can help to improve the overall system performance. 
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1 Motivation on Studying Scheduling Assumptions 

Local Energy Communities (LEC) and microgrids are often realized as tightly control-

lable electrical networks within a limited geographical extent [1]. LECs mostly focus on 

economic aspects and community participation, while microgrids often include resili-

ency aspects such as fault mitigation. To increase economic benefits and resiliency in 

presence of highly volatile Renewable Energy Sources (RES), both concepts regularly 

utilize optimization techniques to schedule controllable generation, energy storage and 

controllable load in advance [1], [2]. Today, a vast amount of scheduling approaches 

having various unique propositions already exist. Many of them optimize day-ahead 

operation of controllable assets. 

Since energy production of various renewables such as wind and Photovoltaics (PV) 

highly depends on environmental conditions, some modeling assumptions must be 

made to quantify problem production and to formulate the optimal scheduling. Pro-
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posed approaches include static interval representations [3], [4], probability distribu-

tions of meteorological observables [5], [6], as well as the availability of a forecast in-

cluding its stochastic deviations [7].  

Figure 1 illustrates different formulations of meteorological input assumptions. Although 

RES models can have a large impact on the system performance, including financial 

loss and stability issues, e.g., in case production is overestimated, these assumptions 

are hardly validated in the context of LECs and microgrids [1]. In [8], the assumption on 

normally distributed wind forecasting errors was disproved and a new approximation 

function is proposed. However, other assumptions such as the distribution of the fore-

casted values themselves are beyond the scope. This work addresses these assump-

tions by studying commonly used modeling assumptions on an exemplary meteorologi-

cal dataset and aims at guiding the practical implementation of day-ahead scheduling. 

 
Figure 1: Overview of meteorological input assumptions in scheduling applications 

2 Assessing the Quality of Meteorological Models 

The performance of various models is evaluated based on meteorological observations 

that reflect the ground truth of the modeled quantity. To avoid smoothing effects, the 

case study is based on long-term measurements from a single measurement station 

instead of relying on aggregated data and satellite observations. Due to the high den-

sity of five available measurement stations within the region of Denver, Colorado, 

which may support future work, and the broadly available long-term datasets starting 

at 1989, the NREL measurement station [9] was selected. This dataset was divided 

into two periods, one seven-year training set that reflects past experiences, and one 

seven-year validation set that is used as ground truth. All models that do not solely 

operate on ad hoc information such as previous measurements were fitted on the train-

ing set without using the validation set for calibration. 

Some approaches also assume the availability of a-priori knowledge delivered by a 

numerical weather forecast. For instance, [7] assumed that forecasting errors are in-

dependently, normally distributed. To assess the impact of numerical forecasts, 

NOAA’s reforecast dataset [10] is used to fit a discrete model of measurement values 

given a certain forecast. It must be noted that due to the coarse temporal and spatial 

resolution of available data, results are taken as lower bound for forecasting accuracy. 

Although other use-cases such as estimating threads exist, meteorological inputs are 

most commonly used to estimate the energy production of RES [1]. To first cover short-

term interdependencies of measurement, without the need of relying on one specific 

plant model, modeled quantities have been accumulated over one day. This means 
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that instead of directly studying single measurements, accumulated wind speed and 

solar irradiation values have been used as stochastic target observable. 

In addition, two exemplary plant models are used to estimate the impacts of the models 

under test on the total energy production. The first model uses a power curve to map 

the wind speed to the power output of a wind turbine. For the sake of simplicity, the 

curve of an Enercon E-115/3000 turbine [11] was assumed without performing a de-

tailed eligibility analysis. The second model estimates the PV output based on the 

Global Horizontal Irradiation (GHI), the orientation of the PV panels and the calculated 

position of the sun. All panels are oriented towards south having a tilt of 30°. The influ-

ence of the solar position on the energy output was simulated via the Python PVLib 

[12]. For both plant models, the daily Capacity Factor (CF), i.e., the ratio of daily gen-

eration to the theoretical infeed at constant nominal load, is evaluated under the dis-

cussed meteorological inputs. To calculate the CFs, a nominal PV array irradiation of 

1 kW/m² is assumed. For the wind turbine, the nominal power of 3 MW was taken. 

Since the meteorological station does not measure the wind speed at hub height, the 

wind speed was scaled to 80 m by using the power law [13]. 

3 Observations on Assessing the Input Models 

3.1 Questioning Independent Weather Observations 

One commonly made input assumption is that observables such as the wind speed and 

the solar irradiation follow a certain probability distribution that is independent from previ-

ous samples [5], [6], [14]. However, original work [15] indicates that samples within a daily 

time frame are highly correlated, i.e., the observable of one hour highly depends on the 

measurement of previous hours. To study the effects of any correlation, two standard 

distributions of hourly independent samples were selected. According to [5], [6] and [15] 

which use Rayleigh distribution, a special case of Weibull distribution, Weibull distribution 

was selected to model the average wind speed of each hour independently. Similarly, the 

GHI was modeled by one Beta distribution per season and hour [5], [6], [16]. 

 
Figure 2: Fitted Beta-PDF and validation data likelihood of summer days at noon 

Figure 2 shows the Beta Probability Density Function (PDF) for solar irradiation as well 

as the histogram of the validation dataset. One can observe that the shape of the Beta 

PDF does not always follow the weather data. To compensate these effects that are 

also partly covered in [6], and to focus on the independency assumption, additional 

temporally independent discrete probability functions were fitted for wind and solar ir-

radiations, respectively. 
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Figure 3 shows the Cumulative Density Function (CDF) of accumulated daily GHI and 

wind speed, using the models as well as the reference distribution of the validation 

partition. Note that due to the integration over one day, the units are given in Wh/m² 

and km, respectively. To get a typical interval of one forecasted value per hour, all dis-

tributions were sampled hourly. For the validation dataset, a temporal resolution of ten 

minutes was kept to also cover the effects of down-sampling the temporal resolution. 

Due to the independency assumption, one can see that both models drastically under-

estimate the probability of having days with low and high irradiation situations. Similar 

effects are seen on modeling wind speed as observations that are independent from 

previous ones. As an effect, storage needs may be systematically underestimated. 

 

 
Figure 3: CDFs of daily accumulated observations (independent from scheduling-time information) 

On applying the plant models, similar trends are visible. The probability of days with 

low infeed, denoted by the CF, are systematically underestimated. However, the con-

sidered orientation of the PV panels transforms the bimodal shape of the independent 

solar irradiation models to a CF distribution with one dominant mode. It is observed 

that the PV model reduced the systematic underestimation of days with high infeed. 

Specifically, the reference distribution that is computed from the GHI measurements 

shows a reduced likelihood of high infeed. For wind power plants, trends of underesti-

mating the likelihood of high generation days are also visible on the exemplary CFs. 

3.2 Modeling Temporal Dependencies 

One of the main limitations of the proposed probability distributions in the context of 

day-ahead scheduling is the independence assumption. To directly study the effect of 

independence, the discrete wind and solar irradiation models were extended to dis-

crete Markov models, which take the measurement from the previous hour into con-
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sideration. Since the GHI strongly depends on the current hour and season, the dis-

crete Markov model for solar irradiation additionally depends on these inputs and re-

turns the GHI probability given the season, the time, as well as the last observation. 

Figure 3 includes the resulting CDF of accumulated wind speed and GHI samples. The 

Markov model closely follows the distribution of measured samples but does not in-

clude any information – such as numerical weather forecasts or past observations – 

that is only available at scheduling time. As for the independent GHI models, a consid-

erable deviation from the reference distribution that cannot be directly witnessed in the 

input distribution is observed after applying the PV model. Contrary, the CFs for wind 

generation follow the expectations from the source CDFs well. Despite the deviations 

for the Markov GHI models, all Markov models that do not depend on scheduling-time 

information show fewer deviations to the validation CDF than their independent coun-

terparts. The detailed figures are listed in Table 1 that contains the maximum absolute 

deviation of each CDF to the reference one. Hence, the table lists the maximum prob-

ability difference to the reference distribution. The higher one value is, the more the 

occurrence of some observation or CF ranges is under or overestimated. 

Table 1: Maximum absolute CDF deviations to the validation distribution 

Model 
PV Wind 

GHI [1] CF [1] Speed [1] CF [1] 

Independent Beta/Weibull Model 0.1569 0.1290 0.2513 0.3793 

Independent Discrete Model 0.1138 0.1055 0.2571 0.344 

Discrete Markov Model 0.02735 0.09075 0.05509 0.09227 

Independent Forecasting Model 0.0844 0.1247 0.1664 0.2309 

Markov Forecasting Model 0.05529 0.1014 0.05215 0.06983 

3.3 The Value of Numerical Weather Forecasts 

The models given in Figure 3 only use information that is available at the time they were 

trained. However, when estimating the meteorological inputs, the current state and infor-

mation from numerical weather forecasts may also be available. To estimate the impact 

of numerical weather forecasts, the discrete probability of the target observables given 

the current forecast for the time interval was trained and evaluated on the distinct valida-

tion dataset. For the wind speed, one distribution for all samples was fitted. For solar 

irradiation, one distribution per hour was trained. Results are given in Figure 4 that shows 

the resulting CDFs for both observables, accumulated solar irradiation and wind speed. 

One may note that the accumulated observables (i.e., GHI and wind speed) for the 

independent forecasting models in Figure 4 follow the reference closer than the inde-

pendent distributions given in Figure 3. For instance, the maximum absolute GHI CDF 

deviation for the independent discrete model, as given in Table 1, is eleven percent 

points while the independent forecasting distribution achieves a deviation of eight per-

cent points. However, after applying the PV plant model, the observation cannot be 

made anymore. 
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Figure 4: CDFs of Daily Accumulated Observations (Considering Scheduling-Time Information) 

Since the forecasting error does not depend on previous errors, the probabilities of 

high and low wind days are still underestimated, in comparison to the discrete Markov 

models that are independent of numerical weather forecasts. To model temporal de-

pendencies between forecasting deviations, the probability of an observable given the 

current forecast, the previous observation, and the current hour for solar irradiation 

was trained. One can see that the Markov forecasting models follow the reference 

distribution closer than all independent ones. In terms of the maximum absolute CDF 

deviation, only the discrete Markov model that does not include scheduling-time infor-

mation showed better results. For wind speed and the wind CF, the Markov forecasting 

model outperforms all other models. 

3.4 Deterministic Prediction Error 

On the one hand, the goodness of fit of an input distribution is one important parameter 

for stochastic scheduling. On the other hand, deterministic scheduling approaches may 

only operate on the expected generation given a forecast. For all studied distributions, 

the expected value is taken as the predicted one and the deviations from the validation 

dataset are recorded. Additionally, naive forecasts, i.e., the observations from the pre-

vious day, are included for reference. 

Naturally, the CDF of naive forecasting closely follows the reference CDF in Figure 4 

because all samples are simply shifted by one day. Similarly, no bias is found for naive 

forecasting and the average deviation is asymptotically zero. Figure 5 illustrates the 

distribution of forecasting errors in estimating the accumulated daily observable. In the 

given box-plots, median values are marked with an orange line while mean values are 

pointed out by green triangles. The box itself marks the upper and lower quartile. Both 

whiskers show the range of the data excluding outliers beyond the 1.5-fold of the inter-
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quartile range. The bias for the wind, and GHI models that do not require scheduling-

time information can be directly tracked down to a bias in the validation dataset of 

11.7 Wh per day and -10.7 km per day, respectively. It is believed that the bias for the 

accumulated wind speed is caused by changes in the instrumentation, that are consid-

ered as a regular phenomenon in long-term operation. 

 
Figure 5: Error in Predicted Observables 

For a further comparison, the absolute difference in daily CFs as illustrated in Figure 6 

is taken. For both, the validation and the forecasting data, the same plant models were 

used. Using the Mann-Whitney U test with a significance level of 5%, it is witnessed 

that before applying the plant models, all distributions that utilize scheduling-time in-

formation show a significantly smaller absolute error than the ones that are independ-

ent of that information. After applying the plant models, the conclusion does not hold 

anymore. The independent forecasting still significantly outperforms all other distribu-

tions, but the Markov forecasting performs significantly worse than the independent 

beta model, the independent discrete model, and the discrete Markov model. 

 

 
Figure 6: Absolute Error in Predicted Capacity Factors 
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4 Conclusion and Outlook 

The paper indicates the importance of choosing adequate assumptions on meteorolog-

ical input conditions for modeling day-ahead scheduling problems of geographically con-

tained power systems. A case study demonstrates the effects of modeling RES power 

production as a series of independent samples. It is shown that the independence as-

sumption leads to a categorical underestimation of days with particularly low and high 

RES production. Consequently, probabilistic and robust scheduling approaches, which 

rely on the stochastic assumptions, can suffer from a decreased performance. 

The availability of numerical forecasts slightly relaxes the problem and provides effective 

means for reducing forecasting errors. However, due to the independence assumptions 

of forecasting errors, underestimation of low production still occurs. A simple, yet effec-

tive way of modeling timely interdependence is presented via discrete Markov models. 

Especially in regions with a high timely correlation of weather phenomena, the Markov 

model may improve the performance of microgrid and LEC scheduling algorithms. 

Exemplary plant models were applied to the meteorological input observables to further 

assess the impact on the energy system. It is demonstrated that the plant potentially 

influences the performance measures of studied input models. Hence, decisions on suit-

able meteorological input models need to consider the target system as well.  

Future work needs to study the effects of the model assumption on the outcome of 

various scheduling algorithms. It is still open to cover a more diverse set of measure-

ment stations in different climate zones. Additionally, special correlations between 

neighboring sites may be studied to close the gap between geographically local instal-

lations and extended distribution systems. Finally, the discretized distributions used in 

the study may be replaced by suitable parametric continuous distributions to ease an-

alytical analysis and reduce the need for extensive training data. Furthermore, alterna-

tive models such as hidden Markov models may be assessed as well. 
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