
A Formally Verified Cut-Elimination
Procedure for Linear Nested Sequents

for Tense Logic

Caitlin D’Abrera1 , Jeremy Dawson1(B) , and Rajeev Goré2

1 School of Computing, The Australian National University, Canberra, Australia
{caitlin.dabrera,Jeremy.Dawson}@anu.edu.au

2 Vienna University of Technology, Vienna, Austria

Abstract. We port Dawson and Goré’s general framework of deep
embeddings of derivability from Isabelle to Coq. By using lists instead
of multisets to encode sequents, we enable the encoding of genuinely
substructural logics in which some combination of exchange, weakening
and contraction are not admissible. We then show how to extend the
framework to encode the linear nested sequent calculus LNSKt of Goré
and Lellmann for the tense logic Kt and prove cut-elimination and all
required proof-theoretic theorems in Coq, based on their pen-and-paper
proofs. Finally, we extract the proof of the cut-elimination theorem to
obtain a formally verified Haskell program that produces cut-free deriva-
tions from those with cut. We believe it is the first published formally
verified computer program for eliminating cuts in any proof calculus.

Keywords: Formalised proof theory · Cut-elimination · Linear nested
sequent calculus · Tense logic · Coq · Extraction · Program synthesis

1 Introduction

Traditional styles of proof calculi for capturing the notion of logical derivations
include Hilbert calculi, natural deduction [19], sequent calculi [19] and tableau
calculi [7]. More recent and elaborate styles include display calculi [1,3], labelled
sequents [14] and nested sequent calculi [10]. Each style has strengths and weak-
nesses: expressivity, complexity, ease of use, and philosophical motivations.

Consider the interesting case of systems for tense logics. After previously pub-
lished failed attempts at providing sequent calculi that satisfy cut-elimination,
more complex systems were produced in the forms of display calculi, nested
sequents and labelled sequents. Goré and Lellmann [8] provide a simpler calcu-
lus, LNSKt, using linear nested sequents (LNS) for the minimal tense logic Kt that

C. D’Abrera—Supported by an Australian Government Research Training Program
Scholarship.
R. Goré—Work supported by the FWF projects I 2982 and P 33548.

c© Springer Nature Switzerland AG 2021
A. Das and S. Negri (Eds.): TABLEAUX 2021, LNAI 12842, pp. 281–298, 2021.
https://doi.org/10.1007/978-3-030-86059-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86059-2_17&domain=pdf
http://orcid.org/0000-0002-0103-7134
http://orcid.org/0000-0003-2308-8706
https://doi.org/10.1007/978-3-030-86059-2_17

282 C. D’Abrera et al.

does not require the heavy machinery found in the other more complex systems.
Their LNS calculus is a cut-free system and they proved cut-admissibility.

But, as is well-known, proofs of cut-admissibility are notoriously “case
heavy” with many similar cases which are often “left to the reader”. The cut-
admissibility proof of Goré and Lellmann [8] is no exception and involves a
complicated simultaneous induction over four sub-cases. One way of verifying its
correctness is to formalise it in a modern interactive proof assistant, as explained
next.

Dawson and Goré [6] gave an elegant embedding of a general framework for
derivability in Isabelle/HOL, applicable to many styles of proof calculi, includ-
ing many extensions of the sequent calculus [4]. But they used Isabelle/HOL
2007 and it would require a complete rewrite of that material to use it in mod-
ern Isabelle, which may indeed not be possible. So we ported this work to Coq
and adapted it to allow the handling of genuinely substructural notions such
as exchange, which the aforementioned Isabelle/HOL formalisation lacked. We
extended this Coq framework to encode linear nested sequents and LNSKt, and
proved in Coq the standard structural proof-theoretic theorems up to and includ-
ing cut-admissibility, based on the original pen-and-paper proofs [8].

Constructively proving cut-elimination in Coq permits us to extract the pro-
cedure into a Haskell program that computes cut-free derivations from those
with cut. The full proof of cut-elimination in a pen-and-paper setting is already
large because it involves so many cases, and adding the extra cases that emerge
as part of the task of formalising has made this theorem a good candidate for
verification, particularly as multiple mistakes were found. As far as we know,
ours is the first published extracted program for performing cut-elimination.

Our Coq code was developed with Coq 8.8.2 (October 2018) and tested with
Coq 8.10.2 (Nov 2019): https://github.com/caitlindabrera/LNS-for-Kt.

2 Preliminaries

Formulae of normal modal tense logics are built from a given set Atm of atomic
formulae via the following BNF grammar where p ∈ Atm: A := p | ⊥ | A → A |
�A | �A. We assume that the reader is familiar with their associated Kripke
semantics or their standard Hilbert calculus [8].

We define linear nested sequents as in [8] before giving the full calculus.

2.1 A Linear Nested Sequent Calculus for Kt

Definition 1. A sequent is an expression Γ ⇒ Δ where the antecedent Γ and
the succedent Δ are finite, possibly empty, multisets of formulae. We write ε to
stand for an empty antecedent or succedent to avoid confusion. A linear nested
sequent is a sequence of sequents where each adjacent pair is connected by ↗ or
↙. The sequents that occur within such a linear nested sequent are components.

https://github.com/caitlindabrera/LNS-for-Kt

Cut-Elimination for LNSKt 283

Γ ⇒ Δ, A Σ ⇒ Π, A Γ ⇒ Δ Σ ⇒ Π, A ⇒ A

Γ ⇒ Δ Σ ⇒ Π, A
1
R

Γ ⇒ Δ, A Σ ⇒ Π, A Γ ⇒ Δ Σ ⇒ Π, A ⇒ A

Γ ⇒ Δ Σ ⇒ Π, A
1
R

Γ ⇒ Δ, A ⇒ A

Γ ⇒ Δ, A
2
R

Γ ⇒ Δ, A ⇒ A

Γ ⇒ Δ, A
2
R

Γ, A ⇒ Δ Σ, A ⇒ Π

Γ, A ⇒ Δ Σ ⇒ Π
1
L

Γ, A ⇒ Δ Σ, A ⇒ Π

Γ, A ⇒ Δ Σ ⇒ Π
1
L

Γ, A ⇒ Δ

Γ ⇒ Δ Σ, A ⇒ Π
2
L

Γ, A ⇒ Δ

Γ ⇒ Δ Σ, A ⇒ Π
2
L

Γ, p ⇒ p, Δ
(id)

Γ, ⊥ ⇒ Δ
⊥L

G
Γ ⇒ Δ

EW

Γ, A ⇒ Δ, A → B, B

Γ ⇒ Δ, A → B
→R

Γ, A → B, B ⇒ Δ Γ, A → B ⇒ Δ, A

Γ, A → B ⇒ Δ
→L

Fig. 1. The system LNSKt where � stands for either ↗ or ↙

We use lower case letters (p, q, r) for atomic formulae, upper case letters
(A,B,C) for formulae, capital Greek letters (Γ,Δ,Σ,Π) for finite multisets
of formulae and calligraphic capital letters (G,H) for LNSs, unless otherwise
stated. We often write G for a possibly empty context : e.g., G ↗ Γ ⇒ Δ stands
for Γ ⇒ Δ if G is empty, and for Σ ⇒ Π ↙ Ω ⇒ Θ ↗ Γ ⇒ Δ if G is the LNS
Σ ⇒ Π ↙ Ω ⇒ Θ.

The rules of LNSKt [8] are in Fig. 1. Each rule has a number of premisses above
the line and a single conclusion below it. The single formula in the conclusion is
the principal formula and the formulae in the premisses are the side-formulae.

Intuitively, each component of a linear nested sequent corresponds to a world
of a Kripke model, and the structural connectives ↗ and ↙ between components
corresponds to the relations R and R−1 that connect these worlds. We can then
think of a Kripke model forcing a LNS G if for every connected sequence of worlds
corresponding to the structure of G, one of those worlds forces its corresponding
sequent component. See [8] for the formal detail.

Every instance of the (id) and ⊥L rules is a derivation of depth 1. If
(ρ) is an n-ary rule and there are n premiss derivations D1, · · · ,Dn, each of
depth d1, · · · , dn, with respective conclusions c1, · · · , cn, and c1, · · · , cn/c0 is an
instance of (ρ) then D1, · · · ,Dn/c0 is a derivation of depth 1+max{d1, · · · , dn}.
We use dp(D) for the depth of derivation D.

We generalise “derivations” to allow for “unfinished leaves”, by which we
simply mean leaf sequents from a given set that are considered separate to any
zero-premiss rules in the system. We write D �prems

rls G to mean that D is a
derivation of the LNS G in the calculus with rule set rls, allowing for unfinished
leaves prems. We further write D �rls G when prems is empty and thus D must
be a finished proof with no unfinished leaves. In both cases, we may omit the

284 C. D’Abrera et al.

D to mean that there exists a derivation D such that D �prems
rls G or D �rls G,

respectively. We simply write D � G if D is a derivation in LNSKt of the linear
nested sequent G, and � G if there is a derivation D with D � G.

Example 1. Consider the LNS ε ⇒ r → �¬�¬r where r → �¬�¬r is the
formula r → �♦r with the definition of ♦ expanded. The following is a non-
trivial derivation that demonstrates the use of some of the box rules to move
formulae between different components. Note that it uses the provably admissible
rules ¬L, ¬R and weakening.

(id)
r,¬r ⇒ r,�¬�¬r ¬L
r,¬r ⇒ �¬�¬r �2

Lr ⇒ �¬�¬r ↙ �¬r ⇒ ¬�¬r ¬R
r ⇒ �¬�¬r ↙ ε ⇒ ¬�¬r �2

Rr ⇒ �¬�¬r weak
r ⇒ r → �¬�¬r,�¬�¬r →R

ε ⇒ r → �¬�¬r

3 Encoding Formulae, Sequents and LNSs

Having seen the pen-and-paper definition of the calculus, we turn to our Coq
formalisation. We start with a set of proposition variables, V : Set, which cor-
responds to Atm, over which we build our formulae, PropF V:
Inductive PropF (V : Set) : Type :=

| Bot : PropF V
| Var : V -> PropF V
| WBox : PropF V -> PropF V
| BBox : PropF V -> PropF V
| Imp : PropF V -> PropF V -> PropF V.

Here we are creating a new type called PropF, and so we would encode, for
example, the infix formula �(p → q) → (�p → �q) using prefix notation by
the term Imp (WBox (Imp (Var p) (Var q))) (Imp (WBox (Var p)) (WBox
(Var q))).

Recall our sequents consist of multisets. To model this we chose lists and
later proved exchange lemmas that enable us to move formulae around in any
order without compromising derivability. See Sect. 6 for further details. Thus
the multiset Γ of formulae is encoded as a term with type list (PropF V) and
sequents, which have the form Γ ⇒ Δ, have type seq:
Definition rel (W : Type) : Type := W * W. (* ie, prod W W *)
Definition seq {V : Set} := rel (list (PropF V)).

Here, prod W W, also written W * W, is the Cartesian product W ×W , and so an
s of type seq is a pair of lists of formulae such as pair Γ Δ, also written (Γ,Δ).

In Coq, list comes pre-defined as expected, where a :: b :: c :: nil
encodes the list [a, b, c]. We can append list l1 to list l2 by the ++ operator.
For a function f : A -> B, and a list l : list A, the result of map f l is got

Cut-Elimination for LNSKt 285

by applying f to each member of l. We use these extensively throughout our
formalisation, as can be seen in the definitions for nslclext and nslclrule in
Sect. 4.

Coq allows “implicit arguments” where certain arguments for some functions
can usually be inferred and are not given. Typical examples are the first argu-
ments of the list operators ++ and ::, which state the type of the list members.
The symbol @ preceding a function name, as in @seq V, indicates that all argu-
ments are given explicitly. In the code above, braces as in {V : Set}, as opposed
to parentheses as in (W : Type), indicates V is to be an implicit argument.

We defined the type LNS to encode LNSs as lists of pairs of sequents and
directions, where the latter is defined to have two inhabitants corresponding to
the ↗ and ↙ arrows:
Inductive dir : Type := | fwd : dir | bac : dir.
Definition LNS {V : Set} := list ((@seq V) * dir).

There is an extra direction in the type for LNS: for n components there should
only be n − 1 directions. We ignore the first direction: so Γ ⇒ Δ ↗ Σ ⇒ Π is
encoded by [(Γ , Δ, fwd), (Σ, Π, fwd)] and [(Γ , Δ, bac), (Σ, Π, fwd)].

4 Encoding the LNSKt Calculus

A rule instance couples a list ps of premises with a conclusion c. We define a
type rlsT W := list W -> W -> Type so that rlsT ps c is the type of all rule
instances with list of premises ps and conclusion c. Our aim then is to encode
a collection of permissible rule schemas – in our case the rules of LNSKt – by
defining the type LNSKt_rules which has type rlsT (@LNS V).

To do so, we encoded sub-collections of rules called b2rrules, b1rrules,
b2lrules, b1lrules, EW_rule and rs_prop which correspond to the boxed rules,
external weakening and the remaining propositional rules, respectively.

Consider b2lrules with WBox2Ls corresponding to �2
L and BBox2Ls to �2

L:

Inductive b2lrules (V : Set) : rlsT (@LNS V) :=
| WBox2Ls : forall A d Γ1 Γ2 Σ1 Σ2 Δ Π, b2lrules

[[((Γ1 ++ A :: Γ2), Δ, d)]]
[((Γ1 ++ Γ2), Δ, d) ; ((Σ1 ++ WBox A :: Σ2), Π, bac)]

| BBox2Ls : forall A d Γ1 Γ2 Σ1 Σ2 Δ Π, b2lrules
[[((Γ1 ++ A :: Γ2), Δ, d)]]
[((Γ1 ++ Γ2), K1, d) ; ((Σ1 ++ BBox A :: Σ2), Π, fwd)].

The first WBox2Ls says that any rule instance that has one premise (encoded as
a singleton list of LNSs) of the form Γ1, A, Γ2 ⇒ Δ and conclusion of the form
Γ1, Γ2 ⇒ Δ ↙ Σ1,�A,Σ2 ⇒ Π is permitted. Thus although the official rule has
an antecedent multiset Γ,A, we present it as the list Γ1, A, Γ2 instead to align
the pen-and-paper presentation and Coq presentation.

Note that we encode only those components containing principal or side
formulae i.e. the last two components of the conclusion. So WBox2Ls encodes the
rule instance below left. Ultimately we want the full context version below right.

Γ1, A, Γ2 ⇒ Δ

Γ1, Γ2 ⇒ Δ ↙ Σ1,�A,Σ2 ⇒ Π

G 	 Γ1, A, Γ2 ⇒ Δ

G 	 Γ1, Γ2 ⇒ Δ ↙ Σ1,�A,Σ2 ⇒ Π
�2

L

286 C. D’Abrera et al.

To obtain the right one from the left, we define nslcext and nclcrule, where
nslcext extends an LNS ls with a given context G to the left. We use nclcrule
to extend the collection of rule instances defined by b2lrules to allow for the
uniform adding of contexts with nslcext into premises and conclusions.
Definition nslclext W (G ls : list W) := G ++ ls.

Inductive nslclrule W (sr : rlsT (list W)) : rlsT (list W) :=
| NSlclctxt : forall ps c G, sr ps c ->

nslclrule sr (map (nslclext G) ps) (nslclext G c).

If r is of type nslclrule W sr then it must be obtained by adding a (possibly
empty) context to all the premises and conclusion of a rule instance of sr.

So nslclrule (@b2lrules V) ps c captures that the premise list ps and
conclusion c form an instance of an extended version of a rule from b2lrules
via uniform context addition, giving the full version of �2

L on the right above.
We can then define the full LNSKt rule set with b2rrules and the other

corresponding subcollections by the following LNSKt_rules definition:
Inductive LNSKt_rules {V : Set} : rlsT (@LNS V) :=
| b2r : forall ps c, nslclrule (@b2rrules V) ps c ->

LNSKt_rules ps c
| b1r : forall ps c, nslclrule (@b1rrules V) ps c ->

LNSKt_rules ps c
| b2l : forall ps c, nslclrule (@b2lrules V) ps c ->

LNSKt_rules ps c
| b1l : forall ps c, nslclrule (@b1lrules V) ps c ->

LNSKt_rules ps c
| nEW : forall ps c, nslclrule (@EW_rule V) ps c ->

LNSKt_rules ps c
| prop : forall ps c, nslcrule (seqrule (@rs_prop V)) ps c ->

LNSKt_rules ps c.

The b2l case reads: if the premise list ps and conclusion c form an extended
instance of b2lrules, then ps/c is also a rule instance of LNSKt_rules. The other
rules work in much the same way. The exceptions are the prop rules as rs_prop

captures an even more refined rule skeleton for →L, →R, ⊥L and (id) and
requires the addition of a sequent level context (Γ s and Δs) via seqrule [6]. We
leave it to the reader to see the original code for details of the remaining rules.

5 Encoding Derivability

Our notion of derivability follows Dawson and Goré’s formalisation in Isabelle [6]:

Inductive derrec X (rules : list X -> X -> Type) (prems : X -> Type) :
X -> Type :=
| dpI : forall concl , prems concl -> derrec rules prems concl
| derI : forall ps concl , rules ps concl ->

dersrec rules prems ps -> derrec rules prems concl
with dersrec X (rules : list X -> X -> Type) (prems : X -> Type) :
list X -> Type :=
| dlNil : dersrec rules prems []
| dlCons : forall seq seqs , derrec rules prems seq ->

dersrec rules prems seqs ->
dersrec rules prems (seq :: seqs).

Cut-Elimination for LNSKt 287

The X is the type of objects about which we are reasoning: formulae in natural
deduction calculi, sequents in sequent calculi, etc. In our case, we will instantiate
X with the type LNS of LNSs. Then D : derrec X rules prems concl encodes
D �prems

rules concl. But, by a complication of Coq, X is an “implicit argument” and
must be omitted in the line above. Think of prems as a characteristic function
for set membership. Likewise rules, where the set is a set of pairs (each pair
being a list of premises and a conclusion).

A conclusion concl is derivable from a set prems of premises if

dpI: concl is a member of the set prems, or
derI: there is a rule inferring concl from a list ps, and each p in ps is derivable

The notion derrec is defined mutually with dersrec which asserts that
a list of conclusions is derivable instead of just one as in derrec. Thus
dersrec X rules prems concls, using constructors dlNil and dlCons, holds
if all members of concls are derivable via derrec.

In contrast to encodings that define both derivability and calculus rules in
the one definition (for example [2,21]), derrec gives a modular framework where
X, rules and prems can be arbitrary. Thus derrec can be used for a variety of
calculi where we can prove lemmas which are generic to multiple calculi satisfing
certain conditions, rather than having to prove the same lemmas over and over
for different calculi.

Interlude: Doing this in Coq Versus Isabelle/HOL. We can contrast how this
works out in Coq compared with our previous work in Isabelle/HOL. In Coq,
as derrec ... concl is a Type, it represents the derivation tree showing that
concl is derivable. This means we can define the height or size of a derivation
tree, as needed to do proofs by induction on height or size of a derivation.
(We note that doing this specifically requires using Type, not Prop, for derrec,
dersrec, etc.)

By contrast, in Isabelle we had to define a separate data structure to describe
a derivation tree (essentially a rose tree of sequents), specify the condition of its
validity (that each node is a rule of the system), and prove that such a tree exists
iff the endsequent concl satisfies derrec ... concl.

However the derivation tree that Coq gives us for free has problems not
shared by the Isabelle/HOL derivation tree: namely, the derivation trees next
up from the endsequent (ie the trees deriving the premises of the bottom rule
of the tree) do not form a list, because they are not of the same type, as their
conclusions are all different. Navigating around such difficulties was not easy.

In our cut-elimination context we were mostly working with Coq proofs that
required all leaves to be obtained via the (id) or ⊥L rules, and so we regularly
instantiated prems : X -> Type with the empty characteristic function (fun _

=> False). The “wrappers” pf (proof) and pfs (proofs) encode such derivations:

Definition pf {X : Type} rules concl :=
@derrec X rules (fun _ => False) concl.

Definition pfs {X : Type} rules concls :=
@dersrec X rules (fun _ => False) concls.

288 C. D’Abrera et al.

Then, pf_LNSKt and pfs_LNSKt are the “proofs” with rules being LNSKt_rules:
Definition pf_LNSKt {V : Set} ns :=

derrec (@LNSKt_rules V) (fun _ => False) ns.

Definition pfs_LNSKt {V : Set} lns :=
dersrec (@LNSKt_rules V) (fun _ => False) lns.

6 Proof Theoretic Properties of LNSKt

We proved LNSKt_exchL and LNSKt_exchR as the admissibility of left and right
internal exchange of formulae but show only left exchange for brevity:

Lemma 1 (Left internal exchange of LNSKt). If � G 	1 Γ1, Γ2, Γ3, Γ4 ⇒
Δ 	2 K then � G 	1 Γ1, Γ3, Γ2, Γ4 ⇒ Δ 	2 K.

Definition can_gen_swapL {V : Set} (rules : rlsT (@LNS V)) ns :=
forall G K s d Γ 1 Γ 2 Γ 3 Γ 4 Δ,
ns = G ++ (s, d) :: K ->
s = pair (Γ 1 ++ Γ 2 ++ Γ 3 ++ Γ 4) Δ ->
pf rules (G ++ (pair (Γ 1 ++ Γ 3 ++ Γ 2 ++ Γ 4) Δ, d) :: K).

Lemma LNSKt_exchL: forall (V : Set) ns (D : @pf_LNSKt V ns),
can_gen_swapL (@LNSKt_rules V) ns.

Thus if LNS ns is derivable, then so is any LNS which permutes two adjacent
sublists Γ2 and Γ3 on the left – all within LNSKt with no unfinished leaves.

On paper, Lemma 1 is immediate as the Γ s and Δs are multisets so that
Γ2, Γ3 is identical to Γ3, Γ2. In our Coq formalisation however, we chose to encode
the Γ s and Δs instead by lists and prove left and right internal exchange so
LNSKt_exchL was not immediate.

Our proof is a standard induction on the structure of D using the inductive
hypothesis automatically generated by Coq that the required result holds for
the premises of the final (bottom) rule application. This is a weaker principle
than induction on the depth of D with an inductive hypothesis that the required
result holds for the conclusions of any derivation of lesser depth.

The remaining proof theoretic properties, internal weakening and contrac-
tion, are stated in the original paper as Lemma 13. As with left-exchange, we
used a“can_gen” conclusion and a standard induction. See the code for details.

We are now ready to tackle cut-elimination.

7 Cut-Elimination via Cut-Admissibility

Goré and Lellmann [8] proved cut-admissibility in their cut-free calculus and we
follow suit. Using cut-admissibility, we additionally prove cut-elimination. To
state cut-admissibility for LNSs, we must merge two LNSs in the following way:

Cut-Elimination for LNSKt 289

Definition 2. The merge of two linear nested sequents is defined via the fol-
lowing, where we assume G and H to be non-empty:

(Γ ⇒ Δ) ⊕ (Σ ⇒ Π) := Γ,Σ ⇒ Δ,Π

(Γ ⇒ Δ) ⊕ (Σ ⇒ Π 	 H) := Γ,Σ ⇒ Δ,Π 	 H
(Γ ⇒ Δ 	 H) ⊕ (Σ ⇒ Π) := Γ,Σ ⇒ Δ,Π 	 H

(Γ ⇒ Δ ↗ G) ⊕ (Σ ⇒ Π ↗ H) := Γ,Σ ⇒ Δ,Π ↗ (G ⊕ H)
(Γ ⇒ Δ ↙ G) ⊕ (Σ ⇒ Π ↙ H) := Γ,Σ ⇒ Δ,Π ↙ (G ⊕ H) .

Our Coq encoding of merge is as follows:
Inductive merge {V : Set} :
(@LNS V) -> (@LNS V) -> (@LNS V) -> Type :=
| merge_nilL ns1 ns2 ns3 : ns1 = [] -> ns3 = ns2 -> merge ns1 ns2 ns3
| merge_nilR ns1 ns2 ns3 : ns2 = [] -> ns3 = ns1 -> merge ns1 ns2 ns3
| merge_step Γ Δ Σ Π d ns1 ns2 ns3 ns4 ns5 ns6 s1 s2 s3 :

s1 = (Γ ,Δ,d) -> s2 = (Σ,Π,d) -> s3 = (Γ ++ Σ, Δ ++ Π,d) ->
merge ns1 ns2 ns3 -> ns4 = s1 :: ns1 ->
ns5 = s2 :: ns2 -> ns6 = s3 :: ns3 ->
merge ns4 ns5 ns6.

Thus merge ns1 ns2 ns3 encodes that ns3 is the merge of ns1 and ns2. Our
Coq definition allows either the left or right LNS to be empty.

Note also that both pen-and-paper and Coq definitions are only well-defined
for LNSs that are in some sense structurally equivalent, where the arrows of
the two LNSs correspond. The original paper allowed LNSs of possibly differing
lengths to be structurally equivalent. We instead used a strong version for only
equal length LNSs as this was all that was needed. Doing so simplified some
of the proofs. Alternatively we could define merge to hold only for structurally
equivalent sequents. But where convenient, we conform to the original paper.

Definition 3. Two LNSs S1 	S
1 ... 	S

n−1 Sn and T1 	T
1 ... 	T

n−1 Tn are struc-
turally equivalent if we have 	S

i = 	T
i for every i.

Inductive struct_equiv_str {V : Set} : (@LNS V) -> (@LNS V) -> Type :=
| se_nil2 : struct_equiv_str [] []
| se_step2 Γ 1 Δ1 d Γ 2 Δ2 ns1 ns2 ns3 ns4 :
ns3 = ((Γ 1, Δ1, d) :: ns1) -> ns4 = ((Γ 2, Δ2, d) :: ns2) ->
struct_equiv_str ns1 ns2 -> struct_equiv_str ns3 ns4.

Our cut-admissibility theorem is called cut-elimination in the original paper.

7.1 Cut-Admissibility

The cut rule, where the premiss and conclusion LNSs are structurally equivalent:

G 	 Γ ⇒ Δ,A H 	 A,Σ ⇒ Π

G ⊕ H 	 Γ,Σ ⇒ Δ,Π
Cut

Theorem 1 (Cut-admissibility). For structurally equivalent LNSs G and H,
if � G 	 Γ ⇒ Δ,A and � H 	 A,Σ ⇒ Π, then also � G ⊕ H 	 Γ,Σ ⇒ Δ,Π.

290 C. D’Abrera et al.

Definition can_gen_cut {V : Set} (rules : rlsT (@LNS V)) ns1 ns2 :=
forall G1 G2 G3 s1 s2 d Γ Δ1 Δ2 Σ1 Σ2 Π A,
ns1 = G1 ++ [(s1, d)] -> s1 = pair Γ (Δ1++[A]++Δ2) ->
ns2 = G2 ++ [(s2, d)] -> s2 = pair (Σ1++[A]++Σ2) Π ->
merge G1 G2 G3 -> struct_equiv_str G1 G2 ->
pf rules (G3 ++ [(Γ ++Σ1++Σ2, Δ1++Δ2++Π, d)]).

Theorem LNSKt_cut_admissibility : forall (V : Set) ns1 ns2
(D1 : pf_LNSKt ns1) (D2 : pf_LNSKt ns2),
can_gen_cut (@LNSKt_rules V) ns1 ns2.

So LNSKt_cut_admissibility states that if two structurally-equivalent LNSs are
(cut-free) derivable from LNSKt_rules then so is the structurally-equivalent LNS
obtained by applying the cut rule to their conclusions (i.e. no cut in the rules).

Our Coq code follows the original paper where cut-admissibility is a corollary
of the huge Lemma_Sixteen, thus transfering all heavy lifting to this mega lemma.

7.2 The Main Lemma: “Lemma Sixteen”

The so-called Lemma Sixteen is defined as follows.

Lemma 2. The following statements hold for every n,m where we always
assume that G and H are structurally equivalent:

(SR�(n,m)) Suppose that all of the following hold:
– D1 � G 	1 Γ ⇒ Δ,�A with �A principal in the last rule in D1

– D2 � H 	1 �A,Σ ⇒ Π 	2 I
– there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π ↗ ε ⇒ A
– dp(D1) + dp(D2) ≤ m
– |�A| ≤ n.

Then there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π 	2 I.
(SR�(n,m)) Suppose that all of the following hold:

– D1 � G 	1 Γ ⇒ Δ,�A with �A principal in the last rule in D1

– D2 � H 	1 �A,Σ ⇒ Π 	2 I
– dp(D1) + dp(D2) ≤ m
– there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π ↙ ε ⇒ A
– |�A| ≤ n.

Then there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π 	2 I.
(SRp(n,m)) Suppose that all of the following hold:

– D1 � G 	1 Γ ⇒ Δ,A with A principal in the last applied rule in D1

– D2 � H 	1 A,Σ ⇒ Π 	2 I
– dp(D1) + dp(D2) ≤ m
– |A| ≤ n
– A not of the form �B or �B.

Then there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π 	2 I.
(SL(n,m)) Suppose that all of the following hold:

– D1 � G 	1 Γ ⇒ Δ,A 	2 I
– D2 � H 	1 A,Σ ⇒ Π

Cut-Elimination for LNSKt 291

– dp(D1) + dp(D2) ≤ m
– |A| ≤ n.

Then there is a derivation of G ⊕ H 	1 Γ,Σ ⇒ Δ,Π 	2 I.
We show only the encoding corresponding to one of the parts, SR�(n,m).

Definition SR_wb_pre (n m : nat) := forall {V : Set}
G Γ Δ1 Δ2 H Σ1 Σ2 Π I GH (A : PropF V) d
(D1 : pf_LNSKt (G ++ [(Γ , Δ1 ++ [WBox A] ++ Δ2,d)]))
(D2 : pf_LNSKt (H ++ [(Σ1 ++ [WBox A] ++ Σ2, Π, d)] ++ I))
(D3 : pf_LNSKt

(GH ++ [(Γ ++ Σ1 ++ Σ2, Δ1 ++ Δ2 ++ Π, d)] ++
[([] ,[A],fwd)])),

principal_WBR D1 (WBox A) Γ Δ1 Δ2 ->
((dp D1) + (dp D2))%nat <= m ->
struct_equiv_str G H ->
merge G H GH ->
fsize (WBox A) <= n ->
pf_LNSKt (GH ++ [(Γ ++ Σ1 ++ Σ2, Δ1 ++ Δ2 ++ Π, d)] ++ I).

Definition SR_wb (nm : nat * nat) :=
let (n,m) := nm in SR_wb_pre n m.

Lemma Lemma_Sixteen : forall (nm : nat * nat),
SR_wb nm * SR_bb nm * SR_p nm * SL nm.

We had to state that �A is principal in the last rule in D1. That is, although
there may be other occurrences of �A in G 	1 Γ ⇒ Δ,�A, it is that particular
displayed occurrence that is principal. To capture this, we defined principal_WBR

which is specifically designed for white box formulae that occur on the right
side of the sequent in the last component (hence WBR standing for White Box
Right). Moreover, the statement principal_WBR D1 (WBox A) Γ Δ1Δ2 carries
all required information of where the principal WBox A sits, in particular that it
sits between Δ1 and Δ2. This is a requirement specific to our implementation
based on lists. We have analogous definitions for the other cases: principal_BBR
and principal_not_box_R. The full code contains these definitions and others we
have omitted here, including depth of derivation dp and formula size fsize.

The Coq Lemma_Sixteen uses * as a Type-level conjunction as in the earlier
example to enable extraction. All four parts of Lemma Sixteen are proved simul-
taneously by induction on the pair (n,m) in the lexicographic ordering, as in the
original proof. Please refer to the code for our definitions of this lexicographic
ordering lt_lex_nat and our induction principle wf_lt_lex_nat_induction.

The need to prove all four components of Lemma Sixteen simultaneously is of
course because the different parts depend on induction hypotheses of the other
components. The proof works through a lot of different cases, often multiple
layers of cases going at once. Given that there are already four sublemmas to
prove as well as the copious number of cases, the pen-and-paper proof is large
and the Coq proof is, understandably, even larger.

Coq is useful to check the subtle details for each case, and it is unsurprising
that our work highlighted multiple mistakes in the original proof. These ranged
from incorrect arrow directions, incorrect rule applications, to omissions of con-
ditions such as structural equivalence and same length of LNSs. Fortunately all
were easily resolved. We have confirmed these with the original authors.

292 C. D’Abrera et al.

For example, in SR�(n,m) (SR�(n,m)), where we have 	1 the original paper
had ↗ (↙), but there were indeed cases which require our more general version.

Cut-admissibility follows from (SL(n,m)), and leads easily to cut-elimination.

7.3 Cut-Elimination

We encoded the cut rule in Coq as follows where we don’t encode the skeleton of
cut and then fill in contexts using nslclrule because the premises do not share
linear nested sequent level contexts i.e. G and H may differ:
Inductive Cut_rule {V : Set} : rlsT (@LNS V) :=
| Cut : forall G H GH s1 s2 s3 ns1 ns2 ns3 d Γ Δ1 Δ2 Σ1 Σ2 Π A,

ns1 = G ++ [(s1, d)] -> s1 = (Γ , (Δ1++[A]++Δ2)) ->
ns2 = H ++ [(s2, d)] -> s2 = ((Σ1++[A]++Σ2), Π) ->
ns3 = GH ++ [(s3, d)] -> s3 = ((Γ ++Σ1++Σ2), (Δ1++Δ2++Π)) ->
merge G H GH -> struct_equiv_str G H ->
Cut_rule [ns1 ; ns2] ns3.

We then defined the calculus LNSKt+Cut as LNSKt plus Cut in Coq:
Inductive LNSKt_cut_rules {V : Set} : rlsT (@LNS V) :=
| LNSKt_rules_woc :

forall ps c, LNSKt_rules ps c -> LNSKt_cut_rules ps c
| LNSKt_rules_wc :

forall ps c, (@Cut_rule V) ps c -> LNSKt_cut_rules ps c.

The first constructor (_woc for “without cut”) includes all LNSKt_rules and
the second constructor (_wc for “with cut”) adds the cut rule. We then specialised
LNSKt_cut_rules to have no unfinished leaves as for LNSKt_rules:
Definition pf_LNSKt_cut {V : Set} ns :=

derrec (@LNSKt_cut_rules V) (fun _ => False) ns.

The cut-elimination theorem allows us to eliminate Cut applications:

Theorem 2. For every LNS G, if �LNSKt+Cut
G then �LNSKt

G.

Theorem LNSKt_cut_elimination :
forall {V:Set} (ns:@LNS V), pf_LNSKt_cut ns -> pf_LNSKt ns.

The original paper stopped at cut-admissibility (though they called it cut-
elimination), so we produced our own proof in the standard way by induction on
the depth of the derivation with cut. As usual, we start with a derivation with
cuts, eliminate the cut application with smallest depth using cut-admissibility,
and repeat the procedure in the resulting (transformed) derivation!

8 Extraction

The form of the cut-elimination theorem in Coq enables us to utilise Coq’s
extraction facility to synthesise a Haskell program that computes cut-free deriva-
tions from those with cut. Specifically, we can use Coq to distill the algorith-
mic content of our cut-elimination theorem in order to automatically produce a
Haskell function that computes cut-free derivation from those without cut.

The file cut elimination theorem.v imports the necessary libraries and sets the
language to Haskell, after which we extract into separate Haskell modules:

Cut-Elimination for LNSKt 293

Require Import cut.
Require Import Extraction.
Extraction Language Haskell.

Separate Extraction LNSKt_cut_elimination.

This process automatically produces 47 Haskell modules, with the final cut-
elimination function, coq_LNSKt_cut_elimination, specified in the Cut.hs module.

To use coq_LNSKt_cut_elimination, we have to specify how the required
objects should be printed, and so we hand-coded a simple printing module
that can be easily checked, called Main thm.hs, which imports Cut.hs. Once
Main thm.hs is loaded, one can then use the cut-elimination function by call-
ing coq_LNSKt_cut_elimination with the appropriate input.

Given that coq_LNSKt_cut_elimination requires inputs that are fairly large
and can be difficult to write, our preferred method is to encode the desired
examples in Coq before extraction, and then use extraction on both the cut-
elimination theorem as well as that example derivation. That way, we benefit
from Coq’s type checker on the example derivation as well as the cut-elimination
function. Let us illustrate with an example.

Consider the following derivation that uses the cut rule:

(id)�p ⇒ ε ↗ p ⇒ p �1
L�p ⇒ ε ↗ ε ⇒ p

(id)
ε ⇒ ε ↗ p, q ⇒ p, q → p →R

ε ⇒ ε ↗ p ⇒ q → p
Cut�p ⇒ ε ↗ ε ⇒ q → p

In file cut extraction example pre.v, we hand-coded this derivation in about
100 lines. Each rule instance requires an easy Coq proof to identify the rule, its
principal and side-formulae and their locations in the premises and conclusion.
For example, lemma pf3_000 tells us how concl3_000 follows from no premisses,
where concl3_000 corresponds to the conclusion of the left (id) instance above:
Definition concl3_000 :=
[([WBox (Var 0)], [], fwd) ; ([Var 0], [Var 0], fwd)].

Lemma pf3_000 : LNSKt_cut_rules [] concl3_000.

This proof term is required by the cut-elimination function because it makes
decisions depending on the form of pf3_000: thus we cannot elide it during extrac-
tion. The need for the user to specify these proof terms while specifying the full
derivation is why we prefer to encode them on the Coq side. So Coq checks their
type and the extraction mechanism converts everything to Haskell code.

Then we build up the final derivation, example3, by putting together these
proof terms, premisses and conclusions. See the full code for details of how this
is done. We then define cut_example3 to perform cut-elimination on example3:
Definition cut_example3 := LNSKt_cut_elimination example3.

Extracting using cut elimination theorem.v extracts the cut-elimination function
only. Instead, we ask users to compile cut elimination example.v, thereby extract-
ing both the cut-elimination function and the example derivation example3:
Separate Extraction cut_example3.

294 C. D’Abrera et al.

This produces a Haskell module containing the example derivation code: extract-
ing example3 will not produce Haskell code for the cut-elimination procedure.

Beside the Main thm.hs printing file, we have written Main example.hs which
is identical except for an import statement that gives access to the example
derivation. Once this is loaded, we can call cut_example3 (or the longer version
coq_LNSKt_cut_elimination example3) which outputs the cut-free derivation:
derI

(derI
(derI (dlNil)

([(([[.] p 0], []), fwd) ::
(([p 0 :: p 1], [p 1 --> p 0 :: p 0]), fwd)])

(Id))
([(([[.] p 0], []), fwd) :: (([p 0], [p 1 --> p 0]), fwd)])
(ImpR))

([(([[.] p 0], []), fwd) :: (([], [p 1 --> p 0]), fwd)])
(WBox1Ls)

Adding line breaks and indentation, the code above is the cut-free derivation:

(id)�p ⇒ ε ↗ p, q ⇒ q → p, p →R�p ⇒ ε ↗ p ⇒ q → p �1
L�p ⇒ ε ↗ ε ⇒ q → p

Each derI in the above code is a rule application that takes in three arguments:
the subderivation of the premise, the conclusion and the name of the rule.

Clearly, the linear representation is not easy to read and a tree style repre-
sentation would be better. See Sect. 10 for more discussion on this. Note that our
printing instructions for the output derivation in the Main files exclude the print-
ing of the proof terms like pf3_000. We did this because 1) logicians read this
information off naturally from concrete derivations without it being explicitly
stated; and 2) it gives a cleaner, easier to read derivation.

By consulting README.txt, readers can input their own deriva-
tions, extract, and behold the verified cut-free output derivations from
coq_LNSKt_cut_elimination.

9 Related Work

Chaudhuri et al. [2] cover the related work well, so we concentrate only on work
which formalises meta-theory, as opposed to formalised proof-search.

The work of Pfenning [16], Graham-Lengrand [9], Simmons [17] and
Urban [20] all represent sequents as formulae of the meta-logic where, for exam-
ple, a sequent A,B ⇒ ϕ becomes the meta-logical formula hyp A -> hyp A ->

conc phi [16]. Since the meta-logic is intuitionistic, the sequent calculi inherit
exchange, weakening and contraction.

Arbitrary contexts follow by encoding rule skeletons using -> to encode the
horizontal line separating premises and conclusions. These methods cannot han-
dle calculi that lack some combination of weakening, contraction and exchange,
nor do they include extraction.

Cut-Elimination for LNSKt 295

At the next level are encodings which build sequents out of multisets. Daw-
son and Goré [6] prove mix-elimination for the provability logic GL using
Isabelle/HOL. Xavier et al. [21] prove cut-elimination and other meta-theoretic
properties of (commutative) linear logic in Coq by extending the standard
library for multisets with additional theorems and tactics. Multisets preclude
non-commutativity. There is no extraction in either.

At the next level is work where sequents are built from lists, but with extra
machinery added to regain commutativity. Tews [18] uses setoids, while Chaud-
huri et al. [2] and Larchey-Wendling [11,12] build-in “permutability” explicitly.
All these could be extended to handle non-commutative logics, but none do. Only
Larchey-Wendling [11] allows extraction, though this has not been published.

Miller and Pimentel [13] explored embedding various object logics into linear
logic, and gave “cut-coherence” conditions for the cut-admissibility of linear logic
to carry over to an object logic. Olarte et al. [15] extended this work to allow
object logics with modalities using a LNS presentation of SLL (a linear logic with
subexponentials). A Coq encoding of this work would require us to first encode
the syntax of (subexponential) linear logic, and then encode our object logic
(sequents) as formulae of linear logic. Encoding into linear logic cannot handle
non-commutative substructural logics but does allow us to omit weakening and
contraction, which can then be regained via (sub)exponentials.

Our work has numerous advantages: (1) our notion of derivability is paramet-
ric on a set of objects X which could be formulae, sequents, or other structures;
(2) using lists allows us to handle genuinely substructural logics in which some
combination of weakening, contraction and exchange (commutativity) are miss-
ing, with Dawson and Goré’s previous work [5] allowing us to even capture non-
associativity if required; and (3) our use of Type, rather than Prop, in Coq allows
us to extract a formally verified computer program to perform cut-elimination.

10 Conclusion and Future Work

We have transported and extended from Isabelle to Coq Dawson and Goré’s [6]
encodings of general notion of derivability which is usable for many different
kinds of proof systems. We applied this to the linear nested sequent calculus
LNSKt that was given by Goré and Lellmann [8] for tense logic and formalised the
calculus along with all structural proof theoretic properties up to and including
their proof of cut-admissibility (called cut-elimination in the original paper).

We uncovered multiple small mistakes but none were major and all were
easily amended. The original authors accepted the corrections.

We proved cut-elimination from cut-admissibility and extracted a formally
verified Haskell program that computes cut-free derivations from those with cut.
We hand-coded Haskell Main files to provide requisite printing instructions in
order to display the outputs.

Our Coq encodings are modular and allow us to prove meta-theoretic lemmas
for arbitrary rules that satisfy certain conditions, which can then be applied
to specific calculi. For example, in the proof of left internal exchange, the case

296 C. D’Abrera et al.

where the last rule applied was a rule in rs_prop was proved not restricted to just
LNSKt_rules but more generally for any rules provided that the last rule skeleton
applied satisfied the rules_L_oeT condition, those for which every conclusion has
at most one formula on the left. Thus our work has the potential to lead to a Coq
library for proof theory that is applicable to a broad range of logics and calculi
with results proved in the aforementioned generic way. Most formalisations that
we have encountered do not enjoy such modularity (e.g. [2,21]).

This modularity of our encodings is in part due to our capturing not just
derivability but derivations as first class citizens with corresponding proof terms.
The deep embedding of derivations also enables extraction of the cut-elimination
procedure into Haskell, and as such an alternative approach using a shallow
embedding (e.g. [16]) would not suffice.

Recall that we encoded multisets in our context with lists and then proved
exchange. First, our framework can then handle noncommutative logics and,
secondly, gives us access to the libraries of basic reasoning about lists where
other multiset libraries seemed to be lacking. The trade-off of this general
framework is that in our specific LNSKt context where exchange is admitted
we faced needless difficulties relating to where a particular formula is located
in a sequent. It is worth exploring a formalisation where list is replaced
in Definition seq := rel (list (PropF V)) to an encoding of multisets
(e.g. [21]), or which utilises the Permutation library (e.g. [12]). In that case, we
would expect to see simpler proofs and less complex and more efficient tactics.
This may also translate to a more efficient extracted cut-elimination function
which would not need to perform rearrangements on lists of formulae.

Related, we haven’t yet performed any tests on efficiency of the extracted
function nor attempted to make significant improvements in this area. While
we consider this interesting, it is also part of a bigger picture of comparing effi-
ciencies of verified and unverified implementations, which contributes to answer-
ing how realistic it is to prefer the former kind over the latter. We are still in
early stages of program synthesis of formalised proof-theory and consider this
an avenue worthy of further investigation.

Another aspect in this bigger picture of usability is the readability of the
extracted function. The printing instructions in the Haskell Main files employ a
linear representation to type-check and display the output, which is difficult to
read. Alternatively, we could write tree-style printing instructions, import pre-
existing Haskell libraries, use a format such as the LATEX package bussproofs,
or even develop a nice graphical user interface. The further down the spectrum
of readability you move, the more you compromise on trustworthiness. In its
current form, our work adopts a conservative approach on the trustworthy end
of the spectrum but we do acknowledge there is scope here to improve usability.

We believe that our work has the potential to lead to a Coq library for deeply
embedded and extractable proof theory for the huge number of truly substruc-
tural logics in the literature where some combination of weakening, contraction
and exchange are not admissible.

Cut-Elimination for LNSKt 297

References

1. Belnap, N.: Display logic. J. Philos. Log. 11, 375–417 (1982)
2. Chaudhuri, K., Lima, L., Reis, G.: Formalized meta-theory of sequent calculi for

linear logics. TCS 781, 24–38 (2019)
3. Dawson, J.E., Brotherston, J., Goré, R.: Machine-checked interpolation theorems

for substructural logics using display calculi. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 452–468. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40229-1 31

4. Dawson, J.E., Clouston, R., Goré, R., Tiu, A.: From display calculi to deep nested
sequent calculi: formalised for full intuitionistic linear logic. In: Diaz, J., Lanese, I.,
Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 250–264. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44602-7 20

5. Dawson, J.E., Goré, R.: Formalised cut admissibility for display logic. In: Carreño,
V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 131–147.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45685-6 10

6. Dawson, J.E., Goré, R.: Generic methods for formalising sequent calculi applied
to provability logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS,
vol. 6397, pp. 263–277. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16242-8 19

7. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,
Gabbay, D., Haehnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, Kluwer,
pp. 297–396 (1999)

8. Goré, R., Lellmann, B.: Syntactic cut-elimination and backward proof-search
for tense logic via linear nested sequents. In: Cerrito, S., Popescu, A. (eds.)
TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 185–202. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29026-9 11

9. Graham-Lengrand, S.: Polarities & focussing: a journey from realisability to auto-
mated reasoning, Habilitation Thesis, Université Paris-Sud (2014)

10. Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Log. 53(1), 119–
136 (1994)

11. Larchey-Wendling, D.: Semantic cut elimination. https://github.com/.
DmxLarchey/Coq-Phase-Semantics/blob/master/coq.type/cut elim.v

12. Larchey-Wendling, D.: Constructive decision via redundancy-free proof-search. J.
Autom. Reason. 64(7), 1197–1219 (2020)

13. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof
systems. Theor. Comput. Sci. 474, 98–116 (2013)

14. Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34(5–6), 507–544 (2005)
15. Olarte, C., Pimentel, E., Xavier, B.: A fresh view of linear logic as a logical frame-

work. In: LSFA 2020. ENTCS, vol. 351, pp. 143–165. Elsevier (2020)
16. Pfenning, F.: Structural cut elimination. In: LICS 1995, pp. 156–166. IEEE Com-

puter Society (1995)
17. Simmons, R.J.: Structural focalization. ACM Trans. Comput. Log. 15(3), 21:1–

21:33 (2014)
18. Tews, H.: Formalizing cut elimination of coalgebraic logics in Coq. In: Galmiche,

D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS (LNAI), vol. 8123, pp.
257–272. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40537-
2 22

19. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Number 43 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press (1996)

https://doi.org/10.1007/978-3-319-40229-1_31
https://doi.org/10.1007/978-3-662-44602-7_20
https://doi.org/10.1007/3-540-45685-6_10
https://doi.org/10.1007/978-3-642-16242-8_19
https://doi.org/10.1007/978-3-642-16242-8_19
https://doi.org/10.1007/978-3-030-29026-9_11
https://github.com/
https://doi.org/10.1007/978-3-642-40537-2_22
https://doi.org/10.1007/978-3-642-40537-2_22

298 C. D’Abrera et al.

20. Urban, C., Zhu, B.: Revisiting cut-elimination: one difficult proof is really a proof.
In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 409–424. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-70590-1 28

21. Xavier, B., Olarte, C., Reis, G., Nigam, V.: Mechanizing focused linear logic in
Coq. In: LSFA 2017. ENTCS, vol. 338, pp. 219–236. Elsevier (2017)

https://doi.org/10.1007/978-3-540-70590-1_28

	A Formally Verified Cut-Elimination Procedure for Linear Nested Sequents for Tense Logic
	1 Introduction
	2 Preliminaries
	2.1 A Linear Nested Sequent Calculus for Kt

	3 Encoding Formulae, Sequents and LNSs
	4 Encoding the LNSKt Calculus
	5 Encoding Derivability
	6 Proof Theoretic Properties of LNSKt
	7 Cut-Elimination via Cut-Admissibility
	7.1 Cut-Admissibility
	7.2 The Main Lemma: ``Lemma Sixteen''
	7.3 Cut-Elimination

	8 Extraction
	9 Related Work
	10 Conclusion and Future Work
	References

