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Abstract. Recently, Brighton gave another cut-admissibility proof for
the standard set-based sequent calculus GLS for modal provability logic
GL. One of the two induction measures that Brighton uses is novel: the
maximum height of regress trees in an auxiliary calculus called RGL.
Tautology elimination is established rather than direct cut-admissibility,
and at some points the input derivation appears to be ignored in favour of
a derivation obtained by backward proof-search. By formalising the GLS
calculus and the proofs in Coq, we show that: (1) the use of the novel
measure is problematic under the usual interpretation of the Gentzen
comma as set union, and a multiset-based sequent calculus provides a
more natural formulation; (2) the detour through tautology elimination
is unnecessary; and (3) we can use the same induction argument without
regress trees to obtain a direct proof of cut-admissibility that is faithful
to the input derivation.

Keywords: Provability logic · Cut admissibility · Interactive theorem
proving · Proof theory

1 Introduction

Propositional modal provability logics extend the basic normal modal logic K
with axioms which interpret the � connective as the mathematical notion of
being “provable” in Peano Arithmetic [1,16]. There are several variants with
characteristic axioms named after Gödel, Löb and Grzegorczyk:

Name Characteristic Axiom
GL �(�p → p) → �p
Go �(�(p → �p) → p) → �p
Grz �(�(p → �p) → p) → p

While the “provability” interpretation is now well-understood, the proof-
theory of these logics is intricate and somewhat controversial as we explain next.
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Following Gentzen [5,6], the literature abounds with proofs of cut-
admissibility for various sequent calculi based on the size of the cut-formula
and the height of the premise derivations. But these measures looked, at first
sight, inadequate for proving cut-elimination for the standard set-based sequent
calculus GLS for provability logic GL so Valentini introduced a third novel mea-
sure called width, and showed that cut-elimination for GLS could be obtained
via a triple induction over size, height and width [17].

Controversy arose when it was (erroneously) claimed that Valentini’s proofs
contained a gap and various authors provided alternative proofs of cut-
elimination in response [2,10–12,14]. The question was resolved in Valentini’s
favour [7], with all proofs later verified using an interactive theorem prover
Isabelle/HOL [4].

The cut-elimination proof for the logic Go (due to Goré and Ramanayake
[8] via a deeper analysis of the structure of derivations, and subsequently by
Savateev and Shamkanov [15] via non-well founded-proofs) is even more intricate.
The proof-theory of provability logics can therefore be described as complex.

Recently, Brighton [3] provided yet another proof of cut-admissibility for GLS
which is significantly simpler than any of the existing proofs of cut-admissibility
in the literature. It uses a double induction with the traditional size of the cut-
formula as primary measure. The secondary measure is called the “maximum
height of regress trees” and it is a novel measure defined using a backward proof-
search procedure for GLS called RGL, based on regress trees/regressants.

Backward proof-search can often be employed to obtain cut-free completeness
with respect to the Kripke semantics of a logic. However, cut-elimination is not
a result directly obtained by the use of backward proof-search. For this reason
Brighton’s method is intriguing from a structural proof theoretic perspective.
Even more so because, from a tableaux perspective, the RGL calculus is nothing
but the backward proof-search decision procedure for GL that is well-known to
be cut-free complete with respect to the Kripke semantics of GL. Unfortunately,
Brighton’s arguments is clouded by various issues that become apparent when
studying them in detail.

We first explain why Brighton’s use of a set-based sequent calculus leads to
confusion, and explain how this can be clarified using multisets. We then show
that the special calculus RGL on regress trees can be replaced by a standard
proof-search procedure PSGLS on GLS itself. Putting this all together, we replace
Brighton’s detour through tautology elimination [9] with a direct proof of cut-
admissibility for GL making use of the maximum height of a derivation (the
existence of the latter follows from the termination of backward proof-search).
Noting that Brighton’s proof seems to ignore the structure of the given cut-
free derivations of the premises, and since such a shortcoming undermines cut-
elimination as a procedure that manipulates the given derivations to produce a
cut-free derivation, we take particular care to highlight the local nature of our
transformations. All of our claims have been formally verified in the interactive
theorem prover Coq (https://github.com/ianshil/CE GLS.git).

https://github.com/ianshil/CE_GLS.git
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2 Various Issues with the Method Used by Brighton

Although Brighton’s work is extremely appealing, we have already mentioned
that the argument and the proof technique supporting it require further clari-
fications. Let us exhibit the two main elements that appeared through the for-
malisation process to be responsible for this unclarity.

First, as the sequents that are used are based on sets, the rule for implication
on the right, presented below on the left, is just a notation for the rule on the
right where the comma is interpreted as set union.

A,X ⇒ Y,B

X ⇒ Y,A → B

{A} ∪ X ⇒ Y ∪ {B}
(→R)

X ⇒ Y ∪ {A → B}
However, it is well-known that (→R) contains an implicit contraction [7].

As a consequence, (→R) could be reapplied as many times as one wants above
⇒ p → q on the formula p → q. That implies the existence of derivations of all
heights for this sequent, as shown below.

{p} ∪ ∅ ⇒ ∅ ∪ {q} ∪ {p → q}
(→R){p} ∪ ∅ ⇒ ∅ ∪ {q} ∪ {p → q}
(→R)∅ ⇒ ∅ ∪ {p → q}

Brighton’s argument requires (and proves) that all sequents have a derivation of
maximum height - this would contradict our observation above. For his argu-
ment to hold, it must therefore be the case that Brighton is not using the usual
interpretation for the rules (→R) and (→L).

The only reasonable option seems to be that Brighton intends for the comma
to be interpreted as disjoint union. This amounts to the following rule.

{A} ∪ X ⇒ (Y \ {A → B}) ∪ {B}
(→RDis)

X ⇒ Y ∪ {A → B}
If that was the case, a proof that the calculus is complete for GL under this
interpretation is required. Moreover, further issues arise with this interpretation.

For example, it is not true in general that the premise of the sequent Γ ⇒
Δ,B → C via the rule (→RDis) is B,Γ ⇒ Δ,C (Case 2 of Theorem 1 of
Brighton’s article). Indeed, if B → C ∈ Δ then B,Γ ⇒ Δ,C and B,Γ ⇒
(Δ \ {B → C}), C would be different. This issue seems repairable. However the
situation is undesirable given the sensitivity of structural proof theory to small
syntactic details, and especially given the history of cut-elimination for GL.

Second, Brighton provides an unusual argument for the admissibility of cut.
In order to obtain a proof of the latter, Brighton proves a result equivalent to it
in the case of classical calculi: tautology elimination. More precisely, this lemma
has the following shape: if A → A,X ⇒ Y is provable then so is X ⇒ Y . On
inspection, it is clear that a procedure for tautology elimination can easily be
turned into a procedure for cut-elimination, and vice versa. Given the proximity
between these results, arguing for the admissibility of cut by proving tautology
elimination seems to be an unnecessary detour.
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3 Preliminaries

Let V = {p, q, r . . . } be an infinite set of propositional variables. Modal formulae
are defined by the following grammar.

A ::=p ∈ V | ⊥ | A → A | �A

We use a minimal set of connectives since it is well-known that the other con-
nectives can be defined from these.

We define the size of a formula by the number of symbols it contains. We
say that a formula A is a boxed formula if it has � as its main connective. A
boxed multiset contains only boxed formulae. For a set X = {A1, . . . , An}, define
�X = {A1,�A1, . . . , An,�An}. We denote the set of subformulae of a formula
A by Sub(A). We abuse the notation to designate the set of subformulae of all
formulae in the set X by Sub(X). In what follows we use the letters A,B,C, . . .
for formulae and X,Y,Z, . . . for multisets of formulae.

The Hilbert calculus for the basic normal modal logic K extends a Hilbert-
calculus for classical propositional logic with the axiom �(p → q) → (�p → �q)
and the inference rule of necessitation: from A infer �A. Gödel-Löb logic GL is
obtained by the addition of the axiom �(�p → p) → �p to K.

A sequent is a pair of multisets of formulae, denoted X ⇒ Y . For multisets X
and Y , the multiset sum X � Y is the multiset whose multiplicity (at each
formula) is a sum of the multiplicities of X and Y . We write X,Y to mean
X � Y . For a formula A, we write A,X and X,A to mean {A} � X.

A sequent calculus consists of a finite set of sequent rule schemas. Each rule
schema consists of a conclusion sequent and some number of premise sequents.
If a rule schema has no premise sequents, then it is called an initial sequent.
The conclusion and premises are built in the usual way from propositional-
variables, formula-variables and multiset-variables. A rule instance is obtained
by uniformly instantiating every variable in the rule schema with a concrete
object of that type. This is the standard definition from structural proof theory.

Definition 1 (Derivation/Proof). A derivation of a sequent s in the sequent
calculus C is a finite tree of sequents such that (i) the root node is s; and (ii)
each interior node and its direct children are the conclusion and premise(s) of a
rule instance in C.

A proof is a derivation where every leaf is an instance of an initial sequent.

In what follows, it should be clear from context whether the word “proof”
refers to the object defined in Definition 1, or to the meta-level notion. We say
that a sequent is provable in C if it has a proof in C.

Definition 2 (Height). The height of a derivation δ, noted h(δ), is the maxi-
mum number of nodes on a path from root to leaf.

The sequent calculus GLS is given in Fig. 1.
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(IdP)
p,X ⇒ Y, p

(⊥L)⊥,X ⇒ Y

X ⇒ Y,A B,X ⇒ Y
(→L)

A → B,X ⇒ Y

A,X ⇒ Y,B
(→R)

X ⇒ Y,A → B

X, B ⇒ B
(GLR)

W, X ⇒ B, Y, Z

Fig. 1. The sequent calculus GLS. Here, W and Z do not contain any boxed formulae.

In a rule instance of (→L) or (→R), the formula instantiating the fea-
tured A → B is the principal formula of that instance. In (IdP), a proposi-
tional variable instantiating either featured occurrence of p is principal. In a rule
instance of (GLR), the formula �B is called the diagonal formula [13].

Example 1. The following are examples of derivations in GLS. Note that while
the first and second examples are derivations, the third is a proof.

p ⇒ q → r
p, q ⇒ r

(→R)p ⇒ q → r

(IdP)�p, p,�p ⇒ p
(GLR)�p ⇒ �p

Example 2. A special example of derivation in GLS is the following:

�A → A, �(�A → A), A,A, �A, �A, �A ⇒ A
(GLR)

�(�A → A), A, �A, �A ⇒ A, �A �(�A → A), A,A, �A, �A ⇒ A
(→L)

�A → A, �(�A → A), A, �A, �A ⇒ A

By noticing the identity modulo formula multiplicities between the topmost and
the lowest sequents, it appears that the sequence of application of rules in the
above could be iterated indefinitely on the topmost sequent.

Finally, we consider the additive cut rule.

X ⇒ Y,A A,X ⇒ Y
(cut)

X ⇒ Y

In the above, we call A the cut-formula. It easily follows that GLS + (cut) is a
sequent calculus for GL [13].

Theorem 1. For all A we have: A ∈ GL iff ⇒ A is provable in GLS + (cut).

4 Properties Of GLS

We need some lemmas that are commonly used in proof theory. Straightforward
inductions on the structure of formulae or derivations are used to prove them.

Lemma 1. For all X, Y and A, the sequent A,X ⇒ Y,A has a proof.
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Lemma 2 (Height-preserving admissibility of weakening).
For all X,Y,A and B:

(i) If X ⇒ Y has a proof π in GLS, then X ⇒ Y,A has a proof π0 in GLS such
that h(π0) ≤ h(π).

(ii) If X ⇒ Y has a proof π in GLS, then A,X ⇒ Y has a proof π0 in GLS such
that h(π0) ≤ h(π).

Lemma 3 (Height-preserving invertibility of the implication rules).
For all X,Y,A and B:

(i) If A → B,X ⇒ Y has a proof π in GLS, then X ⇒ Y,A and B,X ⇒ Y
have proofs π0 and π1 in GLS such that h(π0) ≤ h(π) and h(π1) ≤ h(π).

(ii) If X ⇒ Y,A → B has a proof π in GLS, then A,X ⇒ Y,B has a proof π0

in GLS such that h(π0) ≤ h(π).

Lemma 4 (Height-preserving admissibility of contraction).
For all X,Y,A and B:

(i) If X ⇒ Y,A,A has a proof π in GLS, then X ⇒ Y,A has a proof π0 in GLS
such that h(π0) ≤ h(π).

(ii) If A,A,X ⇒ Y has a proof π in GLS of height n, then A,X ⇒ Y has a
proof π0 in GLS such that h(π0) ≤ h(π).

In the following section we will introduce a proof-search procedure for GLS which
terminates. This will allow us to define the maximum height of a derivation of a
sequent with respect to this procedure. Later on this will constitute the secondary
induction measure in the proof of admissibility of cut.

5 PSGLS: A Terminating Proof-Search

Given a sequent calculus C, one can define a proof-search procedure on C by
imposing further constraints on the applicability of the rules of C. This procedure
captures a subset of the set of all derivations of C, i.e. those which are built using
the restricted version of the rules of C. Consequently, a proof-search procedure
can be identified with the calculus PSC consisting of these restricted rules of C,
under the condition that PSC allows to decide the provability of sequents in C.

The sequent calculus PSGLS restricts the rules of GLS in the following way.

1. An additional identity rule (IdB), derivable in GLS as shown in Lemma 1, is
introduced.

(IdB)�A,X ⇒ Y,�A

2. The conclusion of the rule (GLR) is not permitted to be an instance of either
(IdP) or (⊥L) or (IdB). This restriction ensures that repetitions (even in the
weak sense of Example 2) of a sequent along a branch are forbidden.
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By inspection, a sequent is provable in PSGLS if and only if it is provable in
GLS. The remainder of this section is devoted to showing that each sequent has
a derivation of maximum height in PSGLS (something that does not hold of
GLS). This crucial result is not thoroughly proved in Brighton’s work.

It is easy to prove that if there is a measure that decreases, given a well-
founded order, upwards through the rules of PSGLS, then each sequent has a
derivation of maximum height in PSGLS. We need the following definition.

Definition 3. For a sequent X ⇒ Y :

1. Let ι(X ⇒ Y ) be the number of occurrences of “→” in X ⇒ Y .
2. Let β(X ⇒ Y ) be the usable boxes of X ⇒ Y where:

β(X ⇒ Y ) := {�A | �A ∈ Sub(X ∪ Y )} \ {�A | �A ∈ X}

3. The tuple (Card(β(X ⇒ Y )), ι(X ⇒ Y )), where Card(U) is the cardinality of
the set U , is denoted Θ(X ⇒ Y ).

The notion of usable boxes of a sequent X ⇒ Y is the set of boxed formulae
of X ⇒ Y minus the boxed formulae in X. Intuitively, this notion captures the
set of boxed formulae of a sequent s which might be the diagonal formula of an
instance of (GLR) in a derivation of s in PSGLS.

We proceed to prove that the measure Θ decreases on the usual component-
wise ordering on n-tuples, which is well-known to be well-founded, upwards
through the rules of PSGLS.

Lemma 5. Let s0 and s1, ..., sn be sequents. If there is an instance of a rule r
of PSGLS of the following form, then Θ(si) < Θ(s0) for 1 ≤ i ≤ n.

s1 . . . sn
s0

r

Proof. We reason by case analysis on r:

1. If r is (IdP) or (IdB) or (⊥L), then we are done as there is no premise.
2. If r is (→R), then it must have the following form.

X,A ⇒ Y,B
(→R)

X ⇒ Y,A → B

Then we distinguish two cases. If A is boxed, then {�B | �B ∈ X} ⊆ {�B |
�B ∈ X ∪ {A}}. As a consequence, we have that β(X,A ⇒ Y,B) ⊆ β(X ⇒
Y,A → B) hence Card(β(X,A ⇒ Y,B)) ≤ Card(β(X ⇒ Y,A → B)). If
Card(β(X,A ⇒ Y,B)) < Card(β(X ⇒ Y,A → B)) then we are done. If
Card(β(X,A ⇒ Y,B)) = Card(β(X ⇒ Y,A → B)), then we can see that
ι(X,A ⇒ Y,B) = ι(X ⇒ Y,A → B) − 1 hence Θ(X,A ⇒ Y,B) < Θ(X ⇒
Y,A → B). If A is not boxed, then obviously we get that Card(β(X,A ⇒
Y,B)) = Card(β(X ⇒ Y,A → B)) but also ι(X,A ⇒ Y,B) = ι(X ⇒ Y,A →
B) − 1 hence Θ(X,A ⇒ Y,B) < Θ(X ⇒ Y,A → B).
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3. If r is (→L), then it must have the following form.

X ⇒ Y,A B,X ⇒ Y
(→L)

A → B,X ⇒ Y

We can easily establish that Θ(X ⇒ Y,A) < Θ(A → B,X ⇒ Y ) as one
implication symbol is deleted while the cardinality of usable boxes stays the
same. To prove that Θ(B,X ⇒ Y ) < Θ(A → B,X ⇒ Y ) we reason as in (2).

4. If r is (GLR) then it must have the following form.

�X,�B ⇒ B
(GLR)

W,�X ⇒ �B,�Y,Z

Clearly, we have that {�A | �A ∈ Sub(�X ∪ {�B} ∪ {B})} ⊆ {�A |
�A ∈ Sub(W ∪ �X ∪ {�B} ∪ �Y ∪ Z)}. Also, given that we consider a
derivation in PSGLS, we can note that (IdB) is not applicable on W,�X ⇒
�B,�Y,Z by assumption, hence �B �∈ �X. Consequently, we get {�A |
�A ∈ W ∪�X} ⊂ {�A | �A ∈ �X∪{�B}}. An easy set-theoretic argument
leads to β(�X,�B ⇒ B) ⊂ β(W,�X ⇒ �B,�Y,Z). As a consequence we
obtain Card(β(�X,�B ⇒ B)) < Card(β(W,�X ⇒ �B,�Y,Z)), hence
Θ(�X,�B ⇒ B) < Θ(W,�X ⇒ �B,�Y,Z).

Q.E.D.

The previous lemma implies the existence of a derivation in PSGLS of maxi-
mum height for all sequent. We present the formalisation of that theorem, called
PSGLS_termin in Coq:

Theorem PSGLS_termin :
forall (s : rel (list (MPropF V))),
existsT2 (DMax: derrec PSGLS_rules (fun _ => True) s),
(is_mhd DMax).

We first universally quantify (forall) over the sequent s: a pair (rel) of lists
(list) of formulae (MPropF V) obtained from the set V (V). Note that while our
pen-and-paper proof defines sequents using multisets, our formalisation defines
them using lists. The equivalence of these approaches is witnessed by our proof
of the derivability of exchange given in our formalisation. Second, we specify that
there exists (existsT2) an inhabitant DMax of the type derrec PSGLS_rules (
fun _ => True) s. This is the type of all derivations of s in PSGLS. The ternary
function derrec outputs a type of finite trees, i.e. derivations in our case, taking
as input a set of rules (PSGLS_rules), a function describing the set of allowed
leaves ((fun _ => True)), and the sequent at the root s. Third, we state that
DMax satisfies the property is_mhd: it is a derivation of maximum height for the
sequent s. This formalisation thus corresponds to the following:

Theorem 2. Every sequent s has a derivation in PSGLS of maximum height.

Proof. We reason by strong induction on the ordered pair Θ(s). As the applica-
bility of the rules of PSGLS is decidable, we distinguish two cases:
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(I) No PSGLS rule is applicable to s. Then the derivation of maximum height
sought after is simply the derivation constituted of s solely, which is the only
derivation for s.
(II) Some PSGLS rule is applicable to s. Either only initial rules are appli-
cable, in which case the derivation of maximum height sought after is simply
the derivation of height 1 constituted of the application of the applicable
initial rule to s. Or, some other rules than the initial rules are applicable.
Then consider the finite list Prems(s) of all sequents s0 such that there is an
application of a PSGLS rule r with s as conclusion of r and s0 as premise of r.
By Lemma 5 we know that every element s0 in the list Prem(s) is such that
Θ(s0) < Θ(s). Consequently, the induction hypothesis allows us to consider
the derivation of maximum height of all the sequents in Prem(s). As Prem(s)
is finite, there must be an element smax of Prem(s) such that its derivation of
maximum height is higher or of same height than the derivation of maximum
height of all sequents in Prem(s). It thus suffices to pick that smax, use its
derivation of maximum height, and apply the appropriate rule to obtain s as
a conclusion: this is by choice the derivation of maximum height of s.

Q.E.D.

As the previous lemma implies the existence of a derivation δ of maximum
height in PSGLS for any sequent s, we are entitled to let mhd(s) denote the
height of δ. Similarly to Brighton, we later use mhd(s) as the secondary induction
measure used in the proof of admissibility of cut.

Before proving the only property we need from mhd(s), let us interpret the
previous lemma from the point of view of the proof-search procedure underlying
PSGLS. The existence of a derivation of maximum height for each sequent in
PSGLS shows that in the backward application of rules of PSGLS on a sequent,
i.e. the carrying of the proof-search procedure, a halting point has to be encoun-
tered. As a consequence, the proof-search procedure is terminating.

While this is the essence of the content of the previous lemma, we effectively
only use the fact that mhd(s) decreases upwards in the rules of PSGLS.

Lemma 6. If r is a rule instance from PSGLS with conclusion s0 and s1 as one
of the premises, then mhd(s1) < mhd(s0).

Proof. Suppose that mhd(s1) ≥ mhd(s0). Let δ0 and δ1 be the derivations of,
respectively, s0 and s1 witnessing Theorem 2. Then the following δ2 is deriva-
tion of s0 of height mhd(s1) + 1.

... d
s1 · · ·

rs0

Because of the maximality of δ0, we get that the height of δ0 is greater than the
height of δ2, i.e. mhd(s1) + 1 ≤ mhd(s0). As our initial assumption implies that
mhd(s1) + 1 > mhd(s0), we reached a contradiction. Q.E.D.
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Coq is constructive, so how does it allow a proof by contradiction? It can
do a proof by contradiction (without having to introduce classical axioms) when
dealing with an expression of the decidable fragment. Here, mhd(s1) < mhd(s0)
can be decided because mhd is computable.

6 Cut-Elimination for GLS

We are ready to state and prove our main theorem. It is formalised in Coq in
the following way:

Theorem GLS_cut_adm : forall A X0 X1 Y0 Y1,
(derrec GLS_rules (fun _ =>False) (X0++X1,Y0++A::Y1))->
(derrec GLS_rules (fun _ =>False) (X0++A::X1,Y0++Y1))->
(derrec GLS_rules (fun _ =>False) (X0++X1,Y0++Y1)).

The usual operations on lists “append” and “cons” are respectively repre-
sented by ++ and ::. Sequents are pairs of lists, so e.g. (X0++X1,Y0++Y1) corre-
sponds to X0,X1 ⇒ Y0, Y1. This time derrec takes the set of rules GLS_rules
and the characteristic function (fun _ => False) as arguments. So, each line
states the existence of a proof in GLS. The additive cut rule is formalised in Coq
as follows.

(X0++X1,Y0++A::Y1) (X0++A::X1,Y0++Y1)
(X0++X1,Y0++Y1)

It is now clear that this statement formalises the following theorem:

Theorem 3. The additive cut rule is admissible in GLS.

Proof. Let d1 (with last rule r1) and d2 (with last rule r2) be proofs in GLS of
X ⇒ Y,A and A,X ⇒ Y respectively, as shown below.

d1 r1
X ⇒ Y,A

d2 r2
A,X ⇒ Y

It suffices to show that there is a proof in GLS of X ⇒ Y . We reason by strong
primary induction (PI) on the size of the cut-formula A, giving the primary
inductive hypothesis (PIH), and strong secondary induction (SI) on mhd(s) of
the conclusion of a cut, giving the secondary inductive hypothesis (SIH).

There are five cases to consider for r1: one for each rule in GLS. We separate
them by using Roman numerals. The SIH is invoked in all of the following cases:
(III-a), (III-b-1), (III-b-2), (IV) and (V-a-2).

(I) r1 =(IdP): If A is not principal in r1, then the latter must have the following
form.

(IdP)
X0, p ⇒ Y0, p, A
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where X0, p = X and Y0, p = Y . Thus, we have that the sequent X ⇒ Y is of
the form X0, p ⇒ Y0, p, and is an instance of an initial sequent. So we are done.

If A principal in r1, i.e. A = p, then X ⇒ Y is of the form X0, p ⇒ Y . Thus,
the conclusion of r2 is of the form X0, p, p ⇒ Y . We can consequently apply
Lemma 4 (ii) to obtain a proof of X0, p ⇒ Y .

(II) r1 =(⊥L): Then r1 must have the following form.

(⊥L)
X0,⊥ ⇒ Y,A

where X0,⊥ = X. Thus, we have that the sequent X ⇒ Y is of the form
X0,⊥ ⇒ Y , and is an instance of an initial sequent. So we are done.

(III) r1 =( → R): We distinguish two cases.

(III-a) If A is not principal in r1, then the latter must have the following form.

X,B ⇒ Y0, C,A
(→R)

X ⇒ Y0, B → C,A

where Y0, B → C = Y . Thus, we have that the sequent X ⇒ Y and A,X ⇒ Y
are respectively of the form X ⇒ Y0, B → C and A,X ⇒ Y0, B → C. We can
apply Lemma 3 (ii) on the proof of the latter to get a proof of A,X,B ⇒ Y0, C.
Thus proceed as follows.

X,B ⇒ Y0, C,A A,X,B ⇒ Y0, C SIH
X,B ⇒ Y0, C (→R)

X ⇒ Y0, B → C

Note that the use of SIH is justified here since the last rule in this proof is
an instance of (→R) in PSGLS and hence mhd(X,B ⇒ Y0, C) < mhd(X ⇒
Y0, B → C) by Lemma 6.

(III-b) If A principal in r1, i.e. A = B → C, then r1 must have the following
form.

B,X ⇒ Y,C
(→R)

X ⇒ Y,B → C

The conclusion of r2 must be of the form B → C,X ⇒ Y . In that case, we distin-
guish two further cases. In the first case, B → C is principal in r2. Consequently
the latter must have the following form.

X ⇒ Y,B C,X ⇒ Y
(→L)

B → C,X ⇒ Y

Proceed as follows.

X ⇒ Y,B

B,X ⇒ Y,C

C,X ⇒ Y
Lem.2 (ii)

C,B,X ⇒ Y
PIH

B,X ⇒ Y
PIH

X ⇒ Y
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In the second case, B → C is not principal in r2. In the cases where r2 is one
of (IdP) and (⊥L) proceed respectively as in (I) and (II) when the cut-formula
is not principal in the rule considered. We are left with the cases where r2 is one
of (→R), (→L) and (GLR).

(III-b-1) If r2 is (→R) then it must have the following form.

B → C,D,X ⇒ Y0, E (→R)
B → C,X ⇒ Y0,D → E

where Y0,D → E = Y . In that case, note that the provable sequent X ⇒ Y,B →
C is of the form X ⇒ Y0,D → E,B → C. We can use Lemma 3 (ii) on the
proof of the latter to get a proof of D,X ⇒ Y0, E,B → C. Proceed as follows.

D,X ⇒ Y0, E,B → C B → C,D,X ⇒ Y0, E SIH
D,X ⇒ Y0, E (→R)

X ⇒ Y0,D → E

Note that the use of SIH is justified here as the last rule in this proof is effectively
an instance of (→R) in PSGLS, hence mhd(X,D ⇒ Y0, E) < mhd(X ⇒ Y0,D →
E) by Lemma 6.

(III-b-2) If r2 is (→L) then it must have the following form.

B → C,X0 ⇒ Y,D B → C,E,X0 ⇒ Y
(→L)

B → C,D → E,X0 ⇒ Y

where X0,D → E = X. In that case, note that the provable sequent X ⇒
Y,B → C is of the form X0,D → E ⇒ Y,B → C. We can use Lemma 3
(i) on the proof of the latter to get proofs of both X0 ⇒ Y,D,B → C and
X0, E ⇒ Y,B → C. Thus proceed as follows.

X0 ⇒ Y,D,B → C B → C,X0 ⇒ Y,D
SIH

X0 ⇒ Y,D

X0, E ⇒ Y,B → C B → C,E,X0 ⇒ Y
SIH

X0, E ⇒ Y
(→L)

X0, D → E ⇒ Y

Note that both uses of SIH are justified here as the last rule in this proof is effec-
tively an instance of (→L) in PSGLS, hence mhd(X0 ⇒ Y,D) < mhd(X0,D →
E ⇒ Y ) and mhd(X0, E ⇒ Y ) < mhd(X0,D → E ⇒ Y ) by Lemma 6.

(III-b-3) If r2 is (GLR) then it must have the following form.

�X0,�D ⇒ D
(GLR)

W,B → C,�X0 ⇒ �D,�Y0, Z

where W,�X0 = X and �D,�Y0, Z = Y . In that case, note that the sequent
X ⇒ Y is of the form W,�X0 ⇒ �D,�Y0, Z. To obtain a proof of the latter,
we apply the rule (GLR) on the premise of r2 without weakening B → C:

�X0,�D ⇒ D
(GLR)

W,�X0 ⇒ �D,�Y0, Z

(IV) r1 =( → L): Then r1 must have the following form.
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X0 ⇒ Y,B,A C,X0 ⇒ Y,A
(→L)

B → C,X0 ⇒ Y,A

where B → C,X0 = X. Thus, we have that the sequents X ⇒ Y and A,X ⇒ Y
are respectively of the form B → C,X0 ⇒ Y and A,B → C,X0 ⇒ Y . It thus
suffices to apply Lemma 3 (i) on the proof of the latter to obtain proofs of both
A,X0 ⇒ Y,B and A,C,X0 ⇒ Y , and then proceed as follows.

X0 ⇒ Y,B,A A,X0 ⇒ Y,B
SIH

X0 ⇒ Y,B

C,X0 ⇒ Y,A A,C,X0 ⇒ Y
SIH

C,X0 ⇒ Y
(→L)

B → C,X0 ⇒ Y

Note that both uses of SIH are justified here as the last rule in this proof is
effectively an instance of (→L) in PSGLS, hence mhd(X0 ⇒ Y,B) < mhd(B →
C,X0 ⇒ Y ) and mhd(C,X0 ⇒ Y ) < mhd(B → C,X0 ⇒ Y ) by Lemma 6.

(V) r1 =(GLR): Then we distinguish two cases.

(V-a) A is the diagonal formula in r1:

�X0,�B ⇒ B
(GLR)

W,�X0 ⇒ �B,�Y0, Z

where A = �B and W,�X0 = X and �Y0, Z = Y . Thus, we have that the
sequents X ⇒ Y and A,X ⇒ Y are respectively of the form W,�X0 ⇒ �Y0, Z
and �B,W,�X0 ⇒ �Y0, Z. We now consider r2. If r2 is one of (IdP), (⊥L),
(→R) and (→L) then respectively proceed as in (I), (II), (III) and (IV) when
the cut-formula is not principal in the rules considered by using SIH. We are
consequently left to consider the case when r2 is (GLR). Then r2 is of the
following form:

B,�B,�X0,�C ⇒ C
(GLR)

W,�B,�X0 ⇒ �C,�Y1, Z

where �C,�Y1 = �Y0. In this situation, we distinguish two sub-cases.

(V-a-1) One of the rules (IdP), (⊥L) or (IdB) is applicable to W,�X0 ⇒
�C,�Y1, Z, then we are done for the two first cases as it suffices to apply the
corresponding rules to obtain a proof of the conclusion of the cut-rule. For the
case of (IdB) it suffices to apply Lemma 1.

(V-a-2) None of these rules is applicable to W,�X0 ⇒ �C,�Y1, Z (NoInit).
Then, proceed as follows.

�X0,�B ⇒ B
(GLR)�X0 ⇒ �B

Lem.2�X0,�C ⇒ C,�B

�X0,�B ⇒ B
Lem.2�X0,�B,�C ⇒ C,B B,�B,�X0,�C ⇒ C

PIH�X0,�B,�C ⇒ C
SIH�X0,�C ⇒ C

(GLR)
W,�X0 ⇒ �C,�Y1, Z

Note that the use of SIH is justified here as the assumption NoInit ensures that
the last rule in this proof is effectively an instance of (GLR) in PSGLS, hence
mhd(�X0,�C ⇒ C) < mhd(W,�X0 ⇒ �C,�Y1, Z) by Lemma 6.
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(V-b) A is not the diagonal formula in r1:

�X0,�C ⇒ C
(GLR)

W,�X0 ⇒ �C,A,�Y0, Z

where W,�X0 = X and �C,�Y0, Z = Y . In that case, note that the sequent
X ⇒ Y is of the form W,�X0 ⇒ �C,�Y0, Z. To obtain a proof of the latter,
we apply the rule (GLR) on the premise of r1 without weakening �B:

�X0,�C ⇒ C
(GLR)

W,�X0 ⇒ �C,�Y0, Z

Q.E.D.

The proof of cut-admissibility given here establishes that any topmost cut in
a proof in GLS + (cut) is eliminable. By iterating this argument we obtain also
cut-elimination for GLS + (cut).

7 Conclusion

We have seen how the termination of backward proof-search can be exploited to
obtain cut-elimination. The proof technique used in this paper was first described
by Brighton. It is particularly interesting because the termination of backward
proof-search is close to a semantic proof of completeness, and the latter is typ-
ically much simpler to achieve than a proof of cut-elimination. This makes it
particularly interesting to investigate the applicability of this technique to other
logics such as Go or intuitionistic GL (using the Dyckhoff calculus for intuition-
istic logic since it has terminating backward proof-search).

Our work may appear to beg the following question: if we first need to show
semantic cut-free completeness to use this technique, then we already know that
every instance of cut is admissible, so, what is the point? Note that this misses
the mark. We chose to introduce PSGLS in order to clarify the role of terminating
proof-search in the argument, and to demonstrate that the additional notion of
regress tree was not essential. In particular, we did not have to show that PSGLS
was complete for our purposes.

However, note that it is possible to establish cut-elimination directly without
relying on an auxiliary proof calculus such as PSGLS. By isolating the subset
of GLS derivations that are also PSGLS derivations, one can use the maximum
height on that subset to define the induction measure, and adapt the proofs
accordingly.
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