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Abstract

In [Paw86] Pawlikowski proved that, if r is a random real over N, and c is Cohen
real over N[r], then

(a) in N[r][c] there is a Cohen real over N[c], and

(b) 2ω ∩N[c] /∈ N ∩N[r][c], so in N[r][c] there is no random real over N[c].

To prove this, Pawlikowski proposes the following notion: Given two models N ⊆
M of ZFC, we associate with a cardinal characteristic x of the continuum, a sen-
tence xMN saying that, in M, the reals in N give an example of a family fulfilling the
requirements of the cardinal. So to prove (a) and (b), it suffices to prove that

(a’) cov(M)
M[c]
N[c] ⇒ cof(M)MN ⇒ cov(N )MN , and

(b’) cov(M)MN ⇒ add(M)MN ⇒ non(M)
M[c]
N[c] ⇒ cov(N )

M[c]
N[c] .

In this paper we introduce the notion of Tukey-order with models, which expands
the concept of Tukey-order introduced by Vojtáš [Voj93], to prove expressions of the
form xMN ⇒ yMN . In particular, we show (a’) and (b’) using Tukey-order with models.

1 Introduction

Let N be the σ-ideal of measure zero subsets of 2ω,M the σ-ideal of meager sets in 2ω,
let K be the σ-ideal generated by the subsets of R whose intersection with Q∗ (the set
of irrational numbers) is compact in Q∗, and let C be the σ-ideal of countable subsets of
reals. It is well-known that add(K) = non(K) = b, add(C) = non(C) = ℵ1, cov(K) =
cof(K) = d, and cov(C) = cof(C) = c, where b, d and c are the bounding and dominating
numbers, and the size of R, respectively. These cardinals describe the entries in Cichoń’s
diagram.
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b b b b b

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

Figure 1: Cichoń’s diagram. An arrow indicates that ZFC proves ≤ between both cardi-
nals. In addition, in the diagram, the dashed arrows mean add(M) = min{b, cov(M)}
and cof(M) = max{d,non(N )}.

A relational system is a triple R = 〈X, Y,@〉where @ is a relation contained in X × Y .
Such a relational system has two cardinal invariants associated with it:

b(R) := min{|F | : F ⊆ X and ¬∃y ∈ Y ∀x ∈ F (x @ y)},
d(R) := min{|D| : D ⊆ Y and ∀x ∈ X∃y ∈ D(x @ y)}.

Denote R⊥ := 〈Y,X,@⊥〉where y @⊥ x iff ¬(x @ y).
We say that a relational system R = 〈X, Y,@〉 is real-definable if both X and Y are

non-empty and analytic in Polish spaces Z and W , respectively, and @ is analytic in
Z ×W .

Definition 1.1 (Tukey-order [Voj93]). Let R′ := 〈X ′, Y ′,@′〉 be another relational system.
If Ψ−, Ψ+ are a pair of mappings Ψ− : X → X ′, and Ψ+ : Y ′ → Y such that, for any
x ∈ X and y′ ∈ Y ′, Ψ−(x) @′ y′ implies x @ Ψ+(y′), then we say that R is Tukey-below
R′, denoted by R �T R′. Say that R and R′ are Tukey-equivalent, denoted by R ∼=T R′, if
R �T R′ and R′ �T R. Note that R �T R′ implies b(R′) ≤ b(R) and d(R) ≤ d(R′).

Let M be a transitive model of ZFC (or of a large enough finite fragment of it). For a
real x denote by Bx the Borel set with code x and set BM

x = Bx ∩M its relativization in
M. For a real definable system R = 〈X, Y,@〉, when dealing with R inside some model
M, we look at its interpretations RM = 〈XM, YM,@M〉. If I is an ideal let IM be the
family of members of I whose members can be covered by a Borel set in I coded in
M. If N ⊆ M are two models of ZFC we associate with each cardinal characteristic in
Cichoń’s diagram a sentence saying that N gives an example in M of a family fulfilling
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the requirements of the cardinal, that is, for I ∈ {N ,M} define the properties:

dMN : any function from ωω ∩M is dominated by a function from ωω ∩N.

bMN : there is no function from ωω ∩M that dominates all functions from ωω ∩N.

add(I)MN :
⋃
IN 6∈ IM.

cov(I)MN :
⋃
IN ⊇ 2ω ∩M.

non(I)MN : 2ω ∩N /∈ IM.
cof(I)MN : IN is cofinal in IM.

Cichoń’s and Pawlikowski [CP86] investigated the effect on the cardinal characteristics
in Cichoń’s diagram after adding a single Cohen real or one random real. Motivated
by this investigation, Palikowski [Paw86] formulated and proved that, if c and r are a
Cohen real over M and a random real over M respectively, then

(C1) cof(M)MN ⇔ cof(M)
M[c]
N[c] ⇔ d

M[c]
N[c] ⇔ cov(M)

M[c]
N[c] .

(C2) add(M)MN ⇔ add(M)
M[c]
N[c] ⇔ b

M[c]
N[c] ⇔ non(M)

M[c]
N[c] .

(C3) add(N )MN ⇒ add(N )
M[c]
N[c] ⇔ cov(N )

M[c]
N[c] .

(C4) non(N )
M[c]
N[c] ⇔ cof(N )

M[c]
N[c] ⇒ cof(N )MN .

(R1) add(N )MN ⇔ add(N )
M[r]
N[r] and cof(N )MN ⇔ cof(N )

M[r]
N[r] .

(R2) bMN ⇔ b
M[r]
N[r] and dMN ⇔ d

M[r]
N[r] .

(R3) dMN ⇒ non(N )
M[r]
N[r] and cov(N )

M[r]
N[r] ⇒ bMN .

(R4) cov(M)
M[r]
N[r] ⇒ cov(M)MN and non(M)MN ⇒ non(M)

M[r]
N[r] .

(R5) cov(N )
M[r]
N[r] ⇒ cov(N )MN and non(N )MN ⇒ non(N )

M[r]
N[r] .

(R6) add(M)
M[r]
N[r] ⇔ add(M)MN and cof(M)MN ⇔ cof(M)

M[r]
M[r].

Later, Bartoszyńki, Roslanowski, and Shelah [BRS96] proved the converse of (R4):

(R7) cov(M)MN ⇒ cov(M)
M[r]
N[r] and non(M)

M[r]
N[r] ⇒ non(M)MN .

This research was completed by Shelah [BJ95, Lemma 1.3.4] who proved that

(R8) r
M[r]
N[r] ⇒ dMN and bMN ⇒ s

M[r]
N[r] (where r and s are the splitting number and unreaping

number, respectively, see Example 2.3(v)).
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We summarize these implications in Figure 2 and Figure 3.
The proof of the implication d

M[c]
N[c] ⇒ dMN (in [CP86, Lemma 3.4]) is reviewed as fol-

lows: For each f ∈ N[c] ∩ ωω find gf ∈ N ∩ ωω in such way that each h ∈ M ∩ ωω

dominated by f is also dominated by gf . In other words, if h ∈ ωω ∩M is not domi-
nated by any function from ωω ∩N then it is also not dominated by any function from
N[c] ∩ ωω.

A curious aspect of the argument above, established by Cichoń and Palikowski,
gives additional information beyond of the implications. They get (implicitly) two maps
Ψ− : ωω ∩M → ωω ∩M[c] and Ψ+ : ωω ∩N[c] → N ∩ ωω such that, for any h ∈ ωω ∩M
and f ∈ N[c] ∩ ωω, Ψ−(h) = h and if h is dominated by f then it is also dominated
by Ψ+(f), which resembles the Tukey-order. This can be rephrased in the language of
Tukey-order (see Definition 1.1), that is, 〈ωω∩M, ωω∩N,≤∗〉 �T 〈ωω∩M[c], ωω∩N[c],≤∗〉.
This rephrasing is important because we obtain in this way a simple description to treat
implications between sentences involving cardinal characteristics.

Motivated by the above description we expland the concept of Tukey-order with
models as follows:

Assume that N ⊆M are models of ZFC. For a real definable relational system R we
let

(i) d(R)MN iff ∀x ∈ XM∃y ∈ Y N(x @ y).

(ii) b(R)MN iff ¬∃y ∈ YM∀x ∈ XN(x @ y).

Definition 1.2. Let N0 ⊆ M0, N ⊆ M be models of ZFC and let R,R′ be two real
definable systems. We write R �M0,M

N0,N
R′ if there is a pair of maps Ψ− : XM0 → X ′M

and Ψ+ : Y ′M → YM0 such that

(a) for all x ∈ XM0 and for all y′ ∈ Y ′M, Ψ−(x) @′ y′ implies x @ Ψ+(y′).

(b) Ψ−[XN0 ] ⊆ X ′N and Ψ+[Y ′N] ⊆ Y N0 .

Also we write R ∼=M0,M
N0,N

R′ if R �M0,M
N0,N

R′ and R′ �M,M0

N,N0
R.

So this definition formalices the above example. The reason for considering the
Tukey-order with models is the following lemma:

Lemma 1.3. Assume that N0 ⊆ M0, N ⊆ M are models of ZFC and let R,R′ be two real
definable relational systems. If R �M0,M

N0,N
R′, then d(R′)MN ⇒ d(R)M0

N0
and b(R)M0

N0
⇒ b(R′)MN .

Proof. According to Definition 1.2 choose functions Ψ− : XM0 → X ′M and Ψ+ : YM →
YM0 fulfilling (a)-(b). We only prove d(R′)MN ⇒ d(R)M0

N0
, since the second statement is

analogous. To this end assume that d(R′)MN holds and show d(R)M0
N0

.
Let x ∈ XM0 be arbitrary. There is a y ∈ Y ′N such that Ψ−(x) @′ y. Now, by

Definition 1.2(a) we get x @ Ψ+(y) and Ψ+ ∈ Y N0 by (b). (Lemma 1.3)
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cov(N )MN

add(N )MN

add(N )
M[c]
N[c]

cov(M)
M[c]
N[c]

non(M)MN

add(M)MN

add(M)
M[c]
N[c]

bM
N dM

N

d
M[c]
N[c] non(N )

M[c]
N[c]

cov(N )
M[c]
N[c] b

M[c]
N[c]

cof(M)
M[c]
N[c]

cof(M)MN

cov(M)MN

non(M)
M[c]
N[c]

cof(N )
M[c]
N[c]

cof(N )MN

non(N )MN

Figure 2: Cichoń’s diagram with models after adding a Cohen real.

Objective. The main motivation of this work is to prove some of the implications
from Figure 2 and Figure 3 using Tukey-order with models.

This paper is structured as follows: We review in section 2 the basic notation and
the results this paper is based on. We deal with the concept of d(R)MN and b(R)MN in
section 3. We show in section 4 the effect on d(R)MN and b(R)MN after of adding a single
Cohen real without goodness. Likewise after a single random real.

2 Preliminaries

For a set A ⊆ 2ω × 2ω denote Ax = {y : 〈x, y〉 ∈ A} and Ay = {x : 〈x, y〉 ∈ A}. Denote by
Xω the set of all maps from ω into X considered as sequences of elements of X .

Given a function b with domain ω such that b(i) 6= ∅ for all i < ω, h ∈ ωω and n < ω,
define S(b, h) =

∏
n<ω[b(n)]≤h(n). A slalom is a function ϕ : ω → [ω]<ω.

For functions f , g ∈ ωω and ϕ with domain ω we define

(1) f ≤∗ g iff ∃n ∈ ω∀m ≥ n(f(m) ≤ g(m)).

(2) f 6=∗ g iff ∃n ∈ ω∀m ≥ n(f(m) 6= g(m)).

(3) For a slalom ϕ, define

(i) f ∈∗ ϕ by ∃m ∈ ω∀n ≥ m(f(n) ∈ ϕ(n)), which is read ϕ localizes x;
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cov(N )
M[r]
N[r]

cov(N )MN

add(N )MN

add(N )
M[r]
N[r]

non(M)
M[r]
N[r]

non(M)MN

add(M)MN

add(M)
M[r]
N[r]

bM
N dM

Nb
M[r]
N[r] d

M[r]
N[r]

cof(M)
M[r]
N[r]

cof(M)MN

cov(M)MN

cov(M)
M[r]
N[r]

cof(N )
M[r]
N[r]

cof(N )MN

non(N )MN

non(N )
M[r]
N[r]

s
M[r]
N[r]

r
M[r]
N[r]

Figure 3: Cichoń’s diagram with models after adding a random real.

(ii) f ∈∞ ϕ iff ∀n ∈ ω∃m ≥ n(f(n) ∈ ϕ(n)). Denote its negation by f 6∈∞ ϕ,
which is read ϕ anti-localizes f .

For A,B ∈ [ω]ℵ0 , define A ∝ B iff either B r A is finite or A ∩ B is finite. Note that
A 6∝ B iff A splits B, that is A ∩ B and B r A are infinite. Denote by I the set of interval
partitions of ω. For I, J ∈ I, define

(i) I vI J iff ∀∞n∃m(Im ⊆ Jn).

(ii) I 7 J iff ∀∞n∀m (In + Jm)

Let P be a poset. For a model M and a set X denote MP := {τ ∈M : τ is a P-name} and
MP

X := {τ ∈MP : 
 τ ∈ X}. Say that P is a Suslin ccc forcing notion if it is ccc and there
is a Polish space Z such that

(i) P ⊆ Z,

(ii) ≤P⊆ Z × Z is Σ1
1 and

(iii) ⊥P ⊆ Z × Z is Σ1
1.

Definition 2.1. We say that R = 〈X, Y,@〉 is a Polish relational system if
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(I) X and Y are Perfect Polish spaces, and

(II) @=
⋃

n∈ω @n where 〈@n: n ∈ ω〉 is some increasing sequence of closed subsets of
X × Y such that, for any n < ω and for any y ∈ Y , (@n)y = {x ∈ X : x @n y} is
closed nowhere dense.

The closed sets mentionated in (I) and (II) have an absolute definition, that is, as Borel
sets they have the same Borel codes in all transitive models. Say that x is R-unbounded
over H if ∀y ∈ H ∩ Y (x 6@ y).

Let C and B be the Cohen algebra and random algebra for adding one Cohen real
and one random real, respectively.

Many cardinals characteristics can be described through simple relational systems.
In the following example, we recall that some of the entries in Cichoń’s diagram can be
defined through simple relational systems.

Example 2.2. For any ideal I on 2ω.

(a) CI = 〈2ω, I,∈〉, so b(CI) = non(I) and d(CI) = cov(I).

(b) I := 〈I,⊆〉 = 〈I, I,⊆〉 is directed, b(I) = add(I) and d(I) = cof(I).

Given two relational systems R and R′, we let (R; R′) := 〈X × (X ′)Y , Y × Y ′,@;〉
where (x, f) @; (a, b) means x @ a and f(a) @′ b. Hence d(R; R′) := d(R) · d(R′) and
b(R; R′) = min{b(R), b(R)} by [Bla10, Thm. 4.11].

We present some examples of the classical framework, that is, with instances of Pol-
ish relational systems.

Example 2.3. The examples (i)-(v) are Polish relational systems.

(i) Combinatorial characterizations of d and b.

(a) Consider the relational system D := 〈ωω, ωω,≤∗〉. Define b := b(D) and d :=
d(D).

(b) Define the relational systems D1 := 〈I, I,vI〉 and D2 := 〈I, I,7〉. It was proved
in [Bla10] that D ∼=T D1

∼=T D2, so d(D1) = d(D2) = d and b(D1) = b(D2) = b.

(ii) Combinatorial characterizations of cov(M) and non(M).

(a) Define Ed := 〈ωω, ωω 6=∗〉. Since CM �T Ed, b(Ed) ≤ non(M) and d(Ed) ≤
cov(M). Even more, b(Ed) = non(M) and d(Ed) = cov(M) ([BJ95, Thm.
2.4.1 & Thm. 2.4.7]).

(b) Let b be a function with domain ω such that b(i) 6= ∅ for all i < ω, and let
h ∈ ωω. Define aLc(b, h) := 〈S(b, h),

∏
b, 63∞〉, so put baLc

b,h := b(aLc(b, h)) and
daLc
b,h := d(aLc(b, h)), which we refer to as anti-localization cardinals. If h ≥∗ 1

then aLc(ω, h) ∼=T Ed, so baLc
ω,h = non(M) and daLc

ω,h = cov(M) ([BJ95, Thm.
2.4.1 & Thm. 2.4.7]). Here ω denotes the constant function b(n) = ω.
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(iii) Define Ωn := {a ∈ [2<ω]<ℵ0 : λ∗(
⋃

s∈a[s]) ≤ 2−n} (endowed with the discrete topol-
ogy) and put Ω :=

∏
n<ω Ωn with the product topology, which is a perfect Polish

space. For every x ∈ Ω denote N∗x :=
⋂

n<ω

⋃
s∈x(n)[s], which is clearly a Borel null

set in 2ω.

Define the relational system Cn := 〈Ω, 2ω,@〉 where x @ z iff z /∈ N∗x . Recall that
any null set in 2ω is a subset of N∗x for some x ∈ Ω, even more Cn ∼=T C⊥N . Hence,
b(Cn) = cov(N ) and d(Cn) = non(N ).

(iv) For each k < ω let idk : ω → ω such that idk(i) = ik for all i < ω and H := {idk+1 :
k < ω}. Let Lc∗ := 〈ωω,S(ω,H),∈∗〉 be the Polish relational system where

S(ω,H) := {ϕ : ω → [ω]<ℵ0 : ∃h ∈ H∀i < ω(|ϕ(i)| ≤ h(i))}.

As consequence of [BJ95, Thm. 2.3.9], b(Lc∗) = add(N ) and d(Lc∗) = cof(N ). In
fact, N ∼=T Lc∗.

(v) Consider the relational system S := 〈[ω]ℵ0 , [ω]ℵ0 ,∝〉, so b(S) = s and d(S) = r,
which are known as the splitting number and unreaping number, respectively.

(vi) Denote Ξ := {f : 2<ω → 2<ω : ∀s ∈ 2<ω(s ⊆ f(s))}. For f ∈ Ξ define Gf :=⋂
n<ω

⋃
|s|≥n[f(s)]. Define the relational system Cf := 〈Ξ,Ξ,@M〉 wheref @M g iff

Gg ⊆ Gf . Recall that any element of Ξ codes a member ofM, even more Cf ∼=T M.
Note that @M is quite complex (it is Π1

1).

We say that ρ ⊆ [ω]ℵ0 is an ω-splitting family if ∀A ⊆ [ω]ℵ0∃x ∈ ρ∀y ∈ A(x 6∝ y). Define
sω := min{|ρ| : ρ is ω-splitting}.

3 The concepts of d(R)MN and b(R)MN

The next result show that all standard proof of inequalities between cardinals in Ci-
choń’s diagram can be adapted to Definition 1.2.

Theorem 3.1 ([Bar84],[Fre84],[Bar87] and [Paw85]). Let N,M be models of ZFC. Then

(a) CM �M,M
N,N C⊥N .

(b) CM �M,M
N,N D.

(c) D⊥ �M,M
N,N D �M,M

N,N M.

(d) C⊥M �M,M
N,N M and C⊥N �M,M

N,N N .

(e) M�M,M
N,N N .

(f) M�M,M
N,N (C⊥M; D)

8



As consequence we get,

(i) non(N )MN ⇒ cov(M)MN and non(M)MN ⇒ cov(N )MN .

(ii) dMN ⇒ cov(M)MN and non(M)MN ⇒ bMN .

(iii) bMN ⇒ add(M)MN and cof(M)MN ⇒ dMN and dMN ⇒ bMN .

(iv) cof(M)MN ⇒ non(M)MN and cov(M)MN ⇒ add(M)MN and cof(N )MN ⇒ non(N )MN and
cov(N )MN ⇒ add(N )MN .

(v) cof(N )MN ⇒ cof(M)MN and add(M)MN ⇒ add(N )MN .

(vi) non(M)MN and dMN ⇒ cof(M)MN .

As a consequence of (iii), (iv) and (vi),

(vii) cof(M)MN ⇔ non(M)MN and dMN .

Though add(M)MN does not transform into bMN and cov(M)MN , the following lemma
gives the required characterization.

Lemma 3.2 ([Paw86, Cor. 1.3]). ¬add(M)MN iff there exists c ∈M, a Cohen real over N, and
a function in ωω ∩M which dominates any function from N[c].

Figure 4 shows the implications between the sentences of the cardinal characteristics
associated withM, N , b and d.

add(N )MN add(M)MN cov(M)MN non(N )MN

bM
N dM

N

cov(N )MN non(M)MN cof(M)MN cof(N )MN

Figure 4: Cichoń’s diagram with models N ⊆M of ZFC.

From now on, fix a Suslin ccc poset P. One interesting case of Definition 1.2 is when
R �M,M[G]

N,N[P∩G] R′ where N ⊆ M and G is a P-generic over M. A similar definition holds
for MP and NP, more concretely:

Definition 3.3. Fix two models N ⊆M of ZFC. Let P be a Suslin ccc forcing notion, let
R and R′ be two real definable relational systems.

9



(1) R �M,MP

N,NP R′ if there are maps Ψ− : XM →MP
X′ and Ψ+ : MP

Y ′ → YM such that

(1.1) for any x ∈ XM and for any y′ ∈MP
Y ′ , 
 “Ψ−(x) @ y′ implies x @′ Ψ+(y′)”.

(1.2) Ψ−[XN] ⊂ NP
X′ and Ψ+[NP

Y ′ ] ⊂ Y N.

(2) R �MP,M
NP,N

R′ if there are maps Ψ− : MP
X → X ′M and Ψ+ : (Y ′)M →MP

Y such that

(2.1) for any x ∈MP
X and for any y′ ∈ (Y ′)M, Ψ−(x) @ y′ implies 
 x @′ Ψ+(y′).

(2.2) Ψ−[NP
X ] ⊂ (X ′)N and Ψ+[(Y ′)N] ⊂ NP

Y .

The next result shows the main reason for considering the above definition.

Lemma 3.4. Fix N ⊆M models of ZFC. Let G be a P-generic over M.

(i) If R �M,MP

N,NP R′ then R �M,M[G]
N,N[P∩G] R′.

(ii) If R �MP,M
NP,N

R′ then R �M[G],M
N[P∩G],N R′.

Now we give an application of Definition 3.3. For this, consider the following defi-
nition: For a relational system R = 〈X, Y,@〉 we let Rω := 〈X, [Y ]ω,@ω〉 where x @ω ȳ if
∃n < ω(x @ yn), which is a relational system.

Definition 3.5 ([JS90]). A notion forcing P is R-good if, for any P-name ḣ for a member
of Y , there exists a non-empty countable set H ⊆ Y (in the ground model) such that, for
any x ∈ X , if x is R-unbounded over H then 
 x 6@ ḣ.

Lemma 3.6. If P is R-good iff R⊥ �VP,V
VP,V

R⊥ω when Ψ+ is the identity map.

Proof. Let ḣ be a P-name for a member of Y . Then, in V, choose a non-empty countable
set ȳḣ ⊆ Y such that, for any x ∈ X , if x is R-unbounded over ȳḣ then 
 x 6@ ḣ. Put
Ψ−(ḣ) = ȳḣ and Ψ+(x) = x for any x ∈ X . We check Definition 3.3(2.1). Let h ∈ VP

Y and
let x ∈ XV. Assume ȳḣ @

⊥
ω x. Then ¬(x @ω ȳḣ), that is, x 6@ yn for all n < ω. Hence,


 x 6@ ḣ.
For the converse, suppose R⊥ �VP,V

VP,V
R⊥ω when Ψ+ is the identity map. We want to

see that Definition 3.5 holds. To this end, let ḣ be a P-name for a member of Y . According
to Definition 3.3 choose Ψ− : VP

Y → [Y ]ω. So, put H := ran(Ψ−(ḣ)). It is not hard to see
that H works. (Lemma 3.6)

Remark 3.7. The maps Ψ− : VP
Y → [Y ]ω and Ψ+ : X → VP

X from Lemma 3.6 where Ψ+

is the identity are definable and absolute.

The following is a consequence of Lemma 3.6 and Remark 3.7.

Lemma 3.8. M |= P is R-good iff R⊥ �MP,M
MP,M

R⊥ω when Ψ+ is the identity map.

10



Lemma 3.8 can be generalized to two models.

Lemma 3.9. Let P be a Suslin ccc notion. Asumme that M |= “P is R-good" and N |= “P is
R-good". Then R⊥ �MP,M

NP,N
R⊥ω .

Proof. Since N |= P is R-good, we can find Ψ0
− : NPN

Y → (Y ω)N and Ψ1
− : NPM

Y → (Y ω)M

by Lemma 3.8. To define Ψ− : MPM

Y → (Y ω)M it suffices to note the following: If ẏ ∈ NPN

Y

then
N |= ∀x ∈ X(Ψ0

−(ẏ) 6@ω x⇒
 ẏ 6@ x)︸ ︷︷ ︸
Π1

1

By absolutness,
M |= ∀x ∈ X(Ψ0

−(ẏ) 6@ω x⇒
 ẏ 6@ x)︸ ︷︷ ︸
Π1

1

So we set Ψ− : MPM

Y → (Y ω)M by

Ψ−(ẏ) :=

{
Ψ0
−(ẏ) if ẏ ∈ NPN

Y ,
Ψ1
−(ẏ) otherwise.

(Lemma 3.9)

Remark 3.10. (i) The Polish relational systems D and Lc∗ fulfill D ∼=T Dω and Lc∗ ∼=T

(Lc∗)ω, respectively.

(ii) If R is a Polish relational system then Rω is one as well. It is not hard to see that
Rω
∼=T (Rω)ω.

Lemma 3.9 and Remark 3.10 gives us:

Corollary 3.11. R⊥ �MC,M
NC,N

R⊥ω holds for any Polish relational system R, in particular for D,
and Lc∗. As a consequence,

(i) d
M[c]
N[c] ⇒ dMN and bMN ⇒ b

M[c]
N[c] .

(ii) cof(N )
M[c]
N[c] ⇒ cof(N )MN and add(N )MN ⇒ add(N )

M[c]
N[c] .

Moreover, for R ∈ {Cf ,Ed,S}, we get

(iii) non(M)MN ⇒ non(M)
M[c]
N[c] and cov(M)

M[c]
N[c] ⇒ cov(M)MN .

(iv) r
M[c]
N[c] ⇒ rMN and (sω)MN ⇒ (sω)

M[c]
N[c] .

(v) cof(M)
M[c]
N[c] ⇒ cof(M)MN and add(M)MN ⇒ add(M)

M[c]
N[c] .

11



Proof. It follows because C is R-good for R ∈ {D,Lc∗,S,Ed,Cf}. For more details to
see e.g. [BJ95]. (Corollary 3.11)

The next result concerns random forcing.

Lemma 3.12. (a) (Lc∗)⊥ �MB,M
NB,N

(Lc∗)⊥.

(b) D⊥ �MB,M
NB,N

D⊥.
As a consequence we get

(i) add(N )MN ⇒ add(N )
M[r]
N[r] and cof(N )

M[r]
N[r] ⇒ cof(N )MN .

(ii) d
M[r]
N[r] ⇒ dMN and bMN ⇒ b

M[r]
N[r] .

Proof. It follows because B is Lc∗-good and D-good. For more details to see e.g. [BJ95].
(Lemma 3.12)

4 The effect on d(R)MN and b(R)MN after of adding one Co-
hen real (random real) without goodness

For this section assume that N ⊆M are models of ZFC. From now on assume that c and
r are a Cohen real over M and a random real over M, respectively.

For an increasing function f ∈ ωω and a function x ∈ 2ω define xf ∈ 2ω as xf (n) :=
x(f(n)) for n ∈ ω.

Lemma 4.1. D �M,MC

N,NC CM. In particular, cov(M)
M[c]
N[c] ⇒ dMN and bMN ⇒ non(M)

M[c]
N[c] .

Proof. Let’s assume that C = 2<ω.Let Ȧ be a C-name for a meager set in 2ω. Find a
sequence of C-names 〈Ȧn〉n<ω such that 
 Ȧ =

⋃
n<ω Ȧn and 
 Ȧn is nowhere dense for

each n ∈ ω, and 〈Ȧn〉n<ω is increasing. Since C is countable, C = {pm : m < ω}. For
m,n < ω we can find qm,n ≤ pm and σm,n ∈ 2<ω such that ∀ϑ ∈ 2n(qm,n 
 [ϑaσm,n]∩ Ȧn =
∅). Define gm ∈ ωω by gm(n) := |qm,n|. Let Ψ+(Ȧ) be a function in ωω which dominates
all gm and let Ψ−(f) := ċf for f ∈ ωω.

It remains to check that, f 6≤∗ Ψ+(Ȧ) implies 
 cf /∈ Ȧ. To see this assume f 6≤∗
Ψ+(Ȧ). To guarante that 
 cf /∈ Ȧ it sufficies to prove that, given p ∈ C and i < ω
there is some q ≤ p such that q 
 ċf /∈ Ȧi. Let p ∈ C and i < ω. Choose m such that
p = pm and choose n ≥ i such that f(n) > Ψ+(A)(n) ≥ gm(n). Wlog assume that f
is stricly increasing, so f(k) ≥ f(n) > |qm,n| for any k ≥ n. Find q ≤ qm,n such that
q 
 ċf�[n, n + |σm,n|) = σm,n. Then q 
 ċf /∈ Ȧn, so q 
 ċf /∈ Ȧi (because 〈Ȧn〉n<ω is
increasing and n ≥ i). (Lemma 4.1)

Lemma 4.2. CN �MC,M
NC,N

C⊥C . In particular, non(C)MN ⇒ cov(N )
M[c]
N[c] and non(N )

M[c]
N[c] ⇒

cov(C)MN .
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Proof. Work in N: Let B ⊆ 2ω × 2ω × 2ω be a Borel set such that any Borel function
f : 2ω → 2ω fulfills

(i) {〈x, y〉 : 〈x, y, f(y)〉 /∈ B} ∈ [2ω]≤ℵ0 ×M (Fubini product of ideals),

(ii) for any x, y ∈ 2ω, B〈x,y〉 ∈ N , and

(iii) {x : Af
x /∈M} is a countable set where Af := {〈x, y〉 : f(y) 6∈ B〈x,y〉}.

Such a B exists by [CP86, Thm. 1.1]. Let ṫ ∈ MC
2ω . Choose a Borel function f coded in

M such that 
 ṫ = f(ċ). Finally, define Ψ−(ṫ) := {x : Af
x /∈ M} and Ψ+(x) := B〈x,ċ〉 for

x ∈ 2ω.
To finish the proof it remain to check that Ψ−(ṫ) 63 x implies 
 ṫ ∈ Ψ+(x). Assume

that Ψ−(ṫ) 63 x, that is, Af
x is a meager set. Since c is a Cohen real over M, 
 ċ /∈ Af

x.
Then 
 ṫ = f(ċ) ∈ B〈x,ċ〉. (Lemma 4.2)

The following lemma shows the behaviour of the additivities and cofinalities after
adding a single Cohen real.

Lemma 4.3. M �MC,M
NC,N

M. As a consequence, cof(M)MN ⇒ cof(M)
M[c]
N[c] and add(M)MN ⇒

add(M)
M[c]
N[c] .

Proof. Let Ċ ∈ MC
M. Choose a C ′ ⊆ 2ω × 2ω meager coded in M such that 
 C ′ċ = Ċ.

By Sirkoski’s isomosphism theorem [Sik69, Thm. 32.5]), there is a Borel isomosphism
ϕ : 2ω → 2ω × 2ω such that A ∈ M iff ϕ(A) ∈ M×M (Fubini product of ideals). Next
define Ψ−(Ċ) := ϕ−1[C ′].

LetE be a Borel set inM∩M. Then ϕ(E) is meager in 2ω×2ω, so put Ψ+(E) := ϕ(E)ċ.
It is clear that Ψ−(Ċ) ⊆ E implies 
 Ċ ⊆ Ψ+(E). (Lemma 4.3)

The next lemma is the converse of Lemma 3.12, that is, it describes b and d in the
extension obtained by adding a single random real.

Lemma 4.4. D �MB,M
NB,N

D. In particular, dMN ⇒ d
M[r]
N[r] and b

M[r]
N[r] ⇒ bMN .

Proof. Let ġ ∈ MB
ωω . By ωω-bounding find hġ ∈ M such that 
 ġ ≤∗ hġ. Next we

define Ψ−(ġ) := hġ and Ψ+(f) := f for f ∈ ωω ∩M. It is clear that Ψ−(ġ) ≤∗ f implies

 ġ ≤∗ Ψ+(f). (Lemma 4.4)

In a similar way to Lemma 4.3 it can be proved an analogous result for ramdon
forcing.

Lemma 4.5. N �MB,M
NB,N

N . As a consequence , cof(N )MN ⇒ cof(N )
M[c]
N[c] and add(N )MN ⇒

add(N )
M[c]
N[c] .

Now we prove the relationship between D and CN after adding a single random
real.
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Lemma 4.6. C⊥N �MB,M
NB,N

D. In particular, dMN ⇒ non(N )
M[r]
N[r] and cov(N )

M[r]
N[r] ⇒ bMN .

Proof. Let Ḃ ∈MB
N . Find a Borel null A ⊆ 2ω × 2ω such that 
 Ḃ = Aṙ. Since A is a null

set, choose sequences sn, tn ∈ 2<ω such that |sn| = |tn| and

A ⊆
⋂
m<ω

⋃
n≥m

[sn]× [tn] and
∞∑
n=1

2−|sn|−|tn| <∞

Find an increasing function Ψ−(Ḃ) ∈ ωω by indiction on n such that

(a) j ≤ Ψ−(Ḃ)(n)→ |sj| < Ψ−(Ḃ)(n+ 1).

(b)
∑

j≥Ψ−(Ḃ)(n) Lb([sj]× [tj]) ≤ Lb([sn]×[tn])
2n+2 (where Lb denote the Lebesgue measure).

From (a) and (b) it follows that

(?)
∑

Ψ−(Ḃ)(n)≤j<Ψ−(Ḃ)(n+1)

2|Ψ−(Ḃ)−1[|sj |]|

22|sj |
≤

∑
Ψ−(Ḃ)(n)≤j<Ψ−(Ḃ)(n+1)

2n+2

22|sj |

≤ Lb([sn]× [tn]).

On the other hand, define Ψ+(f) := ṙf for f ∈ ωω.
To conclude the proof it suficies to prove that, Ψ−(Ḃ) ≤∗ f implies 
 B 63 ṙf . To do

this, assume that Ψ−(Ḃ) ≤∗ f .
Work in M. Define

H :=
{
x : 〈x, xf〉 ∈

⋂
m<ω

⋃
n≥m

[sn]× [tn]
}

It sufficies to prove that H has measure zero. Note that

H =
⋂
m<ω

⋃
n≥m

{
x : 〈x, xf〉 ∈ [sn]× [tn]〉

}

Claim 4.7. For any increasing function f ∈ ωω and s, t ∈ 2<ω,

Lb
({
x : 〈x, xf〉 ∈ [s]× [t]

})
≤ 2|f

−1(|s|)|

2|s|+|t|

Proof. For a proof to see [Car20, Claim 2.1]. (Claim 4.7)

We continue the proof of Lemma 4.6. By Claim 4.7 and (∗) it follows that H has
measure zero. Since 
 ṙ is a random real over M, 
 ṙ 6∈ H which means that 
 〈ṙ, ṙf〉 6∈
A, that is 
 ṙf 6∈ Aṙ = Ḃ. (Lemma 4.6)
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Lemma 4.8 ([Paw86, Lemma 3.5]). There is some B-name of a Borel function Ḟ : 2ω → 2ω

such that 
 for any A ∈M, F−1[A] is both meager and coded in V.

The following lemma discusses the behavior of the structure CM in the extension by
adding one random real.

Corollary 4.9. CM �M,M[r]
N,N[r] CM. In particular, cov(M)

M[r]
N[r] ⇒ cov(M)MN and non(M)MN ⇒

non(M)
M[r]
N[r] .

Proof. By Lemma 4.8, there is a B-name of a Borel function Ḟ : 2ω → 2ω coded in N[r]
such that for any A ∈ M ∩M[r], F−1[A] is both meager and coded in M. Work in
M[r]. Let A be a Borel set in M∩M[r]. Then F−1[A] is a meager set in M, so define
Ψ+(A) := F−1[A], and Ψ−(z) := F (z) for z ∈ 2ω. It is clear that if z 6∈ F−1[A] then
F (z) 6∈ A. (Corollary 4.9)

As a consequence of Theorem 3.1, Lemma 3.2, Lemma 4.4, and Corollary 4.9, we get:

Corollary 4.10. add(M)
M[r]
N[r] ⇒ add(M)MN and cof(M)MN ⇒ cof(M)

M[r]
M[r].

Notice that the next result is the converse of Corollary 4.9.

Lemma 4.11. Let h ∈ ωω suc that
∑

i<ω
1

h(i)
< ∞. Then Ed �MB,M

NB,N
aLc(ω, h). As a

consequence, we get cov(M)MN ⇒ cov(M)
M[r]
N[r] and non(M)

M[r]
N[r] ⇒ non(M)MN .

Proof. Let ġ be a B-name for a function in ωω. For each m ∈ ω, let 〈pmn : n ∈ ω〉 be a
maximal antichain deciding the value of ġ(m). Next, let ϕġ be the slalom defined by:

ϕġ(m) :=

{
k ∈ ω : Lb

(⋃{
[pmn ] : n < ω, pmn 
 ġ(m) = k

})
>

1

h(m)

}
.

From the definition of ϕġ, it is clear that |ϕġ(m)| < h(m). Finally, put Ψ(ġ) := ϕġ and
Ψ+(f) := f for f ∈ ωω.

To complete the proof it suffices to check that f 6∈∞ ϕġ implies 
 ġ 6=∗ f . To this
end, let n ∈ ω and p ∈ B, such that f(m) 6∈ ϕġ(m) for all m ≥ n. Find k > n such that∑∞

i=k
1

h(i)
< Lb([p]). Now, setting q := pr

⋃∞
m=k

⋃{[pmn ] : n < ω, pmn 
 ġ(m) = f(m)
}

, we

get q 
 ġ(m) 6= ḟ(m) for all m ≥ k, which finishes the proof of the lemma.
(Lemma 4.11)

As a consequence Theorem 3.1, Lemma 3.2 and Lemma 4.11, we get:

Corollary 4.12. cof(M)
M[r]
N[r] ⇔ cof(M)MN and add(M)MN ⇔ add(M)

M[r]
N[r] .

We conclude this section by proving the relationship betweem D and S after adding
a single random real.
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Lemma 4.13. D2 �M,MB

N,NB S. In particular, rM[r]
N[r] ⇒ dMN and bMN ⇒ s

M[r]
N[r] .

Proof. It suffices to find functions Ψ− : I ∩M → MB
[ω]ℵ0

and Ψ+ : MB
[ω]ℵ0

→ I ∩M such
that, for any I ∈ I ∩M and B ∈MB

[ω]ℵ0
, 
 “if Ψ−(I) ∝ B then I 7 Ψ+(B)”.

Given I ∈ I ∩M define fI ∈ ωω by fI(n) := min In for n < ω, so put

Ψ−(I) :=
⋃{

[f(n), f(n+ 1)) : ṙ(min In) = 1
}
.

Let Ḃ ∈ [ω]ℵ0 be a B-name. Let hḂ be the name of the increasing enumeration of Ḃ.
Let J Ḃ ∈ I be a B-name such that
 J Ḃ

n := [hḂ(n), hḂ(n)) for n < ω. Choose J ′ ∈ I∩M

such that 
 J Ḃ vI J ′ (such J ′ exists because B is ωω-bounding). In the end, define

Ψ+(Ḃ) := J∗ where J∗n := J
′

2n ∪ J
′

2n+1.

To finish the proof it sufficies to prove that, if I . J∗ then 
 Ψ−(I) 6∝ Ḃ. To see this,
assume that I . J∗, that is, for infinitely many n < ω, there is some m such that In ⊇ J∗m.
Next, set C :=

{
n : ∃m(In ⊇ J∗m)

}
, which is an infinite set in M.

In M[r], since r is random real over M, both sets
{
n ∈ C : r(min In) = 0

}
and{

n ∈ C : r(min In) = 1
}

are infinite. Consequenly, Ψ−(I) splits Ḃ. (Lemma 4.13)
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