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Abstract

We study the asymptotic shape of random unlabelled graphs subject to certain
subcriticality conditions. The graphs are sampled with probability proportional
to a product of Boltzmann weights assigned to their 2-connected components. As
their number of vertices tends to infinity, we show that they admit the Brownian
tree as Gromov–Hausdorff–Prokhorov scaling limit, and converge in a strengthened
Benjamini–Schramm sense toward an infinite random graph. We also consider mod-
els of random graphs that are allowed to be disconnected. Here a giant connected
component emerges and the small fragments converge without any rescaling towards
a finite random limit graph.

Mathematics Subject Classifications: 60C05, 05C80

1 Introduction

1.1 General context and motivation

The study of probabilistic and combinatorial properties of graphs from restricted classes
has received increasing attention in recent literature. Prominent examples of such classes
include trees [22], outerplanar graphs [9, 37], planar graphs [35], and general families like
subcritical graph classes [16, 15, 17] and bridge-addable graph classes [13]. A fundamental
problem in this context is to describe the asymptotic shape of a random graph from such
a class as its number of vertices tends to infinity. For example, we could ask “what is the
structure of a typical large planar graph”? This question actually concerns two canonical
models of random graphs. First, we could uniformly pick a graph among all planar graphs
with a given n-element vertex set. Second, we could uniformly pick a graph among all
unlabelled planar graphs with n vertices. The two models are not equivalent. Picking a
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labelled graph creates a bias that is related to the size of the automorphism group. This
is strongly visible from an enumerative standpoint as well. For example, the number of la-
belled and unlabelled trees admit different asymptotic expressions [29]. Enumerating and
studying unlabelled graphs also poses particular challenges. For example, the asymptotic
number of labelled planar graphs has been determined in breakthrough work by Giménez
and Noy [21], concluding a long history of rough estimates. Determining the asymptotic
number and shape of unlabelled planar graphs, however, still remains an open problem.

This strongly motivates the development of methods that allow us to understand
the typical structure of graph symmetries. An important addition to this toolbox was
made in recent work by Bodirsky, Fusy, Kang, and Vigerske [10], who introduced the
method of cycle pointing. Roughly speaking, instead of using the common enumerative
method of rooting graphs at vertices, they are rooted at cycles of automorphisms. As
demonstrated in [10], cycle pointing allows also for the construction of Boltzmann samplers
for the efficient generation of random unlabelled objects. These samplers open doors to a
probabilistic analysis. The already quite demanding special case of unlabelled trees has
been studied in this way in [34], but it is desirable to obtain results for graphs that are
not necessarily trees.

1.2 Main result

In the present work, we use cycle pointing to study a general model of random tree-like
unlabelled graphs. Suppose that for each 2-connected graph B (including the complete
graph K2 with two vertices) we are given a weight ι(B) > 0 such that isomorphic graphs
receive the same weight. To any connected graph C we may then assign the weight

ω(C) =
∏
B

ι(B), (1)

with the index B ranging over all 2-connected components of C, that is, maximal 2-
connected subgraphs. If C consists of a single vertex, then it receives weight 1. We may
then consider the random connected unlabelled graph Cωn with n vertices, sampled with
probability proportional to its ω-weight, and likewise the random connected unlabelled
rooted graph Aωn. Drawing a random graph according to such block-weights encompasses
random unlabelled graphs from block-stable classes, which correspond to the special case
where each ι-weight is required to be either equal to 1 or 0. Block-stable classes of graphs
have received attention in recent literature, see McDiarmid and Scott [27].

The direct study of Cωn is challenging, as the structure of the symmetries of objects
without roots is much more complex as in the rooted case, where each symmetry is
required to fix the root vertex. So, instead of directly studying unrooted unlabelled
graphs, we are going to take a more economic approach and geometrically approximate
Cωn by a random rooted graph having size n + Op(1). More precisely, we are going to
construct a random rooted graph Dn with size dn = |Dn| = Op(1) such that the graph
Dn + Aωn−dn obtained by gluing the root of Dn to the root of Aωn−hn approximates Cωn in
total variation. That is, Dn+Aωn−dn is formed by identifying the root vertices of the graphs
Dn and Aωn−dn .
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In order for the random graph Cωn to behave in a tree-like manner, we will make an
assumption on the weight-sequence, which generalizes the definition of subcriticality for
block-stable classes of unlabelled graphs given in [15, Sec. 5]: Define the cycle index sum

Z(B′)ι(s1, s2, . . .) =
∑
k>1

∑
B′∈B′k

ι(B′)

k!

∑
σ

sσ11 s
σ2
2 · · · s

σk
k ,

with B′k denoting the set of all 2-connected graphs with vertex set {∗, 1, . . . , k} for arbi-
trary k > 1, the sum index σ : [k] → [k] ranging over the elements of the permutation
group of order k such that the canonically extension σ̄ with σ̄|[k] = σ and σ̄(∗) = ∗ is an
automorphism of B′, and σi denoting the number of cycles of length i in σ. (The reason
for the prime in B′ is that this is an instance of a derived species, see Appendix A for
more details on the symbolic method.) Likewise, we define the cycle sum

Z(C )ω(s1, s2, . . .) =
∑
k>1

∑
C∈Ck

ω(C)

k!

∑
σ

sσ11 s
σ2
2 · · · s

σk
k ,

with Ck denoting the set of all connected graphs with labels in [k] and the sum index σ
ranging over automorphisms of C. Furthermore, we set for each i > 1

Ã ωi(z) =
∑
A

ω(A)iz|A|

with the sum index A ranging over all rooted unlabelled graphs. (The tilde in Ã indicates
that this is an ordinary generating series, as opposed to an exponential generating series.
We refer to Appendix A for relevant background on these notions.) We require that the
radius of convergence ρA of A ω(z) and the bivariate sum

g(x, y) = exp

(
Z(B′)ι(x, Ã

ω2

(y2), Ã ω3

(y3), . . .) +
∑
i>2

1

i
Z(B′)ι(Ã

ωi(yi), Ã ω2i

(y2i), . . .)

)

satisfy

ρA > 0, g(Ã ω(ρA ) + ε, ρA + ε) <∞, and ZCω(0, (ρA + ε)2, (ρA + ε)3, . . .) <∞
(2)

for some ε > 0.
Although this Assumption seems rather abstract, it is known to be satisfied for a

wide range of random graphs that appear naturally in combinatorics. For example, con-
dition (2) holds if Cωn is the uniform random connected unlabelled series-parallel graph,
cacti graph or outerplanar graph with n vertices. Or, more generally, this encompasses
random graphs from subcritical classes of unlabelled graphs, which include random graphs
from classes defined by a finite set of 3-connected components. We refer the reader to
work by Drmota, Fusy, Kang, Kraus, and Rué [15, Sec. 6] for details. A famous class for
which condition (2) fails is the class of unlabelled planar graphs.

the electronic journal of combinatorics 28(4) (2021), #P4.30 3



Theorem 1. Suppose that Assumption (2) is satisfied. Then there exists a coupling of Cωn
with a random rooted graph Dn with size dn = |Dn| = Op(1), and the random rooted graph
Aωn−hn, such that the graph Dn +Aωn−hn obtained by identifying the root of Dn with the root
of Aωn−hn approximates Cωn in total variation. The speed of convergence is exponential, that
is, there exist constants C, c > 0 that do not depend on n such that

dTV(Cωn,Dn + Aωn−dn) 6 C exp(−cn) (3)

for all n.

Theorem 1 allows us to transfer a large class of asymptotic graph properties from Aωn
to Cωn. Note that this approach does not work as well the other way. We may at best
deduce that an asymptotic property of Cωn must also hold for the random rooted graph
Aωn−hn which has a random size, but this does a priori not imply that the property also
asymptotically holds for Aωn which has a deterministic size.

1.3 Scaling limit and consequences

We now state some important consequences of Theorem 1. The following theorem states
that the asymptotic shape of the random graphs under consideration is tree-like. Compare
with Figure 2 which illustrates a large randomly generated cactus graph.

Theorem 2. Suppose that (2) holds, and let µn denote the uniform measure on the
vertices of Cωn. Then there exists a constant cω > 0 such that(

Cωn,
cω√
n
dCωn , µn

)
d−→ (Te, dTe , µ) (4)

in the Gromov–Hausdorff–Prokhorov sense, with (Te, dTe , µ) denoting the Brownian con-
tinuum random tree. Moreover, there are constants C, c > 0 such the diameter D(Cωn)
satisfies for all n the tail bound

P(D(Cωn) > x) 6 C exp(−cx2/n). (5)

The Brownian continuum random tree consists of a random compact metric space
(Te, dTe) together with a probability measure µ on its Borel σ-algebra. The letter e =
(et)06t61 denotes a Brownian excursion normalized to have duration 1. Briefly summa-
rized, (Te, dTe) may be defined as the quotient metric space corresponding to the random
pre-metric

de(x, y) = emin(x,y) + emax(x,y) − 2 inf
min(x,y)6t6max(x,y)

et (6)

on the compact unit interval [0, 1]. The random probability measure µ is the push-forward
measure of the Lebesgue measure on [0, 1]. We refer to [3, 4, 5] for details on the Brownian
continuum random tree, and to [28, Sec. 6] for details on Gromov–Hausdorff–Prokhorov
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Figure 1: A random cactus graph with 10k vertices which are coloured according to
their closeness centrality.

convergence of random compact measured metric spaces. See also Section 5.1 below for
a concise introduction.

Theorem 2 recovers the scaling limit for the model of uniform random unlabelled trees
without degree restrictions by [34]. We do not recover the results for degree restricted
unlabelled trees from [34], as treating general graphs forces us to take different paths in
the cycle decomposition.

The idea behind the scaling limit of Cωn is that the graph Dn contracts to a single point
when rescaled by n−1/2, and hence the Gromov–Hausdorff–Prokhorov distance between
the rescaled versions of Aωn−hn and Cωn tends in probability to zero. Hence we may build
upon previous scaling limits for the rooted graph Aωn given in [33, Thm. 33].

Theorem 2 has various applications. For example, it follows from (4) that

cωD(Cωn)/
√
n

d−→D(Te) = sup
06x<y61

(ex + ey − 2 inf
x6t6y

et). (7)

By Aldous [4, Ch. 3.4] and Wang [38], the diameter admits the density

P(D(Te) > x) =
∞∑
k=1

(k2 − 1)
(2

3
k4x4 − 4k2x2 + 2

)
exp(−k2x2/2). (8)

Equation (5) entails supn>1 E[D(Cωn)p/np/2] <∞ for each integer p > 1. Hence, D(Cωn)/
√
n

is p-uniformly integrable for all p > 1. Combining this fact with (7), it follows that

cpωE[D(Cωn)p]/np/2 → E[D(Te)p]. (9)
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The moments of the diameter of the continuum random tree Te may be obtained by an
easy calculation from results by Broutin and Flajolet [11]. They are given by

E[D(Te)] =
4

3

√
π

2
, E[D(Te)2] =

2

3

(
1 +

π2

3

)
, E[D(Te)3] = 2

√
2π, (10)

E[D(Te)p] =
2p/2

3
p(p− 1)(p− 3)Γ(p/2)(ζ(p− 2)− ζ(p)) if p > 4. (11)

Here Γ denotes Euler’s gamma function, and ζ denotes Riemann’s zeta function.
The order

√
n of the diameter of random graphs from labelled classes of subcritical

graphs has been established by Drmota and Noy [16, Thm. 3.2], who also conjectured
a distributional scaling limit. This conjecture was later proven by Panagiotou, S., and
Weller [30]. Additive parameters of random graphs from subcritical classes of unlabelled
graphs have been studied by Drmota, Fusy, Kang, Kraus, and Rué [15]. It is natural
to also study their extremal parameters, and Equation (7) confirms that the conjectured
behaviour of the diameter also holds in the unlabelled case.

We emphasize, however, that the scaling constant cω may change depending on whether
we look at labelled or unlabelled graphs. For example, among the many classes of graphs
that satisfy the tree-like Assumption (2), uniform unlabelled outerplanar graphs have re-
ceived particular attention in [9]. This corresponds to the case where we assign weight
1 to each graph that may be drawn in the plane such that no edges intersect and each
vertex lies on the frontier of the outer face. All other graphs receive weight 0. We derive
a numeric approximation of the scaling factor for this class of graphs.

Theorem 3. The scaling constant cωO
of the class of unlabelled outerplanar graphs is

approximately given by
cωO
≈ 0.9864689.

This differs from the case of random labelled outerplanar graphs for which the constant
is approximately given by ≈ 0.960 [30, Prop. 8.6] and the case of random outerplanar
maps for which it equals 9/(7

√
2) ≈ 0.909 [12, 31].

Theorem 2 has further consequences: Equation (4) implies distributional joint conver-
gence for the rescaled distances between k independently sampled random points of Cωn,
see [28, Prop. 10] for a justification in a more general context. For example, it follows
that the graph distance dCωn(v1, v2) of two independently and uniformly selected points
v1, v2 ∈ Cωn satisfies

cωdCωn(v1, v2)/
√
n

d−→ dTe(u
1, u2), (12)

with u1, u2 denoting independent µ-distributed points of the Brownian tree Te. The known
distribution of dTe(u

1, u2) may be derived as follows. The Brownian tree satisfies a re-
rooting invariance [4, Eq. (20)], meaning that the equivalence class 0̄ of 0 ∈ [0, 1] satisfies

(Te, v1)
d
= (Te, 0̄). Hence

dTe(u
1, u2)

d
= de(0, u

1) = eu1 . (13)
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It follows from [18, Prop. 3.4] that standardized Brownian excursion evaluated at a
uniformly and independently selected point of the unit interval follows the distribution

P(eu1 ∈ A) =

∫
A

4x exp(−2x2) ds (14)

for A a Borel subset of [0,∞[. Hence 2eu1 follows the Rayleigh distribution with proba-
bility density x exp(−x2/2). Summing up:

2cωdCωn(v1, v2)/
√
n

d−→Rayleigh(1). (15)

Note that the tail-bound (5) implies that the distance dCωn(v1, v2) is p-uniformly
integrable for any p ∈ N, yielding (similarly as we argued for the diameter) that

E[dCωn(v1, v2)p] ∼ np/22−p/2c−pω Γ(1 + p/2). (16)

The Gromov–Hausdorff–Prokhorov universality class of the Brownian continuum random
tree (and other continuous limit objects) was also studied in a recent work on Voronoi
tesselations [2], and the results given there also apply to the random graph Cωn by Theo-
rem 2.

1.4 Local limit

Apart from a scaling limit describing the asymptotic global shape of Cωn we also describe
the asymptotic local shape via a Benjamini–Schramm limit.

Theorem 4. Suppose that Assumption (2) holds. Then there exists a locally finite limit
graph Ĉω with a distinguished vertex v̂ ∈ Ĉω such that Cωn converges toward (Ĉω, v̂) in
the Benjamini–Schramm sense. Even stronger, if vn denotes uniformly at random drawn
vertex from Cωn, and kn = o(

√
n) is a fixed deterministic sequence of non-negative integers,

then

lim
n→∞

dTV(Ukn(Cωn, vn), Ukn(Ĉω, v̂)) = 0, (17)

with Ukn(·, ·) denoting the subgraph induced by all vertices with distance at most kn from
the specified vertex.

See Section 6.1 below for a concise introduction to local limits. The Benjamini–
Schramm convergence is deduced by observing that the kn-neighbourhood of a uniformly
at random drawn vertex vn ∈ Hn + Aωn−hn lies with high probability entirely in Aωn−hn
and hence it suffices to establish local convergence for Aωn−hn . This is achieved by using
the stronger form of Benjamini–Schramm convergence for Aωn established in [33]. As
a byproduct, we obtain that the Benjamini–Schramm limits of Aωn and Cωn agree. In
particular, the distribution of the limit graph may be described via a blow-up procedure
applied to a specific random infinite tree, see [33, Sec. 6.2 and Sec. 6.4.2 ].

For the case where ι(B) ∈ {0, 1} for all B and for which the ω-weight of all trees is
positive, we hence recover the local convergence of random unlabelled unrooted trees [34,
Thm. 1.2] (at least in the case without vertex degree restrictions) and extend the local
limit of uniform random unlabelled unrooted graphs from subcritical classes [20, Thm.
4.4] that states convergence of neighbourhoods with constant radius instead of o(

√
n).
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1.5 Disconnected regime

Our last result is an observation on random graphs that are not necessarily connected.
That is, random unlabelled elements from the class G ω of ω-weighted graphs, where the ω-
weight of such a graph is defined as the product of ω-weights of its connected components.
Similarly as in the approximation of unrooted graphs by rooted graphs in Theorem 1, the
following limit allows us to transfer “practically every” asymptotic property from the
connected to the disconnected regime.

Theorem 5. Let Gωn denote the random unlabelled graph with n vertices sampled with prob-
ability proportional to the product of ω-weights of its connected components. If Assumption
(2) holds, then the largest connected component Cn of Gωn has size |Cn| = n+Op(1). More
precisely, let d > 1 denote the unique largest constant such that all finite connected graphs
with positive ω-weight have size in the lattice 1+dZ. Then for each 0 6 a < d there exists
a finite random graph Ga such that

Gωn − Cn
d−→Ga (18)

as n tends to infinity on the lattice a + dN. Here weak convergence is to be understood
in the usual sense, that is, of random elements of the countable set of unlabelled finite
graphs. The distribution of Ga has Boltzmann-type:

P(Ga = G) = ω(G)ρ
|G|
A

 ∑
H,|H|≡a−1 mod d

ω(H)ρ
|H|
A

−1 , |G| ≡ a− 1 mod d.

Here the sum index H ranges over all unlabelled graphs with size in the lattice a− 1 +dZ.

Compare with a result for the number of connected components for the case of random
unlabelled outerplanar graphs in [9, Thm. 5.1], and under a general smoothness condition
given in [24, Chap. 4, Sec. 6.4]. It follows from Theorem 5 that the limits in Theorems 2
and 4 also hold for the largest component of Gωn, and, if we permit disconnected graphs in
the notion of local weak convergence, we may also consider Theorem 4 as a limit theorem
for the random graph Gωn.

A similar result was observed for random labelled graphs by McDiarmid [26] (with
later generalizations in [32, Thm. 4.2]). It is natural to expect that, similarly to the
labelled case, the tree-like condition (2) is not required for Theorem 5 to hold, and may
be replaced by merely requiring the series Ã ω(z) to have positive radius of convergence.
However, this appears to be an open problem.

1.6 Notation

Throughout we let n denote a positive integer. All unspecified limits are as n → ∞.
We say an event (that depends on n) holds with high probability if its probability tends
to 1 as n becomes large. Convergence in probability and distribution (also called weak

convergence) are denoted by
p−→ and

d−→ . For any sequence an > 0 of positive real
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numbers we let op(an) denote an unspecified random variable Zn such that Zn/an
p−→ 0.

The total variation distance between two random variables X and Y taking values in a
common measurable space (M,F) is denoted by

dTV(X, Y ) = sup
A∈F
|P(X ∈ A)− P(Y ∈ A)|.

2 Block-decomposition of cycle-pointed graphs

To deal with the symmetries that complicate the analysis of unlabelled graphs, we will
make use of enumerative and probabilistic aspects of the theory of species. In Appendix A
we summarize some tools and notions of this theory that we require in the proofs of our
main results, and provide further references for a detailed introduction to the topic.

2.1 The block-tree

A cut-vertex of a connected graph is a vertex whose removal disconnects the graph. We
say a graph is 2-connected, if it is connected, has at least 2 vertices, but no cut-vertices.
This includes the link-graph consisting of two vertices joined by an edge. A block B of
a graph G is a subgraph that is inclusion maximal with the property of being either an
isolated vertex or 2-connected. Any two blocks overlap in at most one vertex. The cut-
vertices of a connected graph are precisely the vertices that belong to more than one block.
For any connected graph C we may form the associated block-tree T (C) that comes with a
bipartition of its vertices into two groups of vertices [14, Ch. 3.1]. One group corresponds
to the blocks of C and the other to its cut-vertices. The edges of the tree T (C) are given
by all pairs {v,B} with v a cut-vertex and B a block that contains the vertex v.

2.2 Cycle pointing

We recall the block-decomposition of cycle-pointed connected graphs by Bodirsky, Fusy,
Kang and Vigerske [10, Prop. 28] and check that it is compatible with block-weightings.
We assume familiarity with the cycle pointing operations, see Appendix A and the ref-
erences given therein. Let Bι be the weighted species of graphs that are 2-connected,
and let C ω be the weighted species of connected graphs with the ω-weights given as in
Equation (1).

Marking a connected graph at a 1-cycle is equivalent to marking a vertex, and hence
we may split the species C ◦ of cycle-pointed connected graphs into vertex-marked graphs
from the weighted class A ω and graphs from the species (C ~)ω of cycle-pointed connected
graphs whose cycle has length at least two:

(C ◦)ω ' A ω + (C ~)ω. (19)

Let C be a connected graph that is marked at a cycle τ of length at least two. Then
there exists an automorphism σ of C that has τ as one of its disjoint cycles. The auto-
morphism σ induces a canonical isomorphism σ̄ of the properly bicolored block-tree T (C)
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Figure 2: Illustration of Decomposition (23) for a cycle-pointed graph with a cutver-
tex as cycle-center.

whose white vertices correspond to the blocks, and black vertices correspond to cutver-
tices of C. To any vertex v of C we may assign a unique vertex v̄ of T (C), because either
v is a cutvertex and hence corresponds to a black vertex of T (C), or v is not a cutvertex,
and hence is contained in a unique block of C and hence corresponds to a white vertex
of T (C). Since τ is a cycle of σ, it follows that the vertices of T (C) that correspond to
the atoms of τ form a cycle τ̄ of the tree-automorphism σ̄. The cycle τ̄ need not have
the same length as the cycle τ , as non-cutvertices of τ that lie in the same block get
contracted to a single atom of τ̄ .

For each atom v of τ we may consider the unique path Pv in the tree T (C) that joins v̄
the vertex τ(v̄) corresponding to the consecutive atom in the cycle. As σ̄ permutes these
path, they all have the same lengths. Note that either all or none of the vertices of τ are
cutvertices, as the graph automorphism σ permutes only cutvertices with cutvertices and
non-cutvertices with non-cutvertices. Hence all vertices of τ̄ share the same colour. In a
properly bicolored graph the distance between two vertices of the same colour is always
an even number, hence each of the paths Pv has an even number of edges and hence a
unique center vertex. A general result given in [10, Claim 22] states that all connecting
paths in a cycle-pointed tree must share the same center, so we may consider the center
vertex u of the connecting paths in T (C). Hence the species C ~ may be split into two
summands,

(C ~)ω ' (C ~
v )ω + (C ~

b )ω (20)

corresponding to the subspecies where the center of the marked cycles is required to
correspond to a cutvertex or to a block, respectively. Clearly the center vertex is a
fixpoint of σ̄, and this fact allows us to give explicit decompositions for both.

Let us first consider the case where the center u corresponds to a cutvertex vτ . Each
branch A of the rooted tree (T (C), u) corresponds to graph G(A) with a distinguished
vertex that corresponds to the vertex vτ and is not a cut-vertex of G(A). In order to keep
the label sets disjoint, we label this vertex by a ∗-place-holder instead of vτ . Hence any
branch is simply a derived block from B′ where each non-∗-vertex gets identified with the
root of a connected rooted graph. In other words, it’s a B′◦A -object. Moreover, the whole
graph consists simply of the center vertex vτ together with an unordered symmetrically
cycle-pointed collection of B′ ◦ A -objects. The ω-weight of C is the product of the ω-
weights of the branches, and each automorphism of C having τ as its cycle leaves the
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Figure 3: Illustration of Decomposition (24) for a cycle-pointed graph with a block
as cycle-center.

center vertex vc invariant. Furthermore, the ω-weight of a branch is the product of the
ι-weight of the derived block and the ω-weight of the attached rooted connected graphs.
Hence

(C ~
v )ω ' (SET~ } ((B′)ι ◦A ω)) ?X , (21)

where the factor X corresponds to the center vertex. We may write

SET~ 'P ? SET (22)

with P denoting the cycle-pointed species consisting only of marked cycles with length
at least two, which simplifies (21) to

(C ~
v )ω ' (P } ((B′)ι ◦A ω)) ?A ω. (23)

This corresponds to the fact that the center together with the branches without any
atoms of τ form a connected rooted graph without any further restrictions, and the
remaining branches together with the marked cycle τ correspond to a P}B′ ◦A object.
Furthermore, this object may be composed out of a single cycle-pointed (B′ ◦A )◦ object
by constructing τ according to the cycle composition construction, see Figure 2 for an
illustration.

Finally, consider the case where the center u corresponds to a block B instead of a
cutvertex. There is a natural marked cycle τB on the block B. It is given by the cycle τ
if τ lies entirely in B. Otherwise, τB consists of the cutvertices of C that are contained in
B and belong to those branches in T (C) adjacent to the center u, that contain atoms of
the induced cycle τ̄ . This is because the induced automorphism σ̄ of T (C) permutes the
branches containing atoms of τ̄ cyclically. The graph automorphism σ maps the vertex
set of B to itself, and hence induces an automorphism σ|B of the block B. The cycle τB
is one of the disjoint cycles of σB. Hence (B, τB) is a cycle-pointed block. The graph
C may be decomposed into the cycle-pointed block (B, τB), where each vertex v of B
is identified with the root of a connected rooted graph Cv. The marked cycle τB and
the rooted graphs corresponding to it are composed out of a single cycle-pointed rooted
connected graph Cτ according to the cycle composition construction (see Figure 3 below
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for an illustration). Furthermore, the ω-weight of the graph C is given by the product
of the ι-weight of B and the ω-weights of the attached graphs (Cv)v∈B. Summing up, we
obtain the decomposition

(C ~
b )ω ' (B~)ι } A ω. (24)

2.3 The case of a vertex cycle-center

Throughout this section, we assume that Assumption (2) is satisfied. Equation (23)
states that an unlabelled symmetrically cycle-pointed weighted connected graph may be
decomposed uniquely in a weight-preserving manner into an unlabelled rooted graph and
an unlabelled graph from the species P } ((B′)ι ◦A ω). We are going to verify that the
sum of the weights of n-sized graphs from this species is exponentially smaller than the
sum of the ω-weights of n-sized unlabelled rooted graphs. This may then be used to show
that large random unlabelled graphs from (C ~

v )ω consist of a large rooted graph together
with a stochastically bounded rest attached to its root.

Recall that d denotes the span of the support of the generating series C̃ ω(z). That is,
d > 1 is minimal with the property that the exponents with non-zero coefficients belong
to the lattice 1 + dZ. By a standard result due to Bell, Burris and Yeats [6, Thm. 28] we
know that the tree-like Assumption (2) implies that there exists a constant cA > 0 such
that

[zn]Ã ω(z) ∼ cA n
−3/2ρ−nA (25)

as n ≡ 1 mod d becomes large.

Lemma 6. The ordinary generating series

P } ((B′)ι ◦A ω)
:

(z) =
∞∑
i=2

Z̄((B′)◦)ι(Ã
ωi(zi), (Ã ◦)ω

i

(zi); Ã ω2i

(z2i), (Ã ◦)ω(z2i); . . .)

has radius of convergence strictly larger than ρA .

Here the wide tilde indicates that we look at the ordinary generating series of the
entire species P } ((B′)ι ◦A ω).

Proof. For any k > 1 and any rooted symmetry (B, σ, τ, v) ∈ RSym(((B′)◦)ι)[k] it holds
that

[zb](Ã ◦)ω
|τ |

(z|τ |)(Ã ω(z))σ1 · · · (Ã ω|τ |(z|τ |))σ|τ |−1 · · · (Ã ωk(zk))σk

6 b[zb](Ã ω(z))σ1 · · · (Ã ωk(zk))σk .

Here we have applied the fact that each unlabelled A -structure of size ` > 1 has precisely
` cycle pointings. To any symmetry of size k correspond precisely k rooted symmetries.
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It follows that for any b > 1

[zb]
∑
k>1

(B,σ,τ,v)∈RSym(((B′)◦)ι)[k]

1

k!
ι(B)(Ã ◦)ω

|τ |
(z|τ |)(Ã ω(z))σ1 · · · (Ã ω|τ |(z|τ |))σ|τ |−1 · · · (Ã ωk(zk))σk

6 [zb]
∑
k>1

bk

k!

∑
(B,σ)∈Sym((B′)ι)[k]

(Ã ω(z))σ1 · · · (Ã ωk(zk))σk .

Only summands with [zb](Ã ω(z))σ1 · · · Ã ωk(zk)σk 6= 0 contribute. As σ1+2σ2+. . .+kσk =
k, this means that we only need to consider summands where k 6 b. Thus

[zb]Z̄((B′)◦)ι(Ã
ω(z), (Ã ◦)ω(z); Ã ω(z2), (Ã ◦)ω(z2); . . .)

6 b2[zb]Z(B′)ι(Ã
ω(z), Ã ω(z2), . . .). (26)

It follows that for any ε > 0

P } ((B′)ι ◦ (A )ω)
: (

ρA +
ε

2

)
6
∑
i>2

∑
b>1

b2
(
ρA +

ε

2

)bi
[zbi]Z(B′)ι(Ã

ω(zi), Ã ω(z2i), . . .)

=
∑
i>2

1

i

∑
b>1

b2i

(
ρA + ε

2

ρA + ε

)bi
(ρA + ε)bi[zbi]Z(B′)ι(Ã

ω(zi), Ã ω(z2i), . . .).

(27)

Clearly it holds that bi
(
ρA + ε

2

ρA +ε

)bi
< 1 for all but finitely many pairs (i, b). It follows by

Assumption (2) that the upper bound in (27) is finite for ε small enough.

The asymptotic expansion (25) and Lemma 6 allow us to apply a standard result [19,
Thm. VI.12] on the coefficients of products of power series, yielding

[zn](C̃ ~
v )ω(z) ∼P } ((B′)ι ◦A ω)
:

(ρA )[zn]A ω(z) (28)

as n becomes large. We may apply this to show that large random (C ~
v )ω-objects look

like large A ω-objects with a stochastically bounded rest attached to the root.

Lemma 7. The P } ((B′)ι ◦ A ω)-object corresponding to a random unlabelled n-sized
(C ~

v )ω-object that is sampled with probability proportional to its weight has stochastically
bounded size.

Proof. By the asymptotic expansions (25) and (28) it follows that the probability for this
component to have size k is asymptotically given by(

[zn−k]Ã ω(z)
)(

[zk]P } ((B′)ι ◦A ω)
:

(z)
)

[zn]C̃ ~
v (z)

→ ρkA [zk]P } ((B′)ι ◦A ω)
:

(z)

P } ((B′)ι ◦A ω)
:

(ρA )
.
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As the limit probabilities sum to 1, this implies that the component size has a finite weak
limit and is hence stochastically bounded. (In fact, this even shows that the component
converges weakly to a limit graph following a Boltzmann distribution for unlabelled P }
((B′)ι ◦A ω)-objects with parameter ρA .)

2.4 The case of a block cycle-center

Throughout we assume that Assumption (2) is satisfied. We start with the following
subcriticality observation.

Lemma 8. The bivariate power series

f(x, y) := Z̄(B~)ι(x, 0; Ã ω2

(y2), (Ã ◦)ω
2

(y2); Ã ω3

(y3), (Ã ◦)ω
3

(y3); . . .)

satisfies f(Ã ω(ρA ) + ε, ρA + ε) <∞ for some ε > 0.

Proof. Any unlabelled A -structure of size ` > 1 has precisely ` cycle pointings. Hence
for any k > 1 and any rooted symmetry (B, σ, τ, v) ∈ RSym(B~)[k] it holds that

[xayb]xσ1(Ã ◦)ω
|τ |

(y|τ |)(Ã ω2

(y2))σ2 · · · (Ã ω|τ |(y|τ |))σ|τ |−1 · · · Ã ωk(yk)σk

6 b[xayb]xσ1(Ã ω2

(y2))σ2 · · · Ã ωk(yk)σk .

Any symmetry from Sym(B)[k] corresponds to precisely k rooted symmetries, so any non-
trivial symmetry may correspond to at most k rooted symmetry from the symmetrically
cycle-pointed species (B~)ι. Hence

[xayb]f(x, y)

= [xayb]
∑
k>2

(B,σ,τ,v)∈RSym(B~)[k]

ι(B)

k!
xσ1(Ã ◦)ω

|τ |
(y|τ |)(Ã ω2

(y2))σ2 · · · (Ã ω|τ |(y|τ |))σ|τ |−1 · · · Ã ωk(yk)σk

6 [xayb]
∑
k>2

bk

k!

∑
(B,σ)∈Sym(B)[k]

ι(B)xσ1(Ã ω2

(y2))σ2 · · · Ã ωk(yk)σk .

We may neglect any summands where σ1 6= a or [yb](Ã ω2
(y2))σ2 · · · Ã ωk(yk)σk = 0. Since

it holds that σ1 +2σ2 + . . .+kσk = k, this means that we only need to consider summands
where k 6 a+ b. Thus

[xayb]f(x, y) 6 b(a+ b)[xayb]ZBι(x, Ã ω2

(y2), Ã ω3

(y3), . . .). (29)

It follows from the identity Z(B′)ι(s1, s2, . . .) = ∂
∂s1
ZBι(s1, s2, . . .) that for a > 0

[xayb]f(x, y) 6
b(a+ b)

a
[xa−1yb]Z(B′)ι(x, Ã

ω2

(y2), Ã ω3

(y3), . . .). (30)

In order to treat the case a = 0, we observe that the series ZBι(0, Ã ω2
(y2), Ã ω3

(y3), . . .) is
the sum of weight-monomials of all fixed-point-free symmetries of block-rooted connected
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graphs. We may convince ourselves of this fact as follows. Block-rooted connected graphs
consist of a block with rooted graphs attached to it, so they correspond to the composition
species Bι ◦A ω. By the composition formula the cycle index sum of this species is given
by

ZBι(ZA ω(s1, s2, . . .), ZA ω2 (s2, s4, . . .), ZA ω3 (s3, s6, . . .) . . .).

If we want to sum only the weight-monomials of fixed-point-free symmetries, we have to
make the substitution s1 = 0. But ZA ω(0, s2, . . .) = 0 as any automorphism of a rooted
graph from A ω is required to fix the root. So ZBι(0, ZA ω2 (s2, s4, . . .), ZA ω3 (s3, s6, . . .) . . .).
is the sum of weight-monomials of fixed-point-free symmetries of block-rooted graphs. If
we want to index according to the number of vertices we have to make the substitution
si = yi for all i > 2, yielding ZB(0, Ã ω2

(y2), Ã ω3
(y3), . . .).

Now, any connected graph with b vertices has at most b blocks. Hence this series
counts each fixed-point-free symmetry of a connected graph with b vertices (without a
block-root) at most b times, yielding

[yb]ZBι(0, Ã ω2

(y2), Ã ω3

(y3), . . .) 6 b[yb]ZCω(0, y2, y3, . . .).

By (29) we may deduce

[yb]f(0, y) 6 b3ZCω(0, y2, y3, . . .). (31)

It follows from the bounds (30), (31) and the tree-like Assumption (2) that f(Ã ω(ρA ) +
ε, ρA + ε) <∞ for some ε > 0.

Note that it may happen that Z̄((B′)~)ι = 0. This is the case if we only assign positive
ι-weights to graphs with the property, that any automorphism with a fixed-point must be
the trivial automorphism. There are even graphs like the Frucht graph who only admit
the trivial automorphism, hence we have to be mindful of this possibility.

Lemma 9. If Z̄((B′)~)ι = 0, then the generating series (C̃ ~
b )ω(z) is analytic at ρA .

Proof. The assumption Z̄((B′)~)ι = 0 implies that

Z̄(B~)ι(x1, y1;x2, y2; . . .) = Z̄(B~)ι(0, 0;x2, y2; . . .).

Hence (C̃ ~
b )ω(z) = f(0, z). By Inequality (31) and the tree-like Assumption (2) we know

that f(0, z) has radius of convergence strictly larger than ρA , and consequently so does
(C̃ ~

b )ω(z).

Let us assume for the remaining part of this subsection that Z̄((B′)~)ι 6= 0. In [36,
Thm. 3.1, Lem. 3.2] general results for the behaviour of component sizes and partitions
functions of unlabelled composite structures were given. Lemma 8 gives an analogous
subcriticality condition to this setting, but for the cycle-pointed composition (B~)ι}A ω

rather than a regular composition. However, the arguments used in [36] may be modified
to encompass the present setting. In the following we describe these modifications.
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Decomposition (24) allows us to apply the substitution rule for Boltzmann samplers
given in [10, Fig. 13] in order to devise a sampling procedure for graphs from the class
(C ~

b )ω. (To be precise, the results of [10] were stated in a setting of species without weights.
However, the generalization to weighted species is straight-forward. See also [8].) This
yields the following procedure which samples a random unlabelled (C ~

b )ω-object C with
distribution given by

P(C = C) = ω(C)ρ
|C|
A /C̃ ~

b (ρA ). (32)

1. Draw a rooted symmetry (B, σ, τ, v) ∈
⋃
k>0 RSym(B~)[k] with probability propor-

tional to the weight

ι(B)

|B|!
(Ã ◦)ω

|τ |
(ρ
|τ |
A )(Ã ω(ρA ))σ1(Ã ω2

(ρ2A ))σ2 · · · (Ã ω|τ |(ρ
|τ |
A ))σ|τ |−1 · · · Ã ω|B|(ρ

|B|
A )σ|B| .

2. For each unmarked cycle c 6= τ of σ, draw an unlabelled A ω-object Ac with
probability proportional to the weight ω(Ac)

|c|ρ
|c||Ac|
A . Draw a cycle-pointed graph

(Aτ , cτ ) from the unlabelled (A ◦)ω-objects with probability proportional to the

weight ω(Aτ )
|τ |ρ
|τ ||Aτ |
A .

3. Construct the final graph C by identifying for each cycle c of σ and each atom u ∈ c
(which is a vertex of B) the vertex u with the root of a copy of Ac. The marked
cycle of C has length |τ ||cτ | and is constructed in a certain way out of the atoms of
the |τ | copies of the cycle cτ . (The precise way of composing this cycle is irrelevant
for our following arguments. Hence we refer the reader to [10, Fig. 13] for details.)

We may split the third step into two steps 3’ and 3”, where in step 3’ we treat only
cycles c of σ of length at least two, and in step 3” we attach only the graphs Ac for c a
fixed-point of σ. This way, we end up with a graph H in step 3’ having a number F of
marked vertices, each of which gets identified in step 3” with the root of an independent
copy of a random unlabelled A -object A with distribution

P(A = A) = ω(A)ρ
|A|
A /Ã ω(ρA ).

The joint probability generating series for F and H := |H| − F is given by

E[xFyH ] = f(xÃ ω(ρA ), yρA )/(C̃ ~
b )ω(ρA ). (33)

(Recall that the bivariate power series f was defined in Lemma 8.) Lemma 8 ensures that
the vector (F,H) has finite exponential moments. Let (Ai)i>1 denote independent copies
of A. Then

|C| d=H +
F∑
i=1

|Ai|. (34)
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We are now in the same situation as in [36, Eq. (4.2)], yielding by analogous arguments
as for [36, Eq. (4.4)] that

P(|C| = n) ∼ E[F ]P(|A| = n) (35)

as n ≡ 1 mod d tends to infinity. Using the identity

Z̄((B′)~)ι(x1, y1;x2, y2; . . .) =
∂

∂x1
Z̄(B~)ι(x1, y1;x2, y2; . . .)

this may be expressed in terms of coefficients of generating series by

[zn](C̃ ~
b )ω(z)

[zn]Ã ω(z)
→ ((B′)~)ι } A ω
:

(ρA ). (36)

This also holds in the case Z̄((B′)~)ι 6= 0, since then ((B′)~)ι } A ω
:

(ρA ) = 0. As we are
in the setting (34), we may also argue entirely analogously as in the proof of [36, Thm.
3.1] to obtain the following result.

Lemma 10. If Z̄((B′)~)ι 6= 0, then (max(|A1|, . . . , |AF |) | |C| = n) = n+Op(1).

That is, if we draw a graph Cbn with probability proportional to its weight among

all unlabelled n-vertex graphs from the class (C̃ ~
b )ω, then Cbn

d
= (C | |C| = n) consists

of large rooted graph Abn (the component Ai with maximal size) with a small graph of
stochastically bounded size attached to its root. Furthermore, for any k > 1 it holds
that the conditioned rooted component (Abn | |Abn| = k) gets sampled with probability
proportional to its ω-weight among all unlabelled rooted graphs with size k.

3 A giant connected component

In this section we provide a proof of Theorem 5.
Throughout we assume that Assumption (2) is satisfied. It follows from Decomposi-

tions (19) and (20), and Equation (28), Lemma 9 and Equation (36) that

[zn]C̃ ω(z) = n−1[zn]
(
Ã ω(z) + (C̃ ~

v )ω(z) + (C̃ ~
b )ω(z)

)
∼
(

1 + P } ((B′)ι ◦A ω)
:

(ρA ) + ((B′)~)ι } A ω
:

(ρA )

)
n−1[zn]Ã ω(z)

∼ cA

(
1 + P } ((B′)ι ◦A ω)
:

(ρA ) + ((B′)~)ι } A ω
:

(ρA )

)
n−5/2ρ−nA (37)

as n ≡ 1 mod d becomes large. The result [6, Thm. 28] by Bell, Burris and Yeats yields
an explicit expression for the constant cA in Equation (25), namely

cA = d

√
ρAEz(ρA , Ã ω(ρA ))

2πEuu(ρA , Ã ω(ρA ))
(38)

the electronic journal of combinatorics 28(4) (2021), #P4.30 17



with Ez and Euu denoting partial derivatives of the bivariate power series

E(z, u) := z exp

(
Z(B′)ι(u, Ã

ω2
(z2), Ã ω3

(z3), . . .) +
∑
i>2

1

i
Z
(B′)ιi (Ã

ωi(zi), Ã ω2i
(z2i), . . .)

)
.

(39)

For d = 1, it follows for example by [36, Lem. 3.2] that

[zn]G̃ ω(z) ∼ G̃ ω(ρA )[zn]C̃ ω(z) (40)

with G̃ ω(ρA ) = exp(
∑

i>1 C̃ ω(ρiA )/i). Hence we recover the asymptotic expansion ob-
tained in [15, Thm. 15]. By [36, Thm. 3.1] it follows that the largest connected compo-
nent of the random graph Gωn has size n+Op(1), and that the remaining small fragments
frag(Gωn) satisfy the limit

frag(Gωn)
d−→G0, (41)

with G0 defined in Theorem 5.
In the general case d > 1, the modulo of n imposes restrictions on the number of

components, as connected components whose number of vertices does not lie in 1 + dN0

have weight zero. Thus for n ≡ a mod d, 0 6 a < d an n-sized unlabelled graph from G ω

with non-zero weight is a multiset of connected unlabelled graphs with the total number
of elements belonging to a + dN0. (The converse is ensured to hold when all connected
components are sufficiently large, since there are only finitely many unlabelled connected
graphs with size in 1 + dN0 and weight zero.) We let SETa denote the species with a
single unlabelled object of size k for each k ∈ a+ dN0. It is easy to generalize [36, Thm.
3.1, Lem. 3.2] to obtain

[zn]G̃ ω(z) ∼ ZSET′a
(Ã ω(ρA ), Ã ω2

(ρ2A ), . . .)[zn+1−a]C̃ ω(z) and frag(Gωn)
d−→Ga (42)

as n tends to infinity along the lattice a + dN0, with Ga the random graph defined in
Theorem 5. (Compare with [32, Thm. 3.4], where such a generalization was carried out
in the labelled setting.) This finalizes the proof of Theorem 5.

4 Approximating unrooted graphs by rooted graphs (Proof of
Theorem 1)

Throughout we assume that (2) holds.
Suppose that Z̄((B′)~)ι 6= 0. In order to prove Theorem 1 it suffices by Decomposi-

tions (19) and (20) to show such approximation statements for random unlabelled n-vertex
graphs sampled with probability proportional to their weight from the classes A ω, (C ~

v )ω

and (C ~
b )ω. For the class A ω this is trivial, and for the other two classes this is precisely

what we did in Lemma 7 and Lemma 10. Hence Theorem 1 holds in this case, and we
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even obtain that Cωn ' Dn + Aωn−dn . That is, the upper bound for the total variational
distance in Inequality (3) is equal to zero.

In the case Z̄((B′)~)ι = 0 we may argue again that analogous approximations as in The-
orem 1 hold for the classes A ω and (C ~

v )ω. However, such a statement does not appear to
hold any longer for the class (C ~

b )ω. This is not a problem, as Lemma 9 and Equation (37)
guarantee that a random n-vertex cycle-pointed connected graph sampled with probabil-
ity proportional to its ω-weight belongs only with exponentially small probability to the
class (C ~

b )ω. Hence Theorem 1 follows, and Inequality (3) holds with the upper bound

of the total variational distance being given by the quotient
[zn](C̃~

b )ω(z)

n[zn]C̃ω(z)
6 C exp(−cn)

uniformly in all n for fixed constants C, c > 0 that do not depend on n.

5 Scaling limit (Proof of Theorem 2)

5.1 Background on the Gromov–Hausdorff–Prokhorov metric

We recall relevant notions for random measured metric spaces. Most parts of the present
exposition follow [28, Sec. 6]. Given two compact subsets K1, K2 of a metric space
(X, dX), we may consider their Hausdorff distance

dH(K1, K2) = inf{ε > 0 | K2 ⊂ Uε(K1), K1 ⊂ Uε(K2)}.

Here Uε(K) := {x ∈ X | dX(x,K) < ε} denotes the ε-thickening of a subset K ⊂ X. The
Prokhorov distance between two Borel probability measures P1, P2 on X is defined by

dH(P1, P2)

= inf{ε > 0 | for all A ⊂ X closed: P1(A) 6 P2(Uε(A)) + ε, P2(A) 6 P1(Uε(A)) + ε}.

Let (X, dX , PX), (Y, dY , PY ) be compact metric spaces equipped with Borel probability
measures. For any metric space (E, dE) and isometric embeddings ιX : X → E and
ιY : Y → E we may consider the push-forward measures PXι

−1
X and PY ι

−1
Y . The Gromov–

Hausdorff–Prokhorov (GHP) distance between the two spaces is given by

dGHP((X, dX , PX), (Y, dY , PY )) = inf
(E,dE),ιX ,ιY

min(dH(ιX(X), ιY (Y )), dP(PXι
−1
X , PY ι

−1
Y )),

with the index ranging over all possible isometric embeddings ιX , ιY of X and Y into any
possible common metric space (E, dE).

The GHP distance satisfies the axioms of a premetric on the collection of compact
metric spaces equipped with Borel probability measures. The corresponding metric on
the quotient space K is complete and separable. That is, K is a Polish space. For set-
theoretic reasons, we would actually have to work with a set of representatives instead of
a collection of proper class, but this a purely notational issues that we may safely ignore.

We are usually not going to distinguish between a measured compact metric space
and the corresponding equivalence class. Also, whenever there is no risk of confusion, we
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will write λX instead of (X,λdX , PX) for any scalar factor λ > 0 and any compact metric
space (X, dX) equipped with a Borel probability measure PX .

If we distinguish points x0 ∈ X and y0 ∈ Y we may also form the rooted Gromov–
Hausdorff–Prokhorov -distance dcGHP(X•, Y •) between the rooted spaces X• = (X, x0) and
Y • = (Y, y0) by

inf
(E,dE),ιX ,ιY

min(dH(ιX(X), ιY (Y )), dP(PXι
−1
X , PY ι

−1
Y ), dE(ιX(x0), ιY (y0))).

The rooted GHP-distance dcGHP satisfies analogous properties as dGHP, see [1, Thm. 2.3]
for details.

5.2 Scaling limits of random unlabelled unrooted graphs

We first prove the convergence stated in (4). Recall the following scaling limit for the
random rooted graph Aωn.

Lemma 11 ([33, Thm. 33]). Suppose that the tree-like Assumption (2) is satisfied. Then
there exists a constant cω > 0 such that the random rooted graph Aωn equipped with the
uniform measure µAn on its set of vertices satisfies the limit(

Aωn,
cω√
n
dAωn , µ

A
n

)
d−→ (Te, dTe , µ) (43)

in the rooted Gromov–Hausdorff–Prokhorov sense. The diameter D(Aωn) satisfies the tail
bound

P(D(Aωn) > x) 6 C exp(−cx2/n) (44)

To be precise, [33] actually states Gromov–Hausdorff convergence of Aωn to the Brown-
ian tree, but it is not hard to see that the arguments may be extended to obtain Gromov–
Hausdorff–Prokhorov convergence.

As the graph Dn from Theorem 1 has size dn = Op(1) it follows from Lemma 11 that(
Aωn−dn ,

cω√
n
dAωn−dn , µ

A
n−dn

)
d−→ (Te, dTe , µ).

Let µA +D
n denote the uniform measure on the vertex set of the graph Aωn + Dn. Using

again dn = Op(1) we may observe

dGHP

((
Aωn−dn + Dn,

cω√
n
dAωn−dn+Dn , µ

A +D
n

)
,

(
Aωn−dn ,

cω√
n
dAωn−dn , µ

A
n−dn

))
p−→ 0.

By Theorem 1, it follows that(
Cωn,

cω√
n
dCωn , µn

)
d−→ (Te, dTe , µ)
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This verifies the limit (4).
In order to complete the proof of Theorem 2, it remains to prove Inequality (5). To

this end, it suffices to verify (5) uniformly for
√
n 6 x 6 n. Indeed, the diameter of Cωn

is at most n, hence the left hand side of (5) equals zero when x > n. In this case, (5)
is trivially satisfied. Furthermore, by possibly replacing C by a large value and c by a
smaller value, we may always assume C > 1/e and c < 1 so that so that for all x <

√
n

we have C exp(−cx2/n) > C exp(−c) > 1. Thus, (5) is trivially satisfied in this case.
Moreover, we may treat the three individual parts of the decomposition

(C ◦)ω ' A ω + (C ~
v )ω + (C ~

b )ω

in (19) and (20) individually. Inequality (44) takes care of the first summand A ω. As for
the case of a vertex cycle-center, (23) allows us to sample an n-vertex unlabelled graph
from (C ~

v )ω with probability proportional to its weight by conditioning the following
procedure on producing a graph with size n:

1. Draw a random unlabelled A ω-object A with probability

P(A = A) = ω(A)ρ
|A|
A /Ã ω(ρA ).

2. Draw a random unlabelled P } ((B′)ι ◦A ω)-object P with P(P = P ) proportional

to ω(P )ρ
|P |
A .

3. Glue A and P together at their root vertices to form the graph A + P.

Note that the total size of the graph A + P is |A| + |P| − 1 as we identify the two roots.
By (25) and (28) we know that

P(|A|+ |P| − 1 = n) = ρnA [zn](C̃ ~
v )ω(z)/(C̃ ~

v )ω(ρA ) = O(n3/2).

If D(A + P) > x then it holds that D(A) > x/2 or |P| > x/2. It follows that

P(D(A + P) > x | |A|+ |P| = n− 1)

6 P(D(A) > x/2 | |A|+ |P| = n− 1) +O(n3/2)P(|P| > x/2). (45)

By Lemma 6 there are constants C ′, c′ > 0 such that

P(|P| > y) 6 C ′ exp(−c′y)

for all y. It follows that uniformly for all
√
n 6 x 6 n we have

O(n3/2)P(|P| > x/2) 6 O(n3/2) exp(−c′x/2)

= exp(−c′(1 + o(1))x/2)

6 exp(−c′′x2/n) (46)
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for some fixed constant c′′ > 0. Using (44) and x 6 n we obtain also that

P(D(A) > x/2 | |A|+ |P| = n− 1)

6
n∑

k=x/2

P(D(A) > x/2 | |A| = k)P(|A| = k | |A|+ |P| = n− 1)

6 C

n∑
k=x/2

exp(−cx2/(4k))P(|A| = k | |A|+ |P| = n− 1)

6 C exp(−cx2/(4n)). (47)

Combining (45), (46) and (47) it follows that

P(D(A + P) > x | |A|+ |P| = n− 1) 6 C ′′′ exp(−c′′′x2/n)

uniformly for
√
n 6 x 6 n for some constants C ′′′, c′′′ > 0.

It remains to verify such a bound for the case of a block cycle-center. By Lemma 9 it
follows that in case Z̄((B′)~)ι = 0 the probability for a random unlabelled n-vertex graph
from the class (C ◦)ω have a block cycle-center is exponentially small, that is, it is bounded
by C1 exp(−c1n) from some constants C1, c1 > 0 that do not depend on n. As x 6 n we
have

C1 exp(−c1n) 6 C1 exp(−c1x2/n),

and hence we are done in this case.
In case Z̄((B′)~)ι 6= 0 the strategy is similar to the case of a vertex cycle-center, but

the details are more technical. Recall the random graph C from Equation (32) and its
sampling procedure in subsequent paragraphs that splits it into a part with H vertices
and F rooted components A1, . . . ,AF as in (34). If D(C) > x then it holds that H > x/2
or max(D(A1), . . . ,D(AF )) > x/4. As P(|C| = n) = O(n3/2) by (35) and (25), it follows
that

P(D(C) | |C| = n) 6 P (max(D(A1), . . . ,D(AF )) > x/4 | |C| = n) +O(n3/2)P(H > x/2).
(48)

Lemma 8 ensures that the vector (F,H) has finite exponential moments. In particular
there are constants C ′1, c

′
1 > 0 such that P(H > y) 6 C ′1 exp(−c′1y) uniformly for all y.

Hence

O(n3/2)P(H > x/2) 6 O(n3/2) exp(−c′1x/2)

= O(1) exp(−c′1(1 + o(1))x/2)

6 C ′′1 exp(−c′′1x2/n) (49)

for some constants C ′′1 , c
′′
1 > 0. As for the other summand in (48), for any f ′, k1, . . . , kf ′ > 0

let E denote the event that F = f ′ and |Ai| = ki for all 1 6 i 6 f ′. We may argue using
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(44) that

P
(

max
16i6F

D(Ai) > x/4 | |C| = n

)
6

∑
16f ′,k1,...,kf ′6n

P
(

max
16i6F

D(Ai) > x/4 | E
)
P(E | |C| = n)

6
∑

16f ′,k1,...,kf ′6n

∑
16i6f ′

C exp(−cx2/(16ki))P(E | |C| = n)

6 C exp(−cx2/(16n))
∑

16f ′,k1,...,kf ′6n

f ′P(E | |C| = n)

6 C exp(−cx2/(16n))E[F | |C| = n]. (50)

It follows from the expression (33) of the joint probability generating function of F and
H that

E[F | |C| = n] =
[zn]∂f

∂x
(Ã ω(zρA ), zρA )

[zn]f(Ã ω(zρA ), zρA )
.

We know by (36) that [zn]f(Ã ω(zρA ), zρA ) is asymptotically equivalent to [zn]Ã ω(z) up
to a constant factor. By the same arguments (just with ∂f

∂x
instead of f) the same holds

for [zn]∂f
∂x

(Ã ω(zρA ), zρA ). (This could also be verified using the usual singularity analysis
methods from [19, Thm. VI.5].) Consequently, the conditional expectation E[F | |C| = n]
remains bounded as n tends to infinity. It follows from this fact and Inequalities (48),
(49), and (50) that

P(D(C) | |C| = n) 6 C ′′1 exp(−c′′1x2/n)

holds uniformly in
√
n 6 x 6 n for some constants C ′′1 , c

′′
1 > 0. This completes the proof

of Theorem 2.

6 Local limit (Proof of Theorem 4)

6.1 Local topology

We recall relevant properties of the local topology.
Given two connected, rooted, and locally finite graphs G• = (G, vG) and H• = (H, vH)

we may consider their distance

dloc(G
•, H•) = 2− sup{k∈N0 |Uk(G•)'Uk(H•)} (51)

with Uk(G
•) ' Uk(H

•) denoting isomorphism of rooted graphs. This defines a premetric
on the collection of all rooted locally finite connected graphs. Two such graphs have
distance zero, if and only if they are isomorphic. Hence we obtain a metric on the
collection B of all unlabelled, connected, rooted, locally finite graphs. There are some
set-theoretic caveats that actually require us to work with a set of representatives instead
of a collection of proper classes, but we may safely ignore this purely notational issue.

Weak convergence of a sequence (Gn, vn)n>1 of random pointed graphs in B is also
called local weak convergence. In the special case where for each n the random graph Gn
is almost surely finite, and the root vn is selected uniformly at random from its vertices,
it is also called distributional or Benjamini–Schramm convergence.
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6.2 Local convergence of random unlabelled unrooted graphs

It was shown in [33, Thm. 32] that there exists a random rooted graph Ĉ such that for any
sequence kn = o(

√
n) the kn neighbourhood Ukn(Aωn, un) of a uniformly selected vertex

un ∈ Aωn satisfies
dTV(Ukn(Aωn, un), Ukn(Ĉ))→ 0.

This was obtained from a more general result [33, Thm. 27], that also yields that the
root of Aωn is with high probability not contained in Ukn(Aωn, un). By Theorem 1 we know
that a uniformly selected vertex xn of Dn + Aωn−dn lies with high probability in Aωn−dn ,
since Dn accounts for stochastically bounded subset of the n vertices. Conditioned on
this event, the vertex xn is uniformly distributed among the vertices of Aωn−dn . Since
kn/
√
n− dn = op(1), it follows that with high probability the kn neighbourhood of xn

does not contain the root of Aωn−dn . That is, Ukn(Dn + Aωn−dn , xn) = Ukn(Aωn−dn , xn) holds
with probability tending to 1 as n becomes large. It follows from (3) that the uniformly
selected vertex vn ∈ Cωn satisfies

dTV(Ukn(Cωn, un), Ukn(Ĉ))→ 0.

This proves Theorem 4.

7 The scaling constant of unlabelled outerplanar graphs

In this section, we provide a proof of Theorem 3.

7.1 A general description

The scaling constant cω of Theorem 2 is identical to the scaling constant for unlabelled
rooted graphs in Lemma 11. Hence, by the general result [33, Lem. 30, Proof of Thm.
28], it is given by

cω =

√
(1 + E[ζ])V[ξ]

2E[η]
(52)

with ξ and ζ the random non-negative integers with probability generating function

E[zξwζ ] = exp

(
zÃ ω(ρA ) +

∞∑
i=2

Ã ωi(ρiAw
i)

)
ρA /Ã

ω(ρA ), (53)

and η the distance between the marked points in a random unlabelled (B′•)ι-object B′•

that follows a Boltzmann distribution with parameter Ã ω(ρA ). That is, B′• is equal to
a random unlabelled (B′•)ι-object B with probability Ã ω(ρA )|B|ι(B)/(B̃′•)ι(Ã ω(ρA )).
Note that B is a graph having an inner root (also called the ∗-vertex) that does not
contribute to the total size |B|, and an outer root that does contribute to the total size
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and is required to not coincide with the inner root. It follows from the expression for the
generating function of (ξ, ζ) in Equation (53) that

V[ξ] = Euu(ρA , Ã
ω(ρA ))Ã ω(ρA ) and E[ζ] = Ez(ρA , Ã

ω(ρA ))ρA /Ã
ω(ρA )− 1, (54)

with the power series E(z, u) defined in Equation (39) (and Ez and Euu denoting partial
derivatives). The main challenge is to compute E[η].

7.2 Unlabelled outerplanar graphs

We are now going to derive numeric approximations of the constant cω in (52) for the
ω-weighting ωO that corresponds to uniform unlabelled outerplanar graphs. It was shown
in [37, Thm. 2.16], [9, Cor. 3.6] that

Z(B′)ιO (s1, s2, . . .) =

1

8

(
1 + s1 −

√
s21 − 6s1 + 1

)
+

1

8s22
(s1 + s2)

(
1− 3s2 −

√
s22 − 6s2 + 1

)
, (55)

with ιO denoting the special case of the ι-weighting for outerplanar graphs. The formula
was obtained in the cited sources by computing Z(B)ιO and then using Z(B′)ιO = ∂

∂s1
Z(B)ιO .

We are going to derive (55) in a direct way that will be convenient later on for the
computation of cω.

Figure 4: Decomposition of dissec-
tions

To this end, consider the species D of dissections
of polygons where one edge lying on the frontier of
the outer face is marked and oriented, and where
the origin of the root-edge is a ∗-vertex that does
not contribute to the total size. Note that D is, like
any corner-rooted planar map, asymmetric, mean-
ing that any permutation of the non-∗-vertices that
leaves the structure invariant must be the identity.
The smallest D-object has size 1 and consists of a
single oriented root-edge. Any larger D-object may
be decomposed in a unique way into an ordered list
of at least two D-objects as illustrated in Figure 4, yielding

D 'X +
∑
k>2

Dk and ZD = s1 + Z2
D/(1− ZD) =

1

4

(
1 + s1 −

√
s21 − 6s1 + 1

)
.

(56)

Any labelled (B′)ιO -object (with positive weight) with size at least 2 has a unique Hamil-
ton cycle that may be oriented in two different ways, yielding

Z0 := Z(B′)ιO (s1, 0, 0, . . .) =
1

2
(ZD + s1). (57)
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It remains to sum up the weight-monomials of symmetries that are different from the
identity. Any automorphism of a labelled (B′)ιO -object is also an automorphism of its
Hamilton cycle and hence an element of a dihedral group, meaning it is composed out of
rotations and reflections along axis passing through the “center” of the Hamilton cycle.
But the ∗-vertex is always required to be fixed, hence the only possible non-trivial auto-
morphism is a reflection along the axis that passes through the ∗-vertex and the “center”.
This also means that any such graph has only two proper embeddings into the plane, so
it makes sense to define the root-face as the unique inner face adjacent to the ∗-root.

Figure 5: Symmetric
blocks

There are two different cases, depending on whether the
axis leaves the Hamilton cycle through the middle of an edge,
or through a non-∗-vertex. The latter case may be parti-
tioned into two subcases, depending on whether there exists
an edge between the ∗-vertex and this second vertex or not.
If this edge is present, then the graph is uniquely determined
by the ordered list of D-objects encountered along one half
of the root-face, see Figure 5. This list must have length
at least two as we do not allow multi-edges. All atoms be-
long to 2-cycles of the reflection, except for the destination of
the root-edge in the last element of the list, since this vertex
must be a fixed-point. Moreover, any such graph with n non-

∗-vertices has precisely n!/2 labellings, so the sum of weight-monomials of all symmetries
of such dissections is given by

Z1 :=
1

2

(∑
k>2

D(s2)
k

)
s1
s2

=
D(s2)

2 s1
s2

2(1−D(s2))
=

1

2

(
D(s2)

s1
s2
− s1

)
. (58)

with D(z) := ZD(z, 0, 0, . . .).

Figure 6: Symmetric de-
rived blocks with no edge
along the axis of symmetry

If there exists no edge along the axis of symmetry, then
the endpoints of the root-edges of any corresponding pair of
identical dissections may be joined by chord. Compare with
the upper part of Figure 6, where these potential chords are
indicated by dashed vertical straight lines. Again, any unla-
belled graph of this form with n non-∗-vertices has precisely
n!/2 labellings. So the cycle index sums for the case where
the axis passes through two vertices is given by

Z2 :=
1

2

(∑
k>1

(2D(s2))
k

)
D(s2)

s1
s2

=
D(s2)

2 s1
s2

1− 2D(s2)
. (59)

Here the factor 2 in front of ZD is due to the two options that
the chord is present or not. Similarly, the case where the axis
leaves the Hamilton cycle through an edge contributes the
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cycle index sum

Z3 :=
1

2

(∑
k>0

(2D(s2))
k

)
D(s2) =

D(s2)

2(1− 2D(s2))
. (60)

Summing up, we obtain

Z(B′)ιO = Z0 + . . .+ Z3 =
1

2

(
D(s1) + D(s2)

s1
s2

+
2D(s2)

2 s1
s2

+ D(s2)

1− 2D(s2)

)
.

Using a computer algebra system, we may verify that this is identical to the expression
given in Equation (55).

It follows from this description that the cycle index sum Z(B′•)ιO of bi-pointed two-
connected outerplanar graphs is given by

Z(B′•)ιO = Z•0 + Z•1 + Z•2 =
1

2
(D•(s1) + s1) + Z1 + Z2 (61)

with F • = s1
∂F
∂s1

for any series F . But what is important to compute E[η] is not just the
series but its combinatorial interpretation, which is why we made the effort to derive these
equations, rather than just recalling (55). For ease of notation, let us set a = Ã ω(ρA )
and b = Ã ω(ρ2A ). In order to sample the Boltzmann distributed random graph B′•,
we may sample a symmetry from

⋃
k>1 Sym(B′•)[k] according to an (a, b)-Boltzmann

distribution for Sym(B′•) (that is, any symmetry (B, σ) is attained with probability
ιO(B)
|B|! a

σ1bσ2/Z(B′•)ιO (a, b)) and then forget about the automorphism. The decomposition

that lead us to (61) allows us to do sample this random symmetry in a multi-step process.

1. First we select I ∈ {0, 1, 2} with probability P(I = i) = Z•i (a, b)/Z(B′•)ιO (a, b).

2. If I = 0, we sample a random labelled graph B0 from
⋃
k>0(B

′•)ιO [k] with proba-

bility given by P(B0 = B) = ιO(|B|)
|B|! a|B|/(1

2
D•(a) + a) and equip it with the trivial

automorphism.

3. If I ∈ {1, 2} then Z•i = Zi, as any symmetry constructed to form Zi has a unique
fixed atom. We select a random symmetry (BI , σ(I)) among all the symmetries
constructed to sum up the cycle index sum ZI in (58) (in case I = 1) or (59) (in
case I = 2), respectively, with probability

P((BI , σ(I)) = (B, σ)) =
ιO(B)

|B|!
aσ1(I)bσ2(I)/ZI(a, b).

Let ηI denote the distance between the ∗-vertex and the marked root in the random graph
BI . This yields

E[η] =
1

Z(B′•)ιO (a, b)

(
1

2
(aD ′(a) + a)E[η0] + Z1(a, b)E[η1] + Z2(a, b)E[η2]

)
. (62)
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Recall that we constructed the symmetries for Z1 as in Figure 5 so that there exists always
an edge between the ∗-vertex and the marked root. Hence η1 = 1 is constant and so

E[η1] = 1. (63)

As for the case I = 2 (see the upper half of Figure 6), the distance η2 is equal to the
number of dissections attached to the root-face along one half of the symmetry axis. By
the arguments that lead to Equation (59), it follows that η > 2 and for any k > 2 it holds
P(η2 = k) = (2D(b))k a

4b
/Z2(a, b). This yields

E[η2] = Z2(a, b)
−1
∑
k>2

k(2D(b))k
a

4b
=

2− 2D(b)

1− 2D(b)
. (64)

Finally, consider the case I = 0. Here we actually treat random labelled graphs, and we
may build upon results obtained in this setting. It follows from the arguments that lead
to Equation (57) that

E[η0] =
a

D•(a) + a
+

D•(a)

D•(a) + a
E[η′0] (65)

with D•(z) = zD ′(z) and η′0 the distance between the ∗-vertex and the marked root in
a random marked dissection from the class D• that assumes any marked dissection D•

with probability a|D
•|

|D•|! /D
•(a). Let us set w := D(a). It follows from the proof of [30, Lem.

8.9], where calculations for marked dissection where carried out with different parameters,
that there exist numbers R, S > 0 such that2w4 − 4w3 + 3w − 1 −w3 + w2 w3 − 2w2 + w

−w3 + w2 2w4 − 4w3 + 3w − 1 w3 − 2w2 + w
−w2 + w −w2 + w 2w4 − 4w3 + w2 + 2w − 1

E[η′0]
R
S


=

2w4 − 4w3 − w2 + 3w − 1
−w
−w2

 .

This inhomogeneous system of linear equations (with the indeterminates E[η′0], R, S) had
a unique solution for the parameter considered in [30, Lem. 8.9], but we still have to check
if this the case in our setting. The growth constant for unlabelled outerplanar graphs was
approximated in [37, Sec. 3.1.3], [9, Sec. 4.2] by numerically solving truncated systems of
equations, yielding ρA ≈ 0.1332694, a ≈ 0.1707560, b ≈ 0.0180940, Euu(ρA , a) ≈ 549.359
and Ez(ρA , a) ≈ 1.34975. See [37, Sec. 3.1.3] for preciser estimates, that we used to
carry out all following calculations. The determinate of the matrix in the system of linear
equations evaluates to ≈ −0.00805 6= 0. Hence there exists a unique solution of the
associated inhomogeneous system, yielding E[η′0] = 8w4−16w3+4w−1

(4w3−6w2−2w+1)(2w−1) ≈ 5.435858. This

allows us to evaluate Equation (62), yielding E[η] ≈ 5.038561. Using Equation (54) we
obtain E[ζ] ≈ 0.0534353 and V[ξ] ≈ 93.80631. Hence Equation (52) evaluates to

cωO
≈ 0.9864689, (66)

as we stated in Theorem 3.
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A Species theory

In this appendix, we summarize some aspects of combinatorial species used in our proofs
following [23, 7, 10]. A thorough introduction to the subject is beyond the scope of this
paper and we refer the reader to these sources.

A.1 Weighted combinatorial species

We are going to define combinatorial species with weights in the set R>0 of non-negative
real numbers. Such an object F ω may be described as follows. For any finite set U the
species F ω produces a finite set F [U ] of F -structures and a weight-map ωU : F [U ] →
R>0. Furthermore, for any bijection σ : U → V between finite sets the species F ω produces
a transport function F [σ] : F [U ]→ F [V ], which must preserve the ω-weights. In other
words, the diagram

F [U ]
F [σ]

//

ωU

$$

F [V ]

ωV

��

R>0

is required to commute. The bijections produced by a species are subject to functoriality
conditions: the identity map idU on a finite set U gets mapped to the identity map
F [idU ] = idF [U ] on the set F [U ]. For any bijections σ : U → V and γ : V → W the
diagram

F [U ]
F [σ]

//

F [γσ]

$$

F [V ]

F [γ]
��

F [W ]

must commute. We further assume that F [U ] ∩F [V ] = ∅ whenever U 6= V . This is not
much of a restriction, as we may always replace F [U ] by {U} ×F [U ] for all sets U , to
make sure that it is satisfied. A reader familiar with category theory may without doubt
recognize that combinatorial species are endo-functors of the groupoid of finite weighted
sets and weight-preserving bijections. In particular, any concerns regarding set-theoretic
aspects of the definition of combinatorial species may be dispersed by consulting any book
on category theory, in particular the standard treaty [25].

Two weighted species F ω and H ν are isomorphic, denoted by F ω ' H ν , if there
exists a family of weight-preserving bijections (αU : F [U ] → H [U ])U with U ranging
over all finite sets, such the following diagram commutes for each bijection σ : U → V of
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finite sets.

F [U ]

αU
��

F [σ]
//F [V ]

αV
��

H [U ]
G [σ]

//H [V ]

We say H ν is a subspecies of F ω, if for each finite set U , any bijection σ : U → V
and each H -object H ∈ H ν it holds that H [U ] ⊂ F [U ], H [σ](H) = F [σ](H) and
νU(H) = ωU(H). We denote this by H ν ⊂ F ω. By abuse of notation, we will usually
denote the weighting on both H and F by ω.

It will be convenient to simply write ω(F ) instead of ωU(F ) for the weight of a structure
F ∈ F [U ]. If no weighting is specified explicitly for a species F , we assume that all
structures receive weight 1. We refer to the set U as the set of labels or atoms of the
structure. For any F -object F ∈ F [U ] we let |F | := |U | > 0 denote its size.

A.2 Ordinary generating series and cycle index sums

Given a finite set U , the symmetric group SU operates on the set U via

σ.F = F [σ](F )

for all F ∈ F [U ] and σ ∈ SU . Any bijection σ with σ.F = F is termed an automorphism
of F . All F -objects of an orbit F̃ have the same size and same ω-weight, which we
denote by |F̃ | and ω(F̃ ). This yields the weighted set F̃ [U ] of orbits under this operation.
Formally, an unlabelled F -object is defined as an isomorphism class of F -objects. We
may also identify the unlabelled objects of a given size n with the orbits of the action
of the symmetric group on any n-sized set. By abuse of notation, we treat unlabelled
objects as if they were regular F -objects. The power series

F̃ ω(z) =
∑
F̃

ω(F̃ )z|F̃ |

is the ordinary generating series of the species. Here the index ranges over all unlabelled
F -objects.

To any species F we may associate the corresponding functor Sym(F ) of F -symmetries
such that

Sym(F )[U ] = {(F, σ) | F ∈ F [U ], σ ∈ SU , σ.F = F}.
In other words, a symmetry is a pair of an F -object and an automorphism. The transport
along a bijection γ : U → V is given by

Sym(F )[γ](F, σ) = (F [γ](F ), γσγ−1).

For any permutation σ we let σi denote its number of i-cycles. In particular, σ1 counts
the number of fixpoints. The cycle index series of a species F ω is defined as the formal
power series

ZFω(s1, s2, . . .) =
∑
k>0

∑
(F,σ)∈Sym(F )[k]

ω(F )

k!
sσ11 · · · s

σk
k

the electronic journal of combinatorics 28(4) (2021), #P4.30 30



in countably infinitely many indeterminates (si)i>1. Consider symmetries is useful, as it
provides a way of counting orbits:

Lemma 12. For any finite set U with n elements and any unlabelled F -object F̃ ∈
F̃ [U ] there are precisely n! many symmetries (F, σ) ∈ Sym(F )[U ] such that F belongs
to the orbit F̃ . Hence there exists a weight-preserving 1 to n! relation between F̃ [U ] and
Sym(F )[U ]. Consequently:

F̃ ω(z) = ZFω(z, z2, z3, . . .).

This standard result is explicit in Bergeron, Labelle and Leroux [7, Ch. 2.3].

A.3 The cycle pointing operator

For each finite set U and permutation σ ∈ SU , the generated subgroup < σ >⊂ SU

operates canonically on U . The restriction of σ to any single orbit of this operation is
termed a cycle of σ. For any cycle τ we let its length |τ | be the number of elements
of the corresponding orbit. The cycle-pointed species (F ◦)ω associated to a species F ω

is defined as follows. For each finite set U , the elements of the set F ◦[U ] are all pairs
(F, τ) of an F -structure F and a cyclic permutation τ of some subset of U such that
there exists at least one automorphism σ ∈ SU of F having τ as one of its disjoint cycles.
(Here we allow the case where τ is just a fixed-point of σ.) The transport along a bijection
γ : U → V is defined by

F ◦[γ](F, τ) = (F [γ](F ), γτγ−1).

The weighting of the cycle-pointed version is inherited from the original species by

ω(F, τ) = ω(F ).

The idea behind the cycle pointing operator is that it provides a way for counting objects
up to symmetry.

Lemma 13. For any finite set U with n vertices there exists a weight-preserving 1 to n
correspondence between the set F̃ [U ] of orbits of F -objects and the set F̃ ◦[U ] of orbits
of F ◦-objects.

This result has been proven in [10, Lemma 4] in the context of species without weight-
ings, and the generalization to the weighted context is straight-forward. Lemma 13 shows
that there is no difference in sampling a random n-sized unlabelled object with probability
proportional to its weight from F and F ◦.

Any subspecies H ν ⊂ (F ◦)ω is termed cycle-pointed as well. A natural example
is the subspecies (F~)ω ⊂ (F ◦)ω of symmetrically cycle-pointed objects for which the
length of the marked cycle of each object is required to be at least 2. For any finite set
U we let RSym(H )[U ] denote the set of all tuples (H, σ, τ, v) with (H, τ) ∈H [U ], σ an
automorphism of H having τ as one of its disjoint cycles, and v ∈ U an atom of the cycle
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τ . In order to keep track of the length of the marked cycle, cycle-pointed species receive
an extended version of the cycle index sum

Z̄H ν (s1, t1; s2, t2; . . .) =
∑
k>0

1

k!

∑
(H,σ,τ,v)∈RSym(H )[k]

ν(H)
t|τ |
s|τ |

sσ11 s
σ2
2 . . . sσkk .

Lemma 13 readily implies that

H̃ ν(z) = Z̄H ν (z, z; z2, z2; . . .).

A.4 Further operators

There are various standard ways to combine given species (cycle-pointed or not) to form
new ones. We briefly recall some notation and relevant facts, but refer the reader to
the literature [7, Section 2.3] and [10] for a thorough description of these constructions.
Throughout we let F ω and G ν denote weighted species.

A.4.1 Constructions without cycle-pointing

If G ν [∅] = ∅ then we may form the composition or substitution F ω ◦ G ν . It is a weighted
species that describes partitions of finite sets, where each partition class is endowed with a
G -structure, and the collection of partition classes carries an F -structure. The weight of
such a composite structure is the product of weights of its F ω-structure and G ν-structures.
The cycle index sum of the substitution is given by

ZFω◦G ν (s1, s2, . . .) = ZFω(ZG ν (s1, s2, . . .), ZG ν2 (s2, s4, . . .), ZG ν3 (s3, s6, . . .), . . .).

Here νi denotes the weighting that assigns to each G -object G the weight νi(G) = ν(G)i.
See for example [23, Theorem 3 and Section 6] or [7, Proposition 11 of Section 2.3] for
details.

The product F ω ·G ν describes ordered pairs of an F ω and an G ν structure. The weight
of such a structure is the product of weights of its components. The cycle index sum of the
product satisfies ZFω ·G µ = ZFωZG ν . The sum F ω+G ν describes the disjoint union of the
two species, that canonically extends to weights and transport functions. The cycle index
sum of the sum satisfies ZFω+G ν = ZFω + ZG ν . It is straight-forward to generalize this
concept to sums of countably many species subject to the summability constraint that
in total only finitely many unlabelled objects of any fixed size are present. The derived
species (F ′)ω describes F ω-objects where one atom is marked and no longer contributes
to the total size. Its cycle index series is given by Z(F ′)ω(s1, s2, . . .) = ∂

∂s1
ZFω(s1, s2, . . .).

Similar to the derived species, the pointed species F • is given by F • = F ′ ·X with X
is the species having a single object of size 1 and weight 1.

A.4.2 Constructions for cycle-pointed species

It the species F ω ⊂ (H ◦)ω is cycle-pointed and G [∅] = ∅ we may form the cycle-pointed
substitution F ω } G ν as follows. Given an (H ◦ G )◦-structure ((H, (GQ)Q∈π), τ), there
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must be an automorphism σ having τ as one of its cycles. Let σ̄ : π → π,Q 7→ σ(Q)
denote the corresponding induced map on the partition. For each atom v of the cycle
τ let Q(v) ∈ π denote the unique partition class to which it belongs. Clearly it must
hold that σ̄(Q(v)) = Q(τ(v)). Hence σ̄ restricted to the set {Q(v) | v ∈ τ} forms a
cycle τ̄ . This makes (H, τ̄) ∈ H ◦[π] a cycle-pointed H -structure, that is called the
core structure. If the core structure belongs to the subset F [π] ⊂ H ◦[π], then we say
((H, (GQ)Q∈π), τ) belongs to the cycle-pointed substitution of F ω with G ν . This defines
a subspecies F ω } G ν ⊂ (H ω ◦ G ν)◦, and the weighting on F ω } G ν is inherited from
(H ω ◦ G ν)◦. By [10, Prop. 18], the extended cycle index sum of the cycle-pointed
substitution is given by

Z̄Fω}G ν (s1, t1; s2, t2; . . .) = Z̄Fω(g1, ḡ1; g2, ḡ2; . . .) (67)

with gi = ZG νi (si, s2i, s3i, . . .) and ḡi = Z̄(G ◦)νi (si, ti; s2i, t2i; s3i, t3i; . . .). To be precise, [10,

Prop. 18] states this equality for species without weights, but the generalization to the
weighted context is straight-forward.

With the species F ω being cycle-pointed, the product G ν ·F ω may also be interpreted
as a cycle-pointed species G ν?F ω, since the marked cycle of the F -structure is also a cycle
of some automorphism of the G ·F -structure. The corresponding extended cycle index
sum is given by Z̄G ν?Fω = ZG ν Z̄Fω . Likewise, if F ω and G ν are both cycle-pointed, then
so is their sum F ω +G ν and the extended cycle index sum satisfies Z̄Fω+G ν = Z̄Fω + Z̄G ν .
See [10] for details.

A.5 Associative laws

There are natural associative laws for the sum, product and substitution operations of
the form

(F ωµG ν)µH κ ' F ωµ(G νµH κ) (68)

for µ ∈ {+, ·, ◦}, that ensure that regardless how we put the parentheses, the results are
always isomorphic as species. Even more, there are natural choices of isomorphisms in (68)
such that regardless in which order we successively apply the associative law to change
from one parenthesization to another, the resulting concatenations of isomorphisms are
always identical. It is for this strong form of associativity up to canonical isomorphism
that we may drop the parentheses without any hazard [25, Ch. VII]. The inclined reader
may consult [23, Ch. 7] for further details.
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