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Abstract
We consider a minimizing variant of the well-known No-Three-In-Line Problem, the Geometric
Dominating Set Problem: What is the smallest number of points in an n× n grid such that every
grid point lies on a common line with two of the points in the set? We show a lower bound of Ω(n2/3)
points and provide a constructive upper bound of size 2dn/2e. If the points of the dominating sets
are required to be in general position we provide optimal solutions for grids of size up to 12× 12.
For arbitrary n the currently best upper bound remains the obvious 2n. Finally, we discuss some
further variations of the problem.

1 Introduction

The well-known No-Three-In-Line Problem asks for the largest point set in an n× n grid
without three points in a line. This problem has intrigued many mathematicians including
e.g. Paul Erdős for roughly 100 years now. Few results are known and explicit solutions
obtaining the trivial upper bound of 2n only exist for n up to 46 and n = 48, 50, 52 (See
e.g. [3]). Providing general bounds seems to be notoriously hard to solve; see [4, 6] for some
history of this problem.

In this note we concentrate on an interesting minimizing variant of the No-Three-In-Line
problem, which we call the Geometric Dominating Set Problem: What is the smallest number
of points (or points in general position) in an n× n grid such that every grid point lies on a
common line with two of the points in the set? This problem arose during the 2018 Bellairs
Winter Workshop on Computational Geometry. Later we found out that already in 1976
in Martin Gardner’s Mathematical Games column [4] the minimization version has been
mentioned. Gardner wrote: “Instead of asking for the maximum number of counters that can
be put on an order-n board, no three in line, let us ask for the minimum that can be placed
such that adding one more counter on any vacant cell will produce three in line.” According
to Gardner, the problem had already been mentioned briefly in a paper by Adena, Holton
and Kelly [1]. He mentioned their best results which they obtained by hand for 3 ≤ n ≤ 10.
These are 4, 4, 6, 6, 8, 8, 12, 12. Surprisingly, up to n = 8, their solutions are indeed optimal
solutions as we will see in Section 3. However, it seems that no progress has been made since
then, except for the special case where lines are restricted to vertical, horizontal and 45◦

diagonal lines [2].
This minimum version might remind one less of the No-Three-In-Line Problem, which

itself is based on a mathematical chess puzzle, and more of the Queens Domination Problem
that asks for a placement of five queens on a chessboard such that every square of the board
is attacked by a queen. In a more general setting this problem asks for the domination
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Figure 1 Three out of 228 solutions: Every square lies on a line defined by two pawns where no
three pawns are allowed to lie on a common line.

number of the n× n queen graph. Inspired by that, we call the smallest size of a solution for
the Geometric Dominating Set Problem the geometric domination number Dn.

After introducing the Geometric Dominating Set Problem formally, we will prove non-
trivial asymptotic upper and lower bounds and provide further computational results.

1.1 Dominating Sets

In the spirit of mathematical chess puzzles, the Geometric Dominating Set Problem can be
formulated in two variants as

How many pawns do we have to place on a chessboard such that every square lies on
a straight line defined by two pawns? How many pawns do we need if no three pawns are
allowed to lie on a common line?

We will see in Section 3, the answer for a chessboard is eight and some solutions are
the placements shown in Figure 1. In fact, there are 228 possibilities to do so, and 44 if we
cancel out rotation and reflection symmetries.

I Definition 1.1. Three points are called collinear, if they lie on a common line. Conversely,
a set S is called in general position if no three points in S are collinear.

We call a point p in the n×n grid dominated (by a set S), if p ∈ S or there exist x, y ∈ S
such that {x, y, p} are collinear. Similarly, we say p is dominated by a line L if p lies on L.

A subset S of the n× n grid is called a (geometric) dominating set or simply dominating
if every point in the grid is dominated by S.

We call the smallest size of a dominating set of the n×n grid the (geometric) domination
number and denote it by Dn. The smallest size of a dominating set in general position (an
independent dominating set) is called the independent (geometric) domination number and
denoted by In. Note that every point in an independent dominating set is only dominated
by pairs that include the point itself.

1.2 Summary Of Results

We will show that
In ≥ Dn = Ω(n2/3) (Subsection 2, Theorem 2.3)
Dn ≤ 2dn/2e (Subsection 3, Theorem 3.1)

and present several computational results.
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2 Lower Bounds

For a lower bound on Dn, let us consider a set S of s points in the n× n grid. Any pair of
points in S can dominate at most n points, so it has to hold that

(
s
2
)
n ≥ n2 which is the

case if s ≥ 1
2 +

√
1
4 + 2n ≥

√
2n. Therefore, Dn = Ω(n1/2).

However, hardly any lines in the n× n grid dominate n points. In fact, we can prove a
significantly better bound by using the following theorem, where ϕ denotes the Euler-Phi
function.

I Theorem 2.1. Let n = 2k + 1 and S be a subset of the n× n grid with |S| ≤ 4
∑m
i=1 ϕ(i),

where 1 ≤ m ≤ k. Then the number of points dominated by lines incident to a fixed point
x ∈ S and the other points in S is bounded by

1 + 8
m∑
i=1

⌊n
i

⌋
ϕ(i) ≤ 48

π2nm+O (n logm) .

The proof of this theorem can be found in [6] and uses the following well known number
theoretic result.

I Theorem 2.2 (Arnold Walfisz [7]).

k∑
i=1

ϕ(i) = 3
π2 k

2 +O
(
k(log k) 2

3 (log log k) 4
3

)
m∑
i=1

ϕ(i)
i

= 6
π2m+O

(
(logm) 2

3 (log logm) 4
3

)
I Theorem 2.3 (A lower bound on Dn). For n ∈ N, it holds that Dn = Ω(n2/3).

Proof. First, let n = 2k + 1, k ∈ N and let S be a set of s points in the grid, where√
2n ≤ s ≤ 2n. (Recall that 2n is a trivial upper bound on Dn and

√
2n a lower bound.)

Let m be the smallest positive integer such that s ≤ 4 ·
∑m
i=1 ϕ(i). Then s ∼ 12

π2m
2 by

Theorem 2.2.
By Theorem 2.1, the number of points dominated by lines incident to a fixed point p and

one of s− 1 additional points is bounded by 48
π2nm+O (n logm). To dominate all points in

the grid, we thus need

n2 ≤ s
(

48
π2nm+O (n logm)

)
.

Next, we plug in the asymptotic expression for s, such that the inequality simplifies to

n2 ≤
(

12
π2m

2 +O (m logm)
)(

48
π2nm+O (n logm)

)
= 576

π4 nm
3 +O

(
nm2 logm

)
If we divide by n, we can see that m = Ω(n1/3) and consequently s = Ω(n2/3) which

proves the claim for n odd.
For n even we embed the n× n grid into the (n+ 1)× (n+ 1) grid and obtain the same

asymptotic results. J

I Corollary 2.4. In = Ω(n2/3).

Proof. Since any independent dominating set is a dominating set, In ≥ Dn. J
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3 Upper Bounds

I Theorem 3.1 (An upper bound on Dn). For n ∈ N , it holds that Dn ≤ 2
⌈
n
2
⌉
.

The proof is based on the construction in Figure 2 and can be found in [6]. If n = k2 is
an odd square the result can be slightly improved to n− 1 by a construction similar to the
one depicted for k = 3 and n = 9 in the leftmost drawing of Figure 6.

Figure 2 Dominating set construction for n = 16.

So far, for In there is no better upper bound known than the obvious 2n.

4 Small Cardinalities and Examples

Figure 3 The unique (up to symmetry) minimal independent dominating set of size 8 for the
10× 10 board and a small independent dominating set of size 16 for the 21× 21 board. The latter
gives the currently best known ratio (number of points / grid size) of 16/21 < 0, 762.

To obtain results for small grids we developed a search algorithm based on the classic
backtracking approach. To speed up the computation, both symmetries – rotation and
reflection – were taken into account. For n = 2, . . . , 12, we made an exhaustive enumeration
of all independent dominating sets, and the obtained results are summarized in Table 1. For
larger sets upper bounds on In are given in Table 2. Figure 3 gives two examples of small
independent dominating sets.
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n 2 3 4 5 6 7 8 9 10 11 12

In 4 4 4 6 6 8 8 8 8 10 10
non sym. sets 1 2 2 26 2 573 44 3 1 19 2

all sets 1 5 2 152 8 4136 228 11 4 108 12
Table 1 Size of smallest independent dominating sets for n = 2, . . . , 12 and number of different

sets, considering symmetry (rotation and reflection), and all sets.

n 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In ≤ 12 12 14 14 15 16 16 16 16 18 20 20 22 24 24 24 24 25
Table 2 Currently best upper bounds for smallest independent dominating sets for n > 12.

Figure 4 Three independent dominating sets of cardinality 28 for a 36× 36 board.

We also obtained results for larger sets, but there is no evidence that our sets are (near
the) optimal solutions. Most of these examples are rather symmetric, but that might be
biased due to the approach we used to generate larger sets from smaller sets by adding
symmetric groups of points. Figure 4 shows three drawings for n = 36 with independent
dominating sets of size 28.

Figure 5 shows different dominating sets for n = 7. The best dominating sets that contain
collinear points are smaller than the best solutions in general position. For n ≤ 12 this is the
only board size where allowing collinear points leads to smaller dominating sets. Figure 6(left)
shows some nicely symmetric dominating sets with collinear points.

5 Variations of the Problem and Conclusion

We have already seen in the previous section that minimal examples can get smaller if we
allow dominating sets to contain collinearities, cf. Figures 5 and 6. We can also release the
restriction that the points of the dominating set have to lie within the grid, that is, the points
can have coordinates smaller than one, or larger than n. In Figure 6(right) we depict two
examples where the shown dominating sets are smaller than the best bounded solutions in
general position. So far we have not been able to find any examples where this idea combined
with collinear points in the dominating set provided even better solutions.

Another interesting variant is a game version: Two players alternatingly place a point
on the n× n-grid such that no three points are collinear. The last player who can place a
valid point wins the game (called normal play in game theory). It is not hard to see that for
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Figure 5 Five different dominating sets for a 7 × 7-board. The first two sets are in general
position and have size 8, while the remaining three sets have size 7 but contain collinear points.

Figure 6 Left: Symmetric dominating sets with collinear points for n = 9 and n = 10. Right:
Smaller dominating sets for a 2× 2-board and a 7× 7-board if points are allowed to be outside of
the board. These solutions are unique up to symmetry.

any even n the second player has a winning strategy. She just always sets the point which is
center mirrored to the previous move of the first player. By symmetry arguments this move
is always valid, as long as the first player made a valid move. For n odd the situation is more
involved. If the first player does not start by placing the central point in her first move, then
we have again a winning strategy for the second player by the same reasoning (note that the
central place can not be used after the first two points have been placed, as this would cause
collinearity). So if the first player starts by placing the central point it can be shown that
for n = 3 she can also win the game. But for n = 5, 7, 9 still the second player has a winning
strategy. For odd n we currently do not know the outcome for games on grids of size n ≥ 11.

Several open problems arise from our considerations:
Is there a constant c > 0 such that Dn ≤ In ≤ (2− c)n holds for large enough n?
Do In and Dn grow in a monotone way, that is, is In+1 ≥ In and Dn+1 ≥ Dn?
Is there some n0 such that In > Dn for all n ≥ n0?
Do minimal dominating sets in general position always have even cardinality? For n ≤ 12
this is the case, but the currently best example for n = 17 might be a counterexample.
How much can the size of dominating sets (with or without collinear points) be improved
if the points are allowed to lie outside the grid?
Which player has a winning strategy in the game version for boards of size n ≥ 11, n odd.

In [6], the problem was also considered on the discrete n × n torus. By extending the
probabilistic approach of Guy and Kelly to the No-3-In-Line problem [5] an upper bound
of O(

√
n logn) holds, which remarkably is below the lower bound of the regular grid. We

can show a lower bound of Ω(
√
n) for the torus if n is prime, but if n is a power of 2, then

actually 4 points are sufficient. We will provide detailed results in the full version.
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