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Abstract: The paper presents an algorithm for the precise registration of multiple wavefront
segments containing large misalignment and phase differences. The measurement of a wavefront
with huge dynamics or a large aperture size can be carried out in multiple Shack-Hartmann sensor
measurements of segments of the wavefront. The registration algorithm is flexible with respect
to the shape of the wavefront and can reconstruct a plane as well as divergent wavefronts, making
it suitable for freeform wavefronts. The algorithm enables parallel registration of the wavefront
segments which is carried out in an iterative manner to compensate for large misalignment errors.
A simulative analysis of the proposed algorithm compares its performance to a fast parallel
registration (FPR) algorithm and the established iterative closest point (ICP) algorithm. For a
sensor misalignment of up to 100 µm and 3 mrad the algorithm registers a plane and a divergent
wavefront with a precision that is a factor 4 and 12 better than the registration precision of the
FPR and ICP algorithm.
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distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

A Shack-Hartmann sensor (SHS) is well suited for the evaluation of optical systems, as it provides
a vibration-insensitive and reference free measurement of the optical wavefront with a large
dynamic range [1,2]. This makes the SHS a frequently used device in ophthalmology [3],
adaptive optics [4,5], free-space optical communication [6], optical system alignment [7] and
production of optical systems and components [2]. However, wavefronts exceeding the sensors
dynamic range or aperture size can only be captured in one measurement by using additional
supporting null optics [8]. The drawback of supporting optics is that they are additional sources
of errors, limiting the measurement quality [9]. In an alternative concept the SHS is combined
with a positioning system to enable a measurement of the wavefront beyond the dynamic range
or aperture size of the sensor [10–12]. In particular, segments of the wavefront are measured
by the SHS part by part. Adjacent wavefront segments are measured with a spatial overlap,
enabling the reconstruction of the entire wavefront using registration algorithms [13,14] that are
also capable of handling deviations of the sensor from the intended measurement positions. As
registration errors limit the measurement quality of the wavefront, a precise registration algorithm
is necessary for the assessment of high-end optical systems. In the last decades freeform optics
grew in popularity because of their high optical performance [15]. The shape of wavefronts
generated by freeform optics can be of any type, demanding algorithms for the registration of
wavefronts beyond plane wavefronts. In [16] a fast and parallel registration (FPR) algorithm is
reported, where wavefront segments are registered in parallel within less than a second. The
algorithm is analysed with respect to sensor misalignment up to 5 µm and 200 µrad and shows
high quality results. However, a poor calibration of the positioning system or application-specific
requirements with respect to measurement time, travel range, etc. might entail even larger sensor
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misalignment. The registration performance of the FPR algorithm deteriorates in case of larger
sensor misalignment, as the used local approximation of the global mismatch metric limits its
applicability to measurements with only moderate sensor misalignment.

The contribution of this paper is the development and evaluation of an algorithm that enables
high-quality registration of plane as well as divergent wavefronts also in the presence of large
sensor misalignment of the order of 100 µm and 3 mrad. Section 2. introduces the algorithm and
discusses its properties. Section 3. presents a simulative analysis of the algorithm and Section 4.
concludes the paper.

2. Algorithm description

2.1. Measurement concept

In the proposed measurement concept the SHS measures segments of the entire wavefront at
specific sensor positions [11,12]. Typically, the sensor deviates from its nominal position and
alignment, because of uncertainties and errors in the positioning system (see Fig. 1), resulting
in misaligned wavefront segments in the global frame (FG). The size of a wavefront segment
is limited to the size of the sensor aperture. If adjacent measurements overlap, the misaligned
wavefront segments can be registered to reconstruct the entire wavefront. In particular, the
wavefront segments are registered by minimizing their overlap mismatch using rigid body
transformation and wavefront propagation as illustrated in Fig. 2. The latter one is used to
minimize phase differences between the wavefront segments caused by the misalignment of the
sensor or a scan trajectory deviating from the wavefront of a specific phase.

Fig. 1. Measurement concept. The SHS measures wavefront segments of the entire
wavefront at different positions. The scan trajectory might traverse a phase interval and
uncertainties in the positioning system cause misalignment of the sensor.

The sensor aperture of an SHS consists of a lenslet array, where at each lenslet the local gradient
of the incident wavefront is measured [17]. From the measured gradients the corresponding
wavefront segment can be reconstructed in form of a point cloud, which is a set of three-
dimensional points contained in the wavefront segment. For wavefront segments with large
dynamics the corresponding point clouds can be determined from the phase distribution on the
lenslet array [16], as the phase gradients are directly determined from the SHS measurement [18].
There are several algorithms available for the reconstruction of a distribution from a discrete
set of local gradients, which can be divided into zonal and modal reconstruction algorithms
[19,20]. Zonal reconstruction is typically preferred, as it better preserves details of the wavefront
[21], which are important for a successful registration of the segments. The normal vector of
the wavefront segment at each point of the point cloud is directly determined from the gradient
measurements and is necessary for the proposed registration algorithm.
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Fig. 2. Registration of two wavefront segments. Misalignment and phase difference
between the segments is removed by a suitable rigid body transformation, i.e. alignment and
positioning (a), and wavefront propagation (b).

2.2. Iterative parallel registration algorithm

After the wavefront reconstruction the point cloud of each wavefront segment i = 1..U is
determined in the local coordinate system of the SHS. For the reconstruction of the entire
wavefront the sensor position and alignment in FG is necessary for each measurement. However,
because of uncertainties in the positioning system, the exact position of the sensor is subject to
uncertainty. The initial guess for the sensor position of the measurement of wavefront segment i
is defined by the translation vector T0i ∈ R

3 and the rotation matrix R0i ∈ R
3×3. Conveniently,

the nominal position of the sensor is used for T0i and R0i. FSi is defined as the local coordinate
system of the SHS positioned in FG with T0i and R0i. The reconstructed point cloud of segment
i is directly represented in FSi, denoted as Pi

0i with elements xi
0ij ∈ R3 and normal vectors

ni
0ij ∈ R

3. The upper index defines the coordinate system in which an object is represented and j
is an index to specify an individual point. Transformation from FSi into FG is given by the rigid
body transformation

x0ij = R0i xi
0ij + T0i ∈ P0i and

n0ij = R0i ni
0ij,

(1)

as illustrated in Fig. 3. The upper index is omitted for objects represented in FG. As the actual
position deviates from the assumed nominal position, P0i is not correctly positioned and the point
clouds have an overlap mismatch. Additionally, the actual sensor position might be at different
phases. To remove the phase differences, the wavefront segments have to be propagated and as
an initial guess S0i ∈ R can be defined for the propagation distance of segment i. To register the
wavefront segments in parallel, each point cloud is transformed by

xi
ij(ai, S0i) = R(θ i) (xi

0ij + (S0i + si)ni
0ij) + ki with

xi
ij(ai, S0i) ∈ Pi

i(ai, S0i) and

ni
ij(ai) = R(θ i)ni

0ij ,

(2)

where θ i ∈ R
3 defines a rotation with R(θ i) as the corresponding rotation matrix. ki ∈ R

3 defines
a translation and si ∈ R the distance along which the wavefront segment is propagated additionally
to S0i. The parameters are with respect to FSi and collected in the vector aT

i = (kT
i , θT

i , si) ∈ R
7.

A metric for the overlap mismatch between two transformed segments (i,k) is

M̃ik(ai, ak) =
∑︂

n

(︁
W i

k(qkin, ak, S0k) − W i
i (qkin, ai, S0i)

)︁2, (3)

where the functions W i
i (·, ai, S0k) = W i

i (ai, S0k) and W i
k(·, ak, S0i) = W i

k(ak, S0i) denote the
transformed segments in FSi. qkin ∈ R2 is a sampling point that belongs to the overlapping region
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of the segments and lies in the x-y plane of FSi. The squared differences between the segments
are added up. Instead of M̃ik(ai, ak) the metric

Mik(ai, ak) =
∑︂

n

(︁
W i

k(qkin, ak, S0k − S0i) − W i
i (qkin, ai, 0)

)︁2 (4)

is considered, where both wavefront segments are back-propagated by S0i providing the advantage
that only one segment has to be propagated by presumed propagation data. Despite back-
propagation, Eq. (4) can be used as an alternative to Eq. (3) for registration of the segments [14].
With Eq. (2) the following point clouds are contained in the segment functions of Eq. (4):

Pi
i(ai, 0) ⊂ W i

i (ai, 0) and
Pi

k(ak,∆S0ki) ⊂ W i
k(ak,∆S0ki) with ∆S0ki = S0k − S0i,

(5)

where Pi
k(ak,∆S0ki) is Pk

k(ak,∆S0ki) transformed from FSk to FSi given by

xi
kj(ak,∆S0ki) = RT

0i R0k xk
kj(ak,∆S0ki) + RT

0i (T0k − T0i). (6)

Fig. 3. Defined point clouds and coordinate systems. P0i defines the point cloud of segment
i with presumed sensor position (T0i, R0i) in FG. P0i is rigid body transformed by {ki, θ i}
and propagated by the distance si resulting in the point cloud Pi(ai, S0i). The presumed
propagation distance S0i = 0 in the illustration. The point clouds represented in FSi are
denoted by Pi

0i and Pi
i(ai, S0i).

With Eq. (4) a global mismatch metric for the entire overlap mismatch in the set of wavefront
segments is given by

Mg(A) =
1
N

∑︂
i,k
Mik(ai, ak), (7)

which is the sum over all overlapping wavefront segments and N denoting the total number of
sampling points. AT = (aT

1 , .., aT
U) ∈ R

7 U are the transformation parameters of all segments.
For the global mismatch metric of Eq. (7), the FPR algorithm considers for each overlapping

segment pair (i,k) the point clouds of Eq. (5) with initial positioning data, i.e.

Pi
0i = Pi

i(ai = 0, 0) ⊂ W i
i (ai = 0, 0) and

Pi
k(ak = 0,∆S0ki) ⊂ W i

k(ak = 0,∆S0ki).
(8)

The FPR algorithm is carried out in three steps. In Eq. (8) the two point clouds are represented in
the local coordinate system of one point cloud, i.e. FSi. In the first step of the FPR algorithm,
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the point cloud Pi
0i of the local coordinate system and the corresponding normal vectors ni

0ij
are interpolated for subpixel registration, leading to the interpolants Fi(x, y) ∈ R for the point
cloud and Ni(x, y) ∈ R3 for the normal vectors. As Pi

0i denotes the unpropagated point cloud with
respect to FSi, it has the same shape for any presumed registration data, defined by R0i, T0i and
S0i. Hence, for any change of the presumed registration data the same interpolants can be used
meaning that they have to be determined only once which is the advantage of using the global
mismatch metric of Eq. (7).

χi
kin ∈ Pi

k(0,∆S0ki) define the points that belong to the overlapping region with Pi
0i. The x-y

components of χi
kin define the sampling points qkin ∈ R2 of the metric for the overlap mismatch

in Eq. (4). In the second step of the FPR algorithm the corresponding point in W i
i (ai = 0, 0) for

χi
kin is estimated by

χ̃i T
kin = (qT

kin, Fi(qkin)) with the normal vector
η̃i

kin = Ni(qkin).
(9)

The segment functions at the sampling points in Eq. (4) can then be approximated by

W i
k(qkin, ak,∆S0ki) = zikn + CT

ikn ak,

W i
i (qkin, ai, 0) = z̃ikn + C̃T

ikn ai,
(10)

where zikn, z̃ikn ∈ R are the z components of χi
kin and χ̃i

kin. Cikn, C̃ikn ∈ R7 are determined by χi
kin

and χ̃i
kin and the corresponding normal vectors. With Eq. (10) the global mismatch metric of

Eq. (7) can be approximated by

Mg(A) ≈
1
N

∑︂
i,k

∑︂
n

(︁
CT

ikn ak − C̃T
ikn ai − Bikn

)︁2, (11)

with Bikn = z̃ikn − zikn. In the third step of the FPR algorithm the parameters A∗ that register the
point clouds are determined by minimizing the approximated global mismatch metric of Eq. (11).
The minimization of this expression can be carried out by solving a matrix equation

QT Q A = QT B, (12)

where Q ∈ RV×7 U and B ∈ RV are determined by the coefficients of Eq. (11) with V denoting the
total number of squared terms. As registration determines the entire wavefront up to a rigid body
transformation and a wavefront propagation, the seven transformation parameters of one point
cloud are set to 0 to make QT Q invertible. Conveniently, this is the point cloud of the wavefront
segment in the center of the set of segments to keep registration parameters small.

If the parameters A∗ are large, owing to large sensor misalignment, the quality of the
approximation of the wavefront segments at the sampling points in Eq. (10) decreases and the
FPR algorithm shows registration errors. The iterative fast parallel registration (IFPR) algorithm
is based on the FPR algorithm but not limited by the approximation of Eq. (10).

Similarly to the FPR algorithm, the IFPR algorithm is initialised with T0i, R0i and S0i for
the presumed sensor position and phase data of the measurements. The first three steps of the
IFPR algorithm are the same as for the FPR algorithm. First, the interpolation of Pi

0i and the
corresponding normal vectors is carried out leading to Fi(x, y) and Ni(x, y). Second, for each
overlap the corresponding points and normal vectors are determined based on Eq. (9). Third, the
parameters that minimize Eq. (11), i.e. A∗ = (a∗T1 , .., a∗TU ), are determined by solving Eq. (12).
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Inserting Eq. (2) into Eq. (1) using A∗ leads to

xij(a∗i ) = R0i R(θ
∗
i ) (x

i
0ij + (S0i + s∗i )ni

0ij) + R0i k∗
i + T0i

= R1i (xi
0ij + S1i ni

0ij) + T1i ∈ Pi(a∗i , S0i).
(13)

The resulting T1i = R0i k∗
i + T0i, R1i = R0i R(θ

∗
i ) and S1i = (S0i + s∗i ) can be considered as a

better guess for the registration data. In the fourth step of the IFPR algorithm the relative change
of the global mismatch metric with respect to the improved registration data is considered to
evaluated whether the registration is sufficient. The relative change of the global mismatch metric
is given by

∆M1g =
M1g −M0g

M0g
, (14)

where M0g and M1g are Mg(A = 0) (see Eq. (7)) evaluated for T0i, R0i, S0i and T1i, R1i, S1i,
respectively. The approximation of the global mismatch metric in Eq. (11) is exact for A = 0,
hence it can be used to compute Eq. (14). If there is a significant relative change of the global
mismatch metric by using the improved registration data, there might be the chance for an
additional improvement of the registration data by applying the FPR algorithm with T1i, R1i, S1i
as the presumed registration data. This is equivalent to repeating step two and three of the IFPR
algorithm. Step one is not repeated, owing to the fact that the same interpolants are used to
approximate Eq. (11) for any presumed registration data. The iteration including step two to step
four is then repeated until the relative change of the global mismatch metric is smaller than a

Fig. 4. Flow chart of the IFPR algorithm.
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threshold denoted by ε indicating the convergence to the correct registration data T∗
i , R∗

i and
S∗i and serving as a stopping condition for the iteration. The steps and the iteration of the IFPR
algorithm are illustrated in Fig. 4.

The complexity of the first iteration in dependence of the number of segments (U) and the
number of points per overlap (PPO) used for the registration can be divided into the following
terms

O(U) + O(PPO · U · α) + O(PPO · U3 · α · 72) + O(U3 · 73). (15)

The first term describes the complexity of the interpolation (step 1), which is independent of the
number of PPO. The second term describes the complexity of step 2 and 4, where α ∈ R with αU
being the number of overlaps. The last two terms describe the complexity of step 3. In particular,
they describe the complexity of the symmetric product QT Q and the Cholesky decomposition
used to solve Eq. (12) [22]. In conclusion, Eq. (15) shows that the computational effort of one
iteration has a linear dependence on the number of PPO and a cubic dependence on the number
of segments.

3. Algorithm analysis

The performance of a registration algorithm is influenced by several quantities, e.g. sensor
misalignment, measurement noise, etc. The performance of the IFPR algorithm is evaluated
with respect to these quantities in a simulation-based analysis. For a comparison of the IFPR
algorithm to other algorithms, the FPR algorithm [16] and the established iterative closest point
(ICP) algorithm [23] are considered.

3.1. Simulation setting

A plane and a divergent wavefront, depicted in Fig. 5(a) and 5(b) respectively, is considered for the
evaluation of the registration performance of the algorithms. The plane wavefront is generated by
collimating a spherical wavefront with a meniscus lens [14,24]. It has a diameter of 50 mm and a
peak to valley (PV) of 11 µm containing mainly spherical aberration (PV= 11 µm) and secondary
spherical aberration (PV= 0.5 µm). The second wavefront is a spherical wavefront (diameter
of 30 mm) with a divergence of 140◦ and contains mainly spherical aberration (PV= 6 µm),
astigmatism (PV= 7 µm) and coma (PV= 6 µm) resulting in a total PV of 13 µm. The plane
wavefront is measured at 25 sensor positions in the x-y plane arranged in a chessboard pattern
and the sensor aperture is a square with a side length of 13 mm. There are 43 sensor positions for
the measurement of the divergent wavefront, where a circular sensor aperture with a diameter of
7 mm is used. The size of the lenslets, contained by the sensor aperture, is set to 130 × 130 µm2

meaning that the total number of lenslets per sensor aperture is 10.000 for the plane wavefront
and 2.200 for the divergent wavefront. The wavefronts and the SHS measurements are simulated
with a custom raytracing software implemented in MATLAB (The MathWorks Inc., Natick,
MA, USA) and using OpticStudio (Zemax LLC, Kirkland, WA, USA). With the software sensor
misalignment, measurement noise as well as systematic measurement errors are simulated. After
the measurement, the wavefront segments are reconstructed by a spline-based zonal reconstruction
algorithm [25]. Then the reconstructed wavefront segments are registered by the algorithms.
The algorithms are running on a personal computer with 6 cores and a processor frequency of
2.6 GHz.

With the ICP algorithm the wavefront segments are registered sequentially, meaning that,
starting from the wavefront segment in the center, the wavefront segments are consecutively
added in a spiral way [14]. For the IFPR and FPR algorithm, the point clouds are interpolated
with cubic interpolation and the normal vectors with linear interpolation [16]. The threshold for
the stopping condition of the IFPR algorithm (see Fig. 4) is set to ε = 1

3 , which turns out to be a
suitable value, as during convergence the metric is typically decreased by orders of magnitude



Research Article Vol. 29, No. 21 / 11 Oct 2021 / Optics Express 33288

Fig. 5. Simulative measurement of the plane wavefront (PV=11 µm) measured at 25 sensor
positions (a) and the divergent wavefront (PV=13 µm) with 140◦ divergence measured at 43
sensor positions (b).

with one iteration. The result of an algorithm is evaluated in three steps. First, the registered
wavefront is fitted into the original wavefront and the difference between the wavefronts is
computed. Second, measurement noise and systematic measurement errors are removed from the
difference to determine only the registration errors. Third, the root mean square (RMS) and PV
values of the registration errors are determined.

3.2. Reference configuration

Sensor misalignment defines a deviation of the actual sensor positioning data from the nominal
positioning data and is reflected by ki ∈ R

3 and θ i ∈ R
3 of Eq. (2). In particular, ki reflects

translational and θ i rotational misalignment of wavefront segment i. For the simulation of
misalignment, the parameters are randomly distributed between predefined misalignment ranges,
which is [−50, 50] µm for the components of ki and [−1500, 1500] µrad for the components
of θ i. Measurement noise is simulated by overlaying the point clouds of the segments with a
normal noise distribution with zero mean and a standard deviation of 10 nm. The overlap area of
adjacent measurements is set to 20 % of the area of the sensor aperture. In the measurement
of the divergent wavefront the overlap size is 20 % of the area of the sensor aperture or larger
because of the complex shape of the wavefront. The average number of PPO used for registration
is 928 for the plane wavefront and 315 for the divergent wavefront. In the following sections the
algorithms are analysed with respect to misalignment ranges, noise standard deviation, overlap
size and the number of PPO, where the values used for these quantities in this section define the
reference configuration.

The registration errors of the IFPR, FPR and ICP algorithm for the reference configuration are
depicted in Fig. 6 and Fig. 7 for the plane and the divergent wavefront, respectively. The IFPR
algorithm attains high quality registration results of both wavefronts with an RMS registration
error of 14 nm for the plane and an RMS registration error of 31 nm for the divergent wavefront.
Registration of the divergent wavefront leads in general to larger errors, since a larger number of
wavefront segments has to be registered and a smaller number of PPO is used as compared to the
plane wavefront. The IFPR algorithm requires 3 to 4 iterations to register the wavefronts of the
reference case as illustrated in Fig. 8 demonstrating its fast convergence. Depending on the initial
guess for the registration data a certain amount of iterations is needed, as the approximation
of transformed segments of the FPR algorithm (see Eq. (10)) is less qualitative the larger the
necessary transformation parameters are. This explains the larger RMS registration errors of
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the FPR algorithm of 24 nm for the plane wavefront and 122 nm for the divergent wavefront
depicted in Fig. 6(b), 7(b) and 7(c). The IFPR algorithm registers the plane wavefront at least
about a factor 2 better than the other algorithms. For the divergent wavefront the improvement is
a factor 4. The ICP algorithm has the largest registration errors, as the wavefront segments are
sequentially registered, leading to an accumulation of the registration errors. Moreover, the ICP
algorithm can not propagate the wavefront segments and does not compensate phase differences
between them, leading to enlarged registration errors for the divergent wavefront.

Fig. 6. Registration error of the plane wavefront with the IFPR (a), FPR (b) and ICP (c)
algorithm with respect to the exact wavefront.

Analysis shows that the IFPR algorithm attains comparable results with respect to freeform
wavefronts. Increasing the dynamics of the plane wavefront to a PV of 1 mm the RMS registration
error is still around 10 − 20 nm.

3.3. Influence of misalignment

Sensor misalignment is caused by uncertainties and errors in the positioning system. The
misalignment is divided into translational and rotational misalignment reflected by parameters ki
and θ i for segment i. In the simulation the components of ki and θ i are randomly picked for a
defined misalignment range.

The influence of the misalignment range on the registration quality of the algorithms with
respect to the plane and the divergent wavefront is depicted in Fig. 9. Translational misalignment
ranges are considered up to ±100 µm. For the rotational misalignment two ranges, i.e. ±1.5 and
±3 mrad, are exemplarily considered. The values for the misalignment ranges are on a realistic
order with respect to a multi-axis positioning system [26]. The plots show the RMS registration
error on a logarithmic scale in dependence of the misalignment range. The PV registration
error is typically larger than the RMS registration error a factor 5 to 8. The IFPR algorithm has
for all considered misalignment ranges an RMS registration error smaller 25 nm for the plane
wavefront and smaller 50 nm for the divergent wavefront. For large misalignment of ±100 µm
and ±3 mrad, the IFPR algorithm has registration errors a factor 4 and a factor 12 smaller than
the other algorithms for the plane and the divergent wavefront respectively.

In general, the IFPR algorithm attains better and more robust registration performance than the
other algorithms. Only for the divergent wavefront and small misalignment the FPR algorithm has
slightly smaller registration errors than the IFPR algorithm. This is explained, as for wavefront
segments with weak features, the wavefront segments might be shifted more against each other
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Fig. 7. Registration error of the divergent wavefront with the IFPR (a,d), FPR (b,e) and ICP
(c) algorithm with respect to the exact wavefront.

Fig. 8. Value of the global mismatch metric (see Eq. (7)) in dependence of the number of
iterations of the IFPR algorithm for the segments of the reference configuration of the plane
and the divergent wavefront.
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Fig. 9. RMS registration error of the IFPR, FPR and ICP algorithm in dependence of
the translational misalignment for the plane (a) and the divergent wavefront (b). For each
algorithm graphs for two different rotational misalignment ranges (±1.5,±3 mrad) are
depicted.
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than necessary with many iterations. Hence, there are two reasons for the stopping condition of
the iteration. First, it avoids unnecessary iterations saving computation time. Second, in case of
wavefront segments with weak features, it prevents the IFPR algorithm from too large in-plane
shifts of the wavefront segments. For translational misalignment smaller ±30 µm and rotational
misalignment smaller ±1.5 mrad, the FPR algorithm obtains results comparable to the IFPR
algorithm, as the approximation of Eq. (10) is still sufficiently good.

3.4. Influence of noise and systematic error

Background light, readout and dark currents are sources of noise in the measurement with an
SHS [27]. The total measurement noise is simulated by adding a normal noise distribution
to the wavefront segments. Moreover, an SHS measurement might contain systematic errors.
In this section a systematic measurement error is simulated by an additional error distribution
added to the wavefront segments with a PV = 5 nm. The distribution of the systematic error
is depicted in Fig. 10 and based on a typical systematic error distribution of a calibrated SHS
[28]. The influence of measurement noise on the algorithms performance in presence of the
systematic measurement error is shown in Fig. 11. For both wavefronts and the considered noise
standard deviations the IFPR algorithm attains the best registration results of the algorithms with
a minimum RMS registration error of 6 nm for the plane and 23 nm for the divergent wavefront.
Compared to the results of the reference configuration where no systematic error is simulated, the
IFPR and the FPR algorithm do not decrease in registration performance, while the ICP algorithm,
especially for the divergent wavefront, has larger registration errors explained by the reduced
robustness of sequential registration to measurement errors as compared to parallel registration.
Especially for wavefront segments with weak features and large misalignment, the wavefront
segments might be shifted to far by the FPR algorithm, as Eq. (10) qualitatively describes the
transformed segments only for sufficiently small transformation parameters. Basically, noise
prevents the segments from getting shifted too far, as the overlap mismatch increases. Hence, the
registration errors might increase with a smaller noise standard deviation.

Fig. 10. Simulated distribution of the systematic error added to each wavefront segment.

3.5. Influence of points per overlap

The points in the overlap regions contain the surface information that enables registration of the
segments. Typically, more PPO improve the registration result, because more information of
the segments shape is available. Nevertheless, a smaller number of PPO has the benefit of a
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Fig. 11. RMS registration error of the IFPR, FPR and ICP algorithm for the plane and the
divergent wavefront in dependence of the noise standard deviation. The analysis is carried
out in the presence of a systematic measurement error with a PV = 5 nm.

decreased computation time. In Fig. 12 the influence of the average number of PPO used for
registration on the computation time of the algorithms and on their registration results is depicted
with a uniform distribution of the selected points in the overlap region.

As expected, the computation time of the algorithms decreases with a smaller number of
PPO. Only the computation time of the ICP algorithm for the registration of the plane wavefront
increases despite a decrease of the number of PPO from 150 to 100, which is explained by
more iterations used by the algorithm. The IFPR algorithm has the smallest registration errors
for all considered numbers of PPO, demonstrating its robustness despite a small amount of
surface information. For 100 PPO the IFPR algorithm has a computation time between 200 ms
and 300 ms with an RMS registration error of 21 nm for the plane and 64 nm for the divergent
wavefront. Increasing the number of PPO to 300 reduces the RMS registration error for the
divergent wavefront to 32 nm while the computation time increases to 470 ms. For the plane
wavefront the RMS registration error of the IFPR algorithm increases when the number of PPO
is increased from 200 to 300 showing that more PPO might reduce the registration quality in
some cases. With 600 PPO, the IFPR algorithm registers the plane wavefront in 410 ms with an
RMS registration error of 15 nm. Despite requiring three iterations to register the wavefronts,
the computation time of the IFPR algorithm is not three times the computation time of the FPR
algorithm. The reason for this is that some parts of the FPR algorithm have to be carried out
only in the first iteration of the IFPR algorithm, e.g. the interpolation of the point clouds, the
determination of the points belonging to an overlap, and need not to be repeated in following
iterations.

3.6. Influence of overlap size

Besides increasing the number of PPO, more surface information is obtained by increasing the
overlap size. Additionally, the algorithms get more sensitive to out of plane angles between the
wavefront segments. The drawback of an increased overlap size is that more wavefront segments
have to be measured leading to an increased measurement time. The RMS registration error in
dependence of the overlap size, in percent of the area of the sensor aperture, is shown in Table 1.
For all overlap sizes the average number of PPO used for registration is set to a constant value
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Fig. 12. Computation time (a) and RMS registration error (b) of the IFPR, FPR and ICP
algorithm for the plane and the divergent wavefront in dependence of the average number of
points per overlap used for registration.
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of 300. By increasing the overlap size from 20 % to 40 % the RMS registration error of the
IFPR algorithm decreases by a factor of 3 to 4. In particular, the RMS registration error gets
smaller than 10 nm for both wavefronts making the IFPR algorithm applicable for the evaluation
of high-end optical systems. The RMS registration error of the ICP algorithm decreases by
a factor of 15 when the overlap size is increased from 20 % to 40 %, demonstrating the high
sensitivity of sequential registration to available surface information. The registration quality
of the FPR algorithm hardly improves with the considered increase of the overlap size. This
is explained by the incorrect interpretation of the surface information, as the approximation of
Eq. (10) is less qualitative for the considered large sensor misalignment.

Table 1. RMS registration error in dependence of overlap size (in % of the
sensor aperture area) for IFPR, FPR and ICP algorithm with respect to the

plane and the divergent wavefront.

overlap IFPR FPR ICP IFPR FPR ICP

(%) plane plane plane div. div. div.

(nm) (nm) (nm) (nm) (nm) (nm)

20 22 32 153 33 121 555

30 18 28 37 12 109 255

40 7 33 10 8 117 135

In summary the high quality registration performance of the IFPR algorithm with RMS
registration errors down to 10 nm in the presence of large sensor misalignment up to 100 µm and
3 mrad is successfully demonstrated. With a computation time of less than 500 ms on a personal
computer the evaluation of high-end optical systems in time critical applications is possible.

4. Conclusions

In this paper, an algorithm for the precise registration of SHS measurements is proposed. The
benefit of the proposed algorithm is that it can cope with large sensor misalignment, where other
algorithms lack in performance. The wavefront to be registered, can be a plane as well as a
divergent wavefront, making the algorithm applicable for a wide range of tasks including the
evaluation of freeform optics. The algorithm registers the wavefronts in an iterative manner
and mathematics are discussed. A simulation-based analysis of the algorithm performance is
carried out, analysing influencing factors such as sensor misalignment, measurement errors and
available surface information. In this course the results of the IFPR algorithm are compared to
the FPR and the established ICP algorithm. For translational misalignment of up to 100 µm and
rotational misalignment of up to 3 mrad, the proposed algorithm reconstructs a plane wavefront
with registration errors a factor 4 and a divergent wavefront with registration errors a factor 12
smaller than the registration errors of the FPR and ICP algorithm. The considered wavefronts
are reconstructed in a few iterations (3 to 4) by the proposed algorithm. The computation time
of the algorithm on a personal computer is less than 500 ms making the algorithm suitable for
time critical applications. For an overlap size between the measurements of 40 % of the sensor
aperture area, the proposed algorithm achieves RMS registration errors smaller 10 nm enabling a
qualitative assessment of high-end optical systems.

Future work concerns applications of the algorithm as well as further analysis of the algorithm
with respect to the shape of the wavefront.
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