Strong contextuality by non-faithful emeddability

http://tph.tuwien.ac.at/~svozil/publ/
2021-XCQFArgentina2021-pres.pdf

Karl Svozil

ITP TU Wien, Vienna Austria svozil@tuwien.ac.at

Online presentation, Xth Conference on Quantum Foundations Wednesday, November 30, 2021

Preamble

What I shall present here is based on
Q quantum mechanical entities being formalized by entities of Hilbert space. In particular, pure states are identified with unit vectors, maximal observables aka "contexts" are identified with orthonormal bases.

Preamble

What I shall present here is based on
Q quantum mechanical entities being formalized by entities of Hilbert space. In particular, pure states are identified with unit vectors, maximal observables aka "contexts" are identified with orthonormal bases.
C In contradistinction, classical entities are based on Boolean algebras, and classical probabilities are based on convex combinations of "extreme" cases identified with two-valued states on them.

Preamble

What I shall present here is based on
Q quantum mechanical entities being formalized by entities of Hilbert space. In particular, pure states are identified with unit vectors, maximal observables aka "contexts" are identified with orthonormal bases.
C In contradistinction, classical entities are based on Boolean algebras, and classical probabilities are based on convex combinations of "extreme" cases identified with two-valued states on them.
M Metaphysical conjecture/working hypothesis: Any measurement "creates"-"carves out" an "emergent property" that cannot be classically "pre-existent" relative to the presumtions (eg, non-contextuality).

Three main varieties of (quantum) contextuality: \#1 \& \#2

1. Bohr \& Heisenberg forms based on complementarity and measurement uncertainty/nesting; cf. Khrennikov, Jaeger, ...;

Three main varieties of (quantum) contextuality: \#1 \& \#2

1. Bohr \& Heisenberg forms based on complementarity and measurement uncertainty/nesting; cf. Khrennikov, Jaeger, ...;
2. nonclassical probability distributions such as of Born-Gleason-Lovász-type, and forms derived from generalizations of Cauchy-type functional equations yielding violations of classical predictions; these forms are both quasi-"empirical" through counterfactuals \& stochastic (Specker 1960):

Three main varieties of (quantum) contextuality: \#1 \& \#2

1. Bohr \& Heisenberg forms based on complementarity and measurement uncertainty/nesting; cf. Khrennikov, Jaeger, ...;
2. nonclassical probability distributions such as of Born-Gleason-Lovász-type, and forms derived from generalizations of Cauchy-type functional equations yielding violations of classical predictions; these forms are both quasi-"empirical" through counterfactuals \& stochastic (Specker 1960):
2.1. Boole-Bell type inequalities discussed by Bell, Froissart, Pitowsky, Tsirelson, CHSH, Suppes-Zanotti, Cabello, ... ;
3. Bohr \& Heisenberg forms based on complementarity and measurement uncertainty/nesting; cf. Khrennikov, Jaeger, ...;
4. nonclassical probability distributions such as of Born-Gleason-Lovász-type, and forms derived from generalizations of Cauchy-type functional equations yielding violations of classical predictions; these forms are both quasi-"empirical" through counterfactuals \& stochastic (Specker 1960):
2.1. Boole-Bell type inequalities discussed by Bell, Froissart, Pitowsky, Tsirelson, CHSH, Suppes-Zanotti, Cabello, ... ;
2.2. based on gadget graphs with input/output terminals-aka pre-/postselection of pure quantum states: (Kochen-)Specker bug (1965, aka Hardy-type, cf Stigler's law of eponymy), Belinfante, Stairs, Cabello, ...;

Three main varieties of (quantum) contextuality: \#3

3. nonempirical / logical / algebraic / theoretical / counterfactual structure of observables with nonclassical interpretations:

Three main varieties of (quantum) contextuality: \#3

3. nonempirical / logical / algebraic / theoretical / counterfactual structure of observables with nonclassical interpretations:
nonfaithful embedding into Boolean algebras associated with inseparability, nonunital value assignments, and other nonclassical properties;

Three main varieties of (quantum) contextuality: \#3

3. nonempirical / logical / algebraic / theoretical / counterfactual structure of observables with nonclassical interpretations:
nonfaithful embedding into Boolean algebras associated with inseparability, nonunital value assignments, and other nonclassical properties;
3.2. nonexistence of any classical interpretation aka two-valued (even partial) states: Gleason, Specker, Zierler-Schlessinger, Kamber, Kochen-Specker, Pitowsky, Hrushovski-Pitowsky, Cabello, Abbot-Calude-Svozil ...;

A brief note on nonclassical probability distributions
Tactics what "we do" tactically:

A brief note on nonclassical probability distributions

Tactics what "we do" tactically:
BOO take some suitable bag / collection of (maybe quantum or partition logic) observables which are in different (intertwined) contexts;

A brief note on nonclassical probability distributions

Tactics what "we do" tactically:
BOO take some suitable bag / collection of (maybe quantum or partition logic) observables which are in different (intertwined) contexts;
$C L$ see how a classical interpretation (aka two-valued states) performs on them-classical predictions;

A brief note on nonclassical probability distributions

Tactics what "we do" tactically:
BOO take some suitable bag / collection of (maybe quantum or partition logic) observables which are in different (intertwined) contexts;
$C L$ see how a classical interpretation (aka two-valued states) performs on them-classical predictions;
QU see how a quantum interpretation (eg, vertex labeling by vectors) performs on them-quantum predictions;

A brief note on nonclassical probability distributions

Tactics what "we do" tactically:
BOO take some suitable bag / collection of (maybe quantum or partition logic) observables which are in different (intertwined) contexts;
$C L$ see how a classical interpretation (aka two-valued states) performs on them-classical predictions;
QU see how a quantum interpretation (eg, vertex labeling by vectors) performs on them-quantum predictions;
$C L / Q U @ B O O$ hopefully establish a discrepancy between classical \& quantum predictions -bingo!

A brief note on nonclassical probability distributions

Tactics what "we do" tactically:
BOO take some suitable bag / collection of (maybe quantum or partition logic) observables which are in different (intertwined) contexts;
$C L$ see how a classical interpretation (aka two-valued states) performs on them-classical predictions;
QU see how a quantum interpretation (eg, vertex labeling by vectors) performs on them-quantum predictions;
$C L / Q U @ B O O$ hopefully establish a discrepancy between classical \& quantum predictions -bingo!
Note There are three important issues to consider:

A brief note on nonclassical probability distributions

Tactics what "we do" tactically:
BOO take some suitable bag / collection of (maybe quantum or partition logic) observables which are in different (intertwined) contexts;
$C L$ see how a classical interpretation (aka two-valued states) performs on them-classical predictions;
QU see how a quantum interpretation (eg, vertex labeling by vectors) performs on them-quantum predictions;
$C L / Q U @ B O O$ hopefully establish a discrepancy between classical \& quantum predictions -bingo!
Note There are three important issues to consider:
Fact in general the logic / algebra does not uniquely determine the probability distribution aka the predictions;

A brief note on nonclassical probability distributions

Tactics what "we do" tactically:
BOO take some suitable bag / collection of (maybe quantum or partition logic) observables which are in different (intertwined) contexts;
$C L$ see how a classical interpretation (aka two-valued states) performs on them-classical predictions;
QU see how a quantum interpretation (eg, vertex labeling by vectors) performs on them-quantum predictions;
$C L / Q U @ B O O$ hopefully establish a discrepancy between classical \& quantum predictions -bingo!
Note There are three important issues to consider:
Fact in general the logic / algebra does not uniquely determine the probability distribution aka the predictions;
Question "given some logic or some observables, what possible probability distributions are allowed relative to which axioms of probability?"

A brief note on nonclassical probability distributions

Tactics what "we do" tactically:

BOO take some suitable bag / collection of (maybe quantum or partition logic) observables which are in different (intertwined) contexts;
$C L$ see how a classical interpretation (aka two-valued states) performs on them-classical predictions;
QU see how a quantum interpretation (eg, vertex labeling by vectors) performs on them-quantum predictions;
$C L / Q U @ B O O$ hopefully establish a discrepancy between classical \& quantum predictions -bingo!
Note There are three important issues to consider:
Fact in general the logic / algebra does not uniquely determine the probability distribution aka the predictions;
Question "given some logic or some observables, what possible probability distributions are allowed relative to which axioms of probability?"
Choice of the distribution depends on the physical / psychological etc realization of the $B O O$.

Anecdotal example: probabilities on a cyclic logic whose respective hypergraph is a pentagon aka pentagram aka house

1) classical probability distributions in terms of convex combinations of the 11 twovalued states thereon;
2) quantum probability distributions according to Born, Gleason, and Lovász;
3) exotic probability according to Gerelle \& Greechie \& Miller (1974) and Wright (1978)
4) $-\ldots$?

So far we only spoke about comparing different probability distributions on fixed collections of (interwined)observables ...

\propto interlude ๑

... now we shall be talking about "weird" nonclassical collections of (interwined)observables ...

Inseparability 101: Kochen \& Specker's demarcation

 criterion 1967, Theorem 0 of DOI: 10.1512/iumj.1968.17.17004Theorem 0. Let $\mathfrak{~}$ be a partial Boolean algebra. A necessary and sufficient condition that \mathfrak{N} is imbeddable in a Boolean algebra B is that for every pair of distinct elements a, b in \mathfrak{N} there is a homomorphism $h: \mathscr{N} \rightarrow Z_{2}$ such that $h(a) \neq h(b)$.

Graph of Γ_{3}

Hypergraphs with nonseparable set of two-valued states third column is Kochen \& Specker $\left(1967, \Gamma_{3}\right)$

KS, DOI:10.1103/PhysRevA.103.022204

Hypergraph with nonunital set of 6 value assignments

Fig. 2 'Almost' Greechie diagram of a suborthoposet of $L\left(\mathbf{R}^{3}\right)$ without a unital set of two-valued states [e.g., $12 \overline{1}=\mathrm{Sp}(1,2,-1)]$.

Josef Tkadlec, DOI:10.1023/A:1026646229896 based on Erna Clavadetscher-Seeberger, Diss. ETH Zürich (Specker) handle ETH: 20.500.11850/138142 based on Schütte's letters to Specker, April 22nd, 1965 \& November 3rd, 1983 (communicated to KS by Specker).

Hypergraph with exotic contextuality derived from coloring
Hypergraph of biconnected intertwined contexts representing complete graphs with a separating set of 6 two-valued states which is non-partitionable: G_{32}, cf. Figure 6, p. 121 Greechie (1971) DOI: 10.1016/0097-3165(71)90015-X

Mohammad H. Shekarriz \& KS, vertex labeling by partitions of $\{1,2,3,4,5,6\}$ with no faithful orthogonal representation arXiv:2105.08520.

Thank you for your attention!

