PAPER • OPEN ACCESS

In situ XPS studies of MoS_2 -based CO_2 hydrogenation catalysts

To cite this article: Gernot Pacholik et al 2021 J. Phys. D: Appl. Phys. 54 324002

View the article online for updates and enhancements.

You may also like

- <u>On moving frames and Toda lattices of</u> <u>BKP and CKP types</u> Bao Wang, Xiang-Ke Chang, Xing-Biao Hu et al.
- <u>All loop structures in supergravity</u> <u>amplitudes on AdS₅ × S⁵ from CFT</u> Agnese Bissi, Giulia Fardelli and Alessandro Georgoudis
- <u>Some considerations of finite-dimensional</u> <u>spin glasses</u> Giorgio Parisi

IOP ebooks[™]

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

E-mail: karin.foettinger@tuwien.ac.at

Received 17 February 2021, revised 15 April 2021 Accepted for publication 12 May 2021 Published 2 June 2021

Various formulations of Co, Ni and K modified MoS2-based catalysts were synthesized hydrothermally and compared in their catalytic performance in CO₂ hydrogenation at 21 bar and 220 °C-330 °C. The products were CO, CH₄ and methanol. The addition of K reduced the selectivity to CH_4 and moved the maximum of the methanol formation rate to a higher temperature. The materials were characterized by N₂ physisorption, temperature programmed oxidation, temperature programmed reduction, and x-ray diffraction spectra (XRD). Under reducing conditions the catalysts were stable until 700 °C and under oxidizing conditions until $300 \,^{\circ}$ C. XRD had shown mainly a MoS₂ phase, as well as metal sulfide in the cobalt and nickel promoted catalysts. Different species of Mo and O were observed under reaction conditions by in situ x-ray photoelectron spectroscopy (XPS). When switching from H_2 to $CO_2 + H_2$ and increase in the amount of oxygen, both lattice oxygen and surface adsorbates, was observed as a consequence of CO_2 addition and H_2O formation in the reaction. The amount of lattice oxygen correlates with the minor amount of Mo(VI) detected. Increasing reaction temperature and thus conversion led to an increase of the O 1s signals at 533 eV assigned to surface OH, formate and adsorbed H₂O. XPS measurements in $CO_2 + H_2$ feed showed an effect of K addition on the adsorbate-related O 1s peak, which appeared at lower binding energy (532 eV) and was assigned to carbonates. This may indicate a different reaction mechanism in the presence of the promoter.

Supplementary material for this article is available online

Keywords: molybdenum sulfide, CO2 hydrogenation, promoter, methanol, CO, NAP-XPS

(Some figures may appear in color only in the online journal)

1. Introduction

 CO_2 is a well-known greenhouse gas and the amount in the atmosphere is still rising. Carbon capture and utilization, which includes heterogeneous catalytic hydrogenation, is an approach to reduce CO_2 emissions [1]. In this work, MOS_2

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. based catalysts were tested in their activity to produce valuable compounds like CO and methanol out of CO_2 and H_2 . The aim was to test catalysts that are tolerant to possible sulfur contaminants in the reaction gas. This is of interest for using flue gas directly without additional purification steps. MOS_2 based catalysts promise to fulfill this criterium [2]. Both CO and methanol are valuable base chemicals for the chemical industry [3].

Reactions occurring on these catalysts are the reverse water–gas shift RWGS $(CO_2+H_2\rightleftharpoons CO+H_2O)$, methane formation $(CO_2+4H_2\rightleftharpoons CH_4+2H_2O)$ and methanol synthesis $(CO_2+3H_2\rightleftharpoons CH_3OH+H_2O)$ [4–7].

In situ XPS studies of MoS₂-based CO₂ hydrogenation catalysts

Gernot Pacholik, Ludwig Enzlberger, Anna Benzer, Raffael Rameshan,

Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/BC, 1060 Wien, Austria

Markus Latschka, Christoph Rameshan b and Karin Föttinger

Journal of Physics D: Applied Physics

J. Phys. D: Appl. Phys. 54 (2021) 324002 (9pp)

^{*} Author to whom any correspondence should be addressed.

MoS₂ catalysts are known for their activity in hydrodesulfurization, CO hydrogenation and in more recent publications also for CO₂ hydrogenation [8–12]. The conversion of CO to higher alcohols has been described over MoS₂ in literature. A recent publication of Zeng *et al* described the formation of C3+ alcohols over K-promoted MoS₂. While the unpromoted catalyst showed a low selectivity to liquid oxygenates, K-promoted catalysts enabled a higher selectivity to higher alcohols [13].

Liu and Liu performed mechanistic studies of methanol formation from CO_2 and H_2 over a modified Mo_6S_8 cluster by density-functional theory (DFT) calculation. They found that the Mo_6S_8 cluster is able to change its catalytic properties by metal modification via two effects. First, electron transfer from M to Mo_6S_8 takes place and reduces the Mo cation. Second, the metal directly participates in the reaction. Depending on the type of metal, different reaction mechanisms take place [14].

Several reaction pathways have been suggested for methanol formation. Methanol can be produced by the reverse water–gas shift and subsequent CO hydrogenation, or directly via the formate pathway. Co and Ni promoted Mo_6S_8 clusters follow a modified formate pathway. In this process, the *HCOOH species is directly hydrogenated to *H₂CO, *H₃CO and CH₃OH. In the two-step reaction, CO is formed via carboxyl intermediates (*HOCO) in the first step, which is then converted to CH₃OH via *HCO, *H₂CO and *H₃CO intermediates. Liu and Liu predicted the two-step pathway for K-promoted MoS₂ [14, 15].

Nieskens *et al* used CoMoS catalysts to produce higher alcohols from CO₂ and H₂. A pressure of about 100 bar and temperatures of 310 °C and 340 °C were used. The products were mainly CO, alcohols and CH₄ [4]. Liu *et al* studied Mo–Co–K sulfide catalysts for CO₂ hydrogenation. Under optimal conditions higher alcohol formation was observed. Different products were obtained depending on the promoter. K-promoted catalysts produced alcohols, whereas catalysts without K formed mainly hydrocarbons and CO [5].

In this work, several promoted MoS_2 based catalysts were tested for their activity in CO_2 hydrogenation and studied by *in situ* XPS. The materials were also characterized by XRD, N_2 physisorption, temperature programmed oxidation (TPO) and temperature programmed reduction (TPR).

2. Experimental

2.1. Catalyst synthesis

The catalysts were synthesized by a hydrothermal synthesis route. Ammonium molybdate, thiourea and the metal nitrate were dissolved in water and heated for 16 h at 200 °C. After that, the product was cooled to room temperature, separated by centrifugation and washed three times with water. After drying for 2 h at 125 °C, potassium carbonate was added by impregnation of a saturated potassium carbonate solution. The powder was dried overnight. The catalysts were calcined at 500 °C for 2 h under helium.

2.2. Materials characterization

2.2.1. N_2 physisorption. Adsorption-desorption isotherms were recorded with a Micromeritics ASAP 2020 at 77 K. Brunauer–Emmet–Teller method was used to calculate the specific surface area and the Barrett–Joyner–Halenda model was used to determine the average pore diameter and volume from the desorption branch. For pretreatment the samples were heated for 3 h to 300 °C in vacuum.

2.2.2. TPO/TPR. TPO was performed in a gas mixture of 20% oxygen in argon with a flow of 25 ml min⁻¹. Temperature programmed reduction was done in 60% hydrogen in argon. 100 mg of the pure sample was used and heated with a ramp of 5 °C min⁻¹. The produced gas was analyzed by mass spectrometry (Pfeiffer Vacuum QMA 200 with tungsten filament and SEM detector).

2.2.3. XRD. The XRD spectra were recorded with a PANalytical Empyrean in Bragg–Brentano geometry. A Cu-LLF x-ray tube (CuK $\alpha \lambda_1 = 1.5406$ A, $\lambda_2 = 1.5444$ A) was used as an x-ray source and operated at 45 kV and 40 mA. The scan range 2 Θ was 10°–90° and a GaliPIX detector was used.

2.3. Catalytic measurements

The measurements were carried out in a fixed bed plug flow steel reactor using a 'micro effi' (PID Eng&Tech) system. 1 g of pure catalyst was used. Before the catalytic measurement, the catalyst was treated at 21 bar with pure hydrogen at 400 °C for 4 h. For performing the catalytic reaction, the gas mixture was 20% CO₂, 60% H₂ and 20% He at 21 bar with a total flow of 5 mlN min⁻¹.

The products were detected by an Inficon Micro GC 3000 with a Plot Q column.

2.4. In situ XPS

For *in situ* XPS measurements a lab-based near ambientpressure XPS (NAP-XPS) system from SPECS (Berlin, Germany) with a custom built sample stage (optimized for catalytic measurements) was used [16]. A XR 50 microfocus x-ray source provided monochromatic Al K α (1486.6 eV) radiation. Photoelectrons were detected by a Phoibos 150 NAP hemispherical analyzer. The recorded data was analyzed using the CasaXPS software (Casa Software Ltd, Teignmouth, UK). A linear or Shirley background was added and peaks were fitted with Gauss–Lorentz (GL) sum functions. Mo(IV) 3d_{5/2} was used for calibration at a binding energy of 229.14 eV [17].

About 75 mg of the sample was pressed into a pellet (diameter \sim 7 mm). The pellet was mounted on a steel backplate on a quartz sample holder. Mo 3d, O 1s, S 2p and C 1s spectra were recorded. The pretreatment was done at 400 °C in 0.75 mbar H₂. Reaction conditions were 1 mbar reaction mixture (CO₂:H₂ = 1:3) at 200 °C and 300 °C.

Table I. Catalysis overview.							
	K/Mo (molar ratio)	Co/Mo (molar ratio)	Ni/Mo (molar ratio)				
MoS ₂	0	0	0				
$MoS_2 + K$	0.5	0	0				
$Co(0.50)MoS_x$	0	0.5	0				
$Co(0.25)MoS_x + K$	0.5	0.25	0				
$Co(0.50)MoS_x + K$	0.5	0.5	0				
$Ni(0.25)MoS_x + K$	0.5	0	0.25				
$Ni(0.50)MoS_x + K$	0.5	0	0.5				
Co(0.25)Ni(0.25)	0.5	0.25	0.25				
$MoS_x + K$							

Table 1 Catalysts overview

3. Results and discussion

We compared the catalytic activity and selectivity for CO₂ hydrogenation on pure MoS₂ to Co, Ni and K promoted MoS₂ catalysts. Different variations of the promoted catalysts were synthesized, listed in table 1. K was added in a molar ratio of K/Mo = 0.50. For Co and Ni, the molar ratio was 0.25 and 0.50 for K-promoted catalysts and 0.50 for MoS₂ without K.

3.1. Materials characterization

3.1.1. N₂ physisorption. Figure 1(a) illustrates the Brunauer-Emmett-Teller (BET) surface area of pure and promoted MoS₂ catalysts. Pure MoS₂ exhibited a much higher specific surface area compared to K-promoted catalysts. While unpromoted MoS₂ showed a BET surface area of about 25 m² g⁻¹, surface areas of K-promoted MoS₂ were in the range of approximately 5–10 m² g⁻¹. A lower pore volume was measured for K-promoted catalysts, indicating a lower surface area due to blocked pores. This agrees with results from the literature [13]. There was no correlation between surface area and Co and Ni content. Rietveld refinement showed that the content of Co and Ni sulfide phases was very low. The presence of additional sulfide phases hardly affects the total surface area.

3.1.2. TPR/TPO. Here, we investigate the stability of these materials in oxidizing and reducing the atmosphere. Figure 1(b) illustrates the recorded mass m/z of 64 during heating in O_2/Ar , which is assigned to SO_2 . Oxidation of the sample started at about 280 °C, the peak maximum occurred at 355 °C.

To investigate how very stable the sample is under reducing atmosphere, it was heated in 60% H₂/Ar at 5 $^{\circ}$ C min⁻¹ while recording the mass 34 (H₂S). No reduction was detected up to 700 °C.

3.1.3. XRD. Fresh and used catalysts were analyzed by XRD. The diffractograms are shown in figure 2. The MoS_2 catalyst was phase pure (PDF 04-006-0605). Some catalysts contain small amounts of MoO₂ (PDF 04-008-4309), which may have been formed by residual oxygen during calcination. K₂SO₄ (PDF 04-006-8317) was found in the K-promoted

material, although K₂CO₃ was added as a precursor. The used $MoS_2 + K$ catalyst hardly differed from the fresh one. CoS (PDF 04-003-2150) was found in the fresh Co-promoted catalyst. In contrast, Co₉S₈ (PDF 00-056-0002) was found in the used $CoMoS_x + K$ catalyst. This reveals a slight loss of sulfur during the reaction. The situation was similar for the Nipromoted catalysts. While NiS (PDF 04-006-6018) was found in the fresh catalysts, Ni₃S₂ (PDF 04-008-8458) was detected in the used catalyst [17-20].

3.2. Catalytic activity and selectivity

Pure MoS_2 (K/Mo = 0) mainly produced CH_4 and CO. CH_4 was the main product (at 280 °C CO:CH₄ = 1:8.2), and the production increased strongly with temperature.

Figure 3(a) compares the CO yield for several MoS₂ based catalysts at different temperatures. Pure MoS₂ showed the lowest CO formation activity. More CO was obtained by adding K. The Co-promoted catalyst with Co/Mo = 0.50turned out to be even more active towards CO formation $(+127\% \text{ at } 280 \text{ }^{\circ}\text{C})$ than the K-promoted MoS₂ catalyst. The highest CO yield up to $\sim 15\%$ was obtained when both K and Co or Ni were added. There was hardly any difference in catalysis between Co and Ni promoted $MoS_2 + K$. Also, the promoter content (M/Mo = 0.25 or 0.50) showed no effect on performance. In addition, the CO yield has shown differing temperature dependence. For Co/Ni promoted $MoS_2 + K$ catalysts, the yield increased almost linearly with temperature, whereas for $MoS_2 + K$, it exhibited an exponential dependence.

The production of methane is almost completely prevented by adding K (figure 3(b)). At 320 °C, a methane yield of about 20% was determined over MoS_2 , whereas $MoS_2 + K$ showed hardly any formation of CH₄. Only trace amounts of methane were detected over all K-promoted catalysts. In contrast, addition of Co did not completely prevent methane production, but reduced it to about 1/6 for MoS₂ compared to $Co(0.50)MoS_x$.

Formation of small amounts of methanol occurred only over promoted catalysts. Figure 3(c) summarizes the methanol yields. MoS₂ showed no detectable methanol formation. $CoMoS_x$ produced some methanol at 180 °C. MoS_2 + K showed the highest yield. The addition of Co and Ni to $MoS_2 + K$ was not beneficial for methanol formation, in contrary, $CoMoS_x + K$ and $NiMoS_x + K$ produced less methanol than $MoS_2 + K$. The highest yield was found in a temperature range of 280 °C-300 °C.

Table 2 lists the product formation rates and table 3 reaction orders at 280 °C. CO formation showed little dependence on CO2 concentration, while for H2 the reaction order of CO formation was about 1. CO₂ concentration also had only small effects on CH₄ and methanol production. The formation of CH₄ is, however, strongly dependent on hydrogen concentration with a reaction order above 1. Also, methanol formation showed a strong dependence on H₂. While the H₂ reaction order was 1.5 on $MoS_2 + K$, it was even higher with 2.6 and 2.7 for $Co(0.50)MoS_x + K$ and $Ni(0.25)MoS_x + K$, respectively. The differences in H2 and CO2 orders for catalysts with

Figure 1. (a) BET surface areas of MoS_2 catalysts (b) TPO of MoS_2 in 20% O_2/Ar and TPR of MoS_2 in 60% H_2/Ar with a heating ramp of 5 °C min⁻¹.

Figure 2. XRD spectra of fresh and used MoS₂ based catalysts.

and without Co and Ni promotion might be due to a different reaction mechanism.

applied. $MoS_2 + K$ exhibited higher CO formation rate. This may be consistent with the proposed two-step reaction for the K-Mo₆S₈ cluster.

Based on DFT calculations, Liu and Liu proposed different reaction mechanisms for Mo_6S_8 clusters with and without modification by various metals [14], including K and Ni. Methanol can be produced by the reverse water–gas shift and subsequent CO hydrogenation, or directly via the formate pathway. In our work, MoS_2 showed significantly different catalytic properties than $MoS_2 + K$ and the materials promoted with Ni or Co. Pure MoS_2 produced mainly CH₄, and no methanol was observed under the conditions

Our results are also in agreement with Liu *et al* [5]. The addition of K decreased hydrocarbon formation and increased alcohol formation.

3.3. NAP-XPS of MoS₂

To obtain more information on the surface composition of the unpromoted MoS_2 material under different conditions,

Figure 3. Catalytic activity of several MoS₂ based catalysts at 21 bar, 300 mlN/($g_{catalyst}$ *h), 20% CO₂, 60% H₂ and 20% He. (a) Yield of CO, (b) yield of CH₄, (c) yield of methanol, (d) selectivities at 280 °C.

Table 2. Formation rate of products orders at 280 $^\circ C,$ 300 mlN/(g_{catalyst}*h), 21 bar, 20% CO₂, 60% H₂, 20% He.

	<i>formation rate</i> (μ mol g ⁻¹ h ⁻¹)			
	СО	CH ₄	MeOH	
MoS2	205	1691	0	
MoS2 + K	370	13	32	
Co050MoS	839	312	1	
Co025MoS + K	1348	15	19	
Co050MoS + K	1289	13	19	
Ni025MoS + K	1324	14	22	
Ni050MoS + K	1289	8	14	
CoNiMoS + K	1309	11	15	

NAP-XPS measurements were performed during reduction and in reaction atmosphere. At first, spectra were collected at 200 °C in ultra-high vacuum, followed by pretreatment in 0.75 mbar H₂ at 400 °C and further collection of spectra. The sample was cooled to 200 °C in H₂ atmosphere. Then, a reaction mixture of 1 mbar CO_2 :H₂ = 1:3 was dosed into the NAP-XPS chamber, and the sample was analyzed at 200 °C and 300 °C during catalytic reaction.

An exemplary fit of the Mo 3d spectral range is visualized in figure 4(a). The Mo peaks were fitted with an GL(30) function, the S 2s with GL(70). Doublet separation from Mo $3d_{5/2}$ and Mo $3d_{3/2}$ of 3.14 eV was taken from the literature [21]. The main oxidation state of Mo was IV, minor amounts of Mo(VI) were found [22]. The amount of Mo(VI) at the surface varied with the conditions applied, as discussed below. In addition, also the S 2s signal is visible in this range. The S 2p spectral range is shown in figure 4(b). For both signals, only one S species was observed.

Several oxygen species were found in the O 1s spectra. The O 1s spectrum of the MoS_2 sample under $CO_2 + H_2$ at 200 °C is shown in figure 4(c). The peak at about 530.5 eV is attributed to lattice oxygen [23], likely from MoO_3 . O 1s with a binding energy of about 533 eV origins from adsorbed species like surface hydroxyls and water [4, 24]. CO should appear at lower binding energy (531.5 eV). The existence of molecularly

	CO formation		CH ₄ formation		MeOH formation	
	CO ₂ order	H ₂ order	CO ₂ order	H ₂ order	CO ₂ order	H ₂ order
$MoS_2 + K$ $Co(0.50)MoS_2 + K$	0.48 ± 0.00 0.17 ± 0.24	1.07 ± 0.12 0.86 ± 0.20	-0.18 ± 0.00 -0.54 ± 0.60	1.48 ± 0.19 1.63 ± 0.73	-0.21 ± 0.02 0.45 ± 0.10	1.52 ± 0.03 2.63 ± 0.06
$Ni(0.25)MoS_x + K$	0.52 ± 0.01	0.30 ± 0.20 0.73 ± 0.00	-0.08 ± 0.13	1.03 ± 0.09 1.24 ± 0.09	0.43 ± 0.10 0.24 ± 0.02	2.63 ± 0.00 2.67 ± 0.14
(a) cbs (a.u.) Mo(VI) 3	Mo(IV) 3d _{3/2}	Mo(IV) 3d _{5/2} S 2s	1) cbs (a.u.)) S 2p	1/2 S 2p _{3/2}	
23	B5 230 E _D (eV	225 ()		166 164 E	162 160	
cbs (a.u.)	O 1s _{gas}		cps (a.u.)	1)	C 1s	
540 538	536 534 532 E _P (eV	530 528 526)	524	295 290 E	285 280 _B (eV)	275

Table 3. Reaction orders at 280 $^\circ C,$ 300 mlN/($g_{catalyst}{}^*h),$ 21 bar, 20% CO_2, 60% H_2, 20% He.

Figure 4. (a) Mo 3d, (b) S 2p, (c) O 1s and (d) C 1s in situ XPS spectra of MoS₂ at 200 $^{\circ}$ C in H₂ + CO₂ atmosphere.

adsorbed CO_2 on the surface is not feasible at reaction temperatures. Adsorbed formate species may also contribute to the adsorbate species at 533 eV, as it is a possible intermediate in the reaction; however, corresponding C 1s peaks are absent (figure 4(d)) [25]. Thus, we assign these species to mostly OH and H₂O at the surface. Under $CO_2 + H_2$ additional peaks from gas phase species are visible and absent in H₂. The peak at 536 eV present under the reaction atmosphere originates from the gas phase CO_2 [26]. The distribution of all oxygen species in MoS₂ is visualized in figure 5. The peak of adsorbed species at about 533 eV was particularly large before the pretreatment. In addition, a signal at 534 eV was only visible prior to pretreatment. The amount of oxygen rapidly decreased at 400 °C under hydrogen and then increased again upon adding CO₂. This indicates that the oxygen originates from CO₂ from the gas phase and/or H₂O formed as a reaction product. When comparing reaction at 200 °C and 300 °C, the adsorbate-related signal increases with temperature and thus conversion. At 300 °C during reaction, this peak showed a much higher area and full width half maximum.

The C 1s range shows mainly the presence of adventitious carbon, which was fitted by an asymmetric GL(30) function (figure 4(d)). No significant amounts of C–O adsorbates were visible. The energy range around the Fermi level is shown in

Figure 5. Amount of oxygen species on MoS_2 at different conditions. The peak at about 530.5 eV is attributed to lattice oxygen. The peak at 533 eV origins from adsorbed species. The signal at 534 eV was only found prior to pretreatment. The peak at 536 eV originates from the gas phase CO_2 .

Figure 6. Relative surface concentrations of S, O (without gas phase) and C (without gas phase) of MoS_2 during the experiment.

the supplementary information (figure SI 1 (available online at stacks.iop.org/JPD/54/324002/mmedia)).

Surface concentrations of S, O and C changed during the experiment, as displayed in figure 6. The area of Mo 3d was corrected with a cross section of 0.1303 Mbarn [27] and taken for concentration calculations. The S/Mo ratio was calculated from S 2p and Mo 3d peak areas corrected by the element-specific cross sections [27], and were slightly above two throughout the experiment. The surface concentration of oxygen depended on the conditions. The lowest amount of total oxygen at the surface was found at 400 °C under hydrogen atmosphere, under the most reducing conditions we applied. When switching to the reaction mixture an increase in the amount of CO_2 and the formation of H_2O during the reaction.

Figure 7. Relative amount of lattice oxygen and fraction of Mo(VI).

The ratio of Mo(VI) to Mo(IV) changed at different temperatures and conditions, as represented in figure 7. The lowest fraction of Mo(VI) was measured after the pretreatment in H₂, whereas under reaction atmosphere the fraction of oxidized species increased, in parallel to the amount of lattice oxygen. The increase of Mo(VI) and lattice oxygen concentrations in the reaction atmosphere as compared to pure hydrogen indicates the formation of small amounts of MoO₃ at the surface during reaction.

Furthermore, the $MoS_2 + K$ catalyst was analyzed by *in situ* XPS in order to obtain information on the effect of K on the Mo and potential intermediates. After pretreatment under 0.75 mbar H₂ at 400 °C, spectra were measured under reaction atmosphere (H₂:CO₂ = 3:1) at 1 mbar and 200 °C. The Mo 3d, S 2p, O 1s, K 2p and C 1s regions are illustrated in figure 8.

No difference in the Mo 3d and S 2p regions was seen compared to pure MoS_2 under reaction conditions. In the O 1s region, the broad adsorbate-related peak observed at 533 eV on the MoS_2 was not detected on $MoS_2 + K$. We have assigned this peak to the surface OH or formates. Instead, a signal at 532 eV occurred, which was already visible prior to reaction in the absence of CO₂. The peak may originate from carbonate species [28], or from sulfate [29]. Potassium is added as a carbonate in the synthesis and may take up CO₂ upon exposure to the ambient atmosphere. The 532 eV peak is the only adsorbate-related species present under reaction conditions in the O 1s range and changed its intensity with varying conditions indicating its potential involvement in the reaction. No peak characteristic for sulfate was observed in the S 2p region during the reaction.

The interaction between K and CO_2 can be extraordinarily strong, which may lead to the activation of CO_2 (formation of CO_2^-) and finally its dissociation into carbonate and CO, as proposed by Kiss *et al* [28]. In this case, CO_2 hydrogenation may occur via successive CO hydrogenation. This supports our assumption of different reaction mechanisms occurring in the presence of different promoters.

Figure 8. (a) Mo 3d, (b) S 2p, (c) O 1s and (d) K 2p and C 1s in situ XPS spectra of $MoS_2 + K$ at 200 °C in $H_2 + CO_2$ atmosphere.

4. Conclusion

Promotion of MoS_2 catalysts with different metals changes their catalytic properties. While the main product over pure MoS_2 is CH_4 under the conditions applied, K addition leads to a higher CO and methanol formation.

XRD proved the existence of a MoS_2 phase in all catalysts. K was present as K_2SO_4 , Co and Ni as sulfide. In the fresh catalysts, CoS and NiS was found. In comparison, Co_9S_8 and Ni_3S_2 were present in the used catalysts. N₂ physisorption showed a reduction of the BET surface area when K was added. No significant difference was found between $CoMoS_x + K$, $NiMoS_x + K$ and $MoS_2 + K$ catalysts. Under oxidizing atmosphere, the catalyst is stable below 280 °C. TPR experiments showed no reduction until 700 °C.

In situ XPS showed the formation of small amounts of Mo(VI) species under reaction atmosphere and adsorbed oxygen compounds, most likely surface hydroxyls and formate, in particular, with increasing temperature and thus conversion. *in situ* XPS measurements did not show an effect of the K addition on the Mo binding energy. However, the O 1s peak related to adsorbates was found at lower binding energy and was assigned to carbonates, which may indicate a different reaction mechanism as compared to the unpromoted MoS₂.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

We thank Werner Artner for his support with the XRD measurements. The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme. GP and KF acknowledge support by the TU Wien doctoral school CO_2 Refinery.

ORCID iDs

Christoph Rameshan (https://orcid.org/0000-0002-6340-4147

Karin Föttinger D https://orcid.org/0000-0002-2193-0755

References

- Olah G A, Prakash G K S and Goeppert A 2011 Anthropogenic chemical carbon cycle for a sustainable future J. Am. Chem. Soc. 133 12881–98
- [2] Xiaoding X, Doesburg E B M and Scholten J J F 1987 Synthesis of higher alcohols from syngas—recently patented catalysts and tentative ideas on the mechanism *Catal. Today* 2 125–70
- [3] Nitopi S et al 2019 Progress and perspectives of electrochemical CO₂ reduction on copper in aqueous electrolyte Chem. Rev. 119 7610–72
- [4] Nieskens D L S, Ferrari D, Liu Y and Kolonko R 2011 The conversion of carbon dioxide and hydrogen into methanol and higher alcohols *Catal. Commun.* 14 111–3
- [5] Liu S, Zhou H, Song Q and Ma Z 2017 Synthesis of higher alcohols from CO₂ hydrogenation over Mo–Co–K sulfide-based catalysts *J. Taiwan Inst. Chem. Eng.* 76 18–26
- [6] Porosoff M D, Yan B and Chen J G 2016 Catalytic reduction of CO₂ by H₂ for synthesis of CO, methanol and hydrocarbons: challenges and opportunities *Energy Environ. Sci.* 9 62–73
- [7] Lund C R F 1996 Effect of adding Co to MoS₂/Al₂O₃ upon the kinetics of the water-gas shift *Ind. Eng. Chem. Res.* 35 3067-73
- [8] Li P, Chen Y, Zhang C, Huang B, Liu X, Liu T, Jiang Z and Li C 2017 Highly selective hydrodesulfurization of gasoline on unsupported Co-Mo sulfide catalysts: effect of MoS₂ morphology *Appl. Catal.* A 533 99–108
- [9] Concha B E 1984 CO hydrogenation on supported molybdenum catalysts: effects of support on specific activities of reduced and sulfided catalysts *J. Catal.* 89 536–41
- [10] Santos V P, van der Linden B, Chojecki A, Budroni G, Corthals S, Shibata H, Meima G R, Kapteijn F, Makkee M and Gascon J 2013 Mechanistic insight into the synthesis of higher alcohols from syngas: the role of K promotion on MoS₂ catalysts ACS Catal. **3** 1634–7
- [11] Shi X-R, Jiao H, Hermann K and Wang J 2009 CO hydrogenation reaction on sulfided molybdenum catalysts J. Mol. Catal. A 312 7–17
- [12] Lee J S, Kim S, Lee K H, Nam I-S, Chung J S, Kim Y G and Woo H C 1994 Role of alkali promoters in K/MoS₂ catalysts for CO-H₂ reactions *Appl. Catal.* A **110** 11–25
- [13] Zeng F, Xi X, Cao H, Pei Y, Heeres H J and Palkovits R 2019 Synthesis of mixed alcohols with enhanced C3+ alcohol production by CO hydrogenation over potassium promoted molybdenum sulfide *Appl. Catal.* B 246 232–41

- [14] Liu C and Liu P 2015 Mechanistic study of methanol synthesis from CO₂ and H₂ on a modified model Mo₆S₈ cluster ACS Catal. 5 1004–12
- [15] Kattel S, Yan B, Chen J G and Liu P 2016 CO₂ hydrogenation on Pt, Pt/SiO₂ and Pt/TiO₂: importance of synergy between Pt and oxide support *J. Catal.* 343 115–26
- [16] Rameshan R, Nenning A, Raschhofer J, Lindenthal L, Ruh T, Summerer H, Opitz A, Martin Huber T and Rameshan C 2020 Novel sample-stage for combined near ambient pressure x-ray photoelectron spectroscopy, catalytic characterization and electrochemical impedance spectroscopy *Crystals* 10 10
- [17] Kong J, Park K T, Miller A C and Klier K 2000 Molybdenum disulfide single crystal (0002) plane XPS spectra Surf. Sci. Spectra 7 69–74
- [18] Dickinson R G and Pauling L 1923 The crystal structure of molybdenite J. Am. Chem. Soc. 45 1466–71
- [19] Kitakaze A and Sugaki A 2004 The phase relations between Fe_{4.5}Ni_{4.5}S₈ and Co₉S₈ in the system Fe–Ni–Co–S at temperatures from 400° TO 1100 °C *Can. Mineral.* 42 17–42
- [20] Ojima K, Nishihata Y and Sawada A 1995 Structure of potassium sulfate at temperatures from 296 K down to 15 K Acta Crystallogr. B 51 287–93
- [21] Durbin T D, Lince J R, Didziulis S V, Shuh D K and Yarmoff J A 1994 Soft x-ray photoelectron spectroscopy study of the interaction of Cr with MoS₂(0001) Surf. Sci. 302 314–28
- [22] Zingg D S, Makovsky L E, Tischer R E, Brown F R and Hercules D M 1980 A surface spectroscopic study of molybdenum-alumina catalysts using x-ray photoelectron, ion-scattering, and Raman spectroscopies J. Phys. Chem. 84 2898–906
- [23] Chowdari B V R, Tan K L, Chia W T and Gopalakrishnan R 1990 X-ray photoelectron spectroscopic studies of molybdenum phosphate glassy system J. Non Cryst. Solids 119 95–102
- [24] Shuxian Z 1986 X-ray photoemission study of oxygen and nitric oxide adsorption on MoS₂ J. Catal. 100 167–75
- [25] Sápi A *et al* 2018 *In situ* DRIFTS and NAP-XPS exploration of the complexity of CO₂ hydrogenation over size-controlled Pt nanoparticles supported on mesoporous NiO *J. Phys. Chem.* C 122 5553–65
- [26] Avval T G, Chatterjee S, Bahr S, Dietrich P, Meyer M, Thißen A and Linford M R 2019 Carbon dioxide gas, CO₂(g), by near-ambient pressure XPS *Surf. Sci. Spectra* 26 14022
- [27] Yeh J J and Lindau I 1985 Atomic subshell photoionization cross sections and asymmetry parameters: $1 \le Z \le 103 At$. *Data Nucl. Data Tables* **32** 1–155
- [28] Kiss J, Révész K and Solymosi F 1988 Photoelectron spectroscop1c studies of the adsorption of CO₂ on potassium-promoted Rh(111) surface Surf. Sci. 207 36–54
- [29] Wahlqvist M and Shchukarev A 2007 XPS spectra and electronic structure of group IA sulfates J. Electron. Spectrosc. Relat. Phenom. 156-8 310–4