

The 1st IAEE Online Conference takes place on 7th – 9th June 2021

Dynamic Participation in Peer-to-Peer Electricity Trading Mechanisms in Local Communities

Theresia Perger TU Wien Energy Economics Group (EEG) IAEE online 2021, 07.06.-09-06.2021 ⊠ perger@eeg.tuwien.ac.at

This project has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement No. 835896

Motivation and Scope

- Photovoltaic (PV) systems: Decentralized electricity production and *prosumers*
- From individual self-consumption to collective self-consumption to active participants
- Trading and sharing of PV within a certain framework: <u>Energy communities</u> and <u>Peer-to-Peer Trading</u>
- Clean Energy Package (CEP) legal instruments:
 - Member states to enable the entrance of active participants into the market
 - Definition of peer-to-peer trading
- Framework:
 - Voluntary participation and consideration of individual willingness-to-pay
 - PV sharing beyond the meter
 - Low entry barriers: No closed systems, but part of the distribution network

Motivation and Scope

Scope:

- Optimizing energy communities over several years:
 - Considering phase-in/phase-out of prosumers
 - Assuming that local energy markets are more established in the future
 - Operating model of existing prosumers who want to participate in a local energy community

About the model:

- Linear optimization model FRESH:COM [1] maximizing the social welfare of a **local energy community**
- Allocation mechanism: Peer-to-peer trading under the consideration of each prosumer's *individual willingness-to-pay*
- Members: Private households and SMEs
 - Photovoltaic (PV) and Battery Energy Storage Systems(BESS)

Contribution:

Extension of FRESH:COM to optimize *dynamic participation* in peer-to-peer trading communities

Modeling Approach

• Social welfare:

$$SW = \underbrace{\sum_{t \in \mathcal{T}, i \in \mathcal{I}} p_t^{G_{out}} q_{i,t}^{G_{out}} - \sum_{t \in \mathcal{T}, i \in \mathcal{I}} p_t^{G_{in}} q_{i,t}^{G_{in}}}_{\mathrm{I}} + \underbrace{\sum_{t \in \mathcal{T}, i, j \in \mathcal{I}} wt p_{i,j,t} q_{i,j,t}^{share}}_{\mathrm{II}}.$$

• Willingness-to-pay:

$$wtp_{i,j,t} = p_t^{G_{in}} + w_j(1 - d_{i,j}) \cdot e_t.$$

• "Benchmarks":

$$\Delta costs_i = \frac{costs_i - costs_{i,old}}{|costs_{i,old}|}$$
$$\Delta emissions_i = \frac{emissions_i - emissions_{i,old}}{emissions_{i,old}}$$

Modeling Approach – Bi-level problem

Finergy conomics roup

- Upper level problem ("*leader*"):
 - Selecting the optimal electricity demand and PV capacity of new prosumers to fulfill certain requirements set by the original community members
 - Minimizing the cost-emission function CE:

$$CE = \sum_{i \in \mathcal{I}_{old}} \alpha_i \Delta costs_i + (1 - \alpha_i) \Delta emissions_i$$

- Δcosts_i and Δemissions_i are the changes of annual costs and emissions of prosumer *i*, respectively.
- $\alpha_i \in [0,1]$ is individual weighting factor of prosumer *I*
- $b_i \in (0,1)$ are binary decision variables

$$\begin{split} \min_{\{load_i, PV_i, b_i, Q_{i,t}\}} & \sum_{i \in \mathcal{I}_{old}} \alpha_i \Delta costs_i + (1 - \alpha_i) \Delta emissions_i \\ \text{subject to:} \\ b_i \cdot load_i^{min} \leq load_i \leq b_i \cdot load_i^{max} \quad \forall i \in \mathcal{I}_{new} \\ b_i \cdot PV_i^{min} \leq PV_i \leq b_i \cdot PV_i^{max} \quad \forall i \in \mathcal{I}_{new} \\ \sum_{i \in \mathcal{I}_{new}} b_i = n \end{split}$$

6

Modeling Approach – Bi-level problem

- Lower level problem ("follower"):
 - Maximizing the social welfare of the community, given the new prosumers' parameters selected in the upper problem
- Two parts in social welfare SW:
 - Maximizes the overall selfconsumption of the community and
 - Optimally distributes PV generation between the prosumers (peer-to-peer trading)
- Constraints:
 - Covering electricity demand and PV generation
 - Battery storage operation

 $\max_{Q_{i,t}} \sum_{t \in \mathcal{T}, i \in \mathcal{T}} p_t^{G_{out}} q_{i,t}^{G_{out}} - \sum_{t \in \mathcal{T}, i \in \mathcal{T}} p_t^{G_{in}} q_{i,t}^{G_{in}} + \sum_{t \in \mathcal{T}, i \in \mathcal{T}} wt p_{i,j,t} q_{i,j,t}^{share}$ subject to: $q_{i,t}^{G_{in}} + q_{i,t}^{B_{out}} + \sum_{i=\tau} q_{j,i,t}^{share} - q_{i,t}^{load} = 0 \qquad (\lambda_{i,t}^{load}) \quad \forall i \in \mathcal{I}_{old}, t$ $q_{i,t}^{G_{out}} + q_{i,t}^{B_{in}} + \sum_{i \in \mathcal{I}} q_{i,j,t}^{share} - q_{i,t}^{PV} = 0 \qquad (\lambda_{i,t}^{PV}) \quad \forall i \in \mathcal{I}_{old}, t$ $q_{i,t}^{G_{in}} + q_{i,t}^{B_{out}} + \sum_{i=\tau} q_{j,i,t}^{share} - load_i q_{i,t}^{load} = 0 \qquad (\lambda_{i,t}^{load}) \quad \forall i \in \mathcal{I}_{new}, t$ $q_{i,t}^{G_{out}} + q_{i,t}^{B_{in}} + \sum_{i \in \mathcal{I}} q_{i,j,t}^{share} - PV_i q_{i,t}^{PV} = 0 \qquad (\lambda_{i,t}^{PV}) \quad \forall i \in \mathcal{I}_{new}, t$ $SoC_{i,t-1} + q_{i,t}^{B_{in}} \cdot \eta^B - q_{i,t}^{B_{out}} / \eta^B - SoC_{i,t} = 0$ $(\lambda_{i,t}^{SoC}) \quad \forall i, t > t_0$ $SoC_{i,t=t_{end}} + q_{i,t_0}^{B_{in}} \cdot \eta^B - q_{i,t_0}^{B_{out}}/\eta^B - SoC_{i,t_0} = 0$ $(\lambda_{i,t_0}^{SoC}) \quad \forall i, t = t_0$ $SoC_{i,t} - SoC_i^{max} \le 0$ $(\mu_{i,t}^{SoC^{max}}) \quad \forall i, t$ $q_{i,t}^{B_{in}} - q_i^{B^{max}} \le 0 \qquad (\mu_{i,t}^{B^{max}_{in}}) \quad \forall i, t$ $q_{i,t}^{B_{out}} - q_i^{B^{max}} \le 0 \qquad (\mu_{i,t}^{B^{max}}) \quad \forall i, t$

Modeling Approach – Bi-level problem

Energy conomics roup

How is the bi-level problem solved?

- Transformation of the lower level problem with its corresponding KKT conditions ("*Karush-Kuhn-Tucker*"):
- Mathematical program with equilibrium constraints (MPEC)
- The equilibrium problem of the follower is parametrized by the leader's decisions variables
- Formulation of a set of complementarity conditions
- Big-M transformation

[1] https://www.loadprofilegenerator.de; [2] https://www.renewables.ninja/; [3] https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html 8

Modeling Approach – Data and assumptions

Case study:

- Model implemented in *Python* using *Pyomo*
- Small community set-up consisting of 6 prosumer + new prosumer
- Electricity demand: Modular households or houses from Load Profile Generator [1]
- PV generation: PV modules with different orientations (location: Vienna) from renewables.ninja [2]
- Annual hourly data is clustered in representative time periods using Python module *sklearn.cluster.Kmeans* [3]
- New prosumer (<u>household</u> and <u>business</u>):
 - Standardized load profile (H0 for households, G0 for business)
 - $PV^{min} = 0, PV^{max} = 5 kW_{peak}$ $load^{min} = 2000 \frac{kWh}{yr}, load^{max} = 8000 \frac{kWh}{yr}$ $w_{new} = 50 EUR/tCO_2$

Results – New prosumer household

All prosumers want to minimize their individual emissions:

 $\alpha_i = 0, \forall i \in I_{old}$

Results:

- $PV = 5 kW_{peak}$
- $load = 2000 \frac{kWh}{yr}$
- The new prosumer is a competition to certain prosumers due to the high installed PV capacity
- Costs increase for some prosumers
- Emissions decrease

Sankey diagram of electricity demand

Results – New prosumer household

All prosumers want to minimize their individual costs:

 $\alpha_i = 1, \forall i \in I_{old}$

Results:

- $PV = 0 \ kW_{peak}$
- $load = 8000 \frac{kWh}{yr}$
- Opportunity to sell to the new prosumer (high demand, no PV installed) and lower annual costs

Sankey diagram of PV generation

Results – Household vs. business

Minimizing individual emissions

✓ H0 with
$$PV = 5 kW_{peak}$$
, $load = 2000 \frac{kWh}{yr}$

Prosumer 1	0	0	0	0	0	0	0	0	- 3000
Prosumer 2	2213	3369	6	50	0	0	1	0	
Prosumer 3	0	266	1013	5	0	0	0	0	- 2500
Prosumer 4	53	1	0	1392	896	32	0	0	- 2000
Prosumer 5	0	0	0	0	0	0	0	0	- 1500
Prosumer 6	0	122	0	7	195	1285	0	0	- 1000
Prosumer H0_50	130	522	31	192	24	11	966	0	- 500
Prosumer G0	0	0	0	0	0	0	0	0	- 0
	Prosumer 1	Prosumer 2	Prosumer 3	Prosumer 4	Prosumer 5	Prosumer 6	Prosumer H0_50	Prosumer G0	- 0

Minimizing individual costs

✓ G0 with
$$PV = 0 \ kW_{peak}$$
, $load = 8000 \frac{kWh}{vr}$

Prosumer 1	0	0	0	0	0	0	0	0	- 2500
Prosumer 2	2213	2777	6	1	0	0	0	642	
Prosumer 3	0	22	1013	0	0	7	0	572	- 2000
Prosumer 4	88	0	0	1129	1010	20	0	760	- 1500
Prosumer 5	0	0	0	0	0	0	0	0	
Prosumer 6	0	0	0	5	58	1285	0	1923	- 1000
Prosumer H0_50	0	0	0	0	0	0	0	0	- 500
Prosumer G0	0	0	0	0	0	0	0	0	
	Prosumer 1	Prosumer 2	Prosumer 3	Prosumer 4	Prosumer 5	Prosumer 6	Prosumer H0_50	Prosumer G0	-0

Sensitivity Analysis

Influence of the willingness-to-pay:

• $w_i = 0 \text{ EUR/tCO}_2 \text{ or } w_i = 100 \text{ EUR/tCO}_2$

	H0	H0	H0	$\mathbf{G0}$	G0	H0
	$(w_i = 0)$	$(w_i = 100)$	$(w_i = 0)$	$(w_i = 100)$	$(w_i = 0)$	$(w_i = 100)$
ind. emissions	✓	-	\checkmark	-	✓	-
ind. costs	-	~	-	√	-	~

Fairness indicators:

• Quality of service:

$$QoS = \frac{(\sum_{j \in \mathcal{I}} q_j)^2}{n \cdot \sum_{j \in \mathcal{I}} q_j^2}$$
$$q_j = \sum_{t \in \mathcal{T}, i \neq j \in \mathcal{I}} (q_{i,j,t}^{share} + q_{j,i,t}^{share})$$

	QoS (H0 with $w_i = 50$)
old community	0.674
ind. emissions	0.657
ind. costs	0.815

Findings:

- The model is able to choose between potential prosumer
- Balancing the needs of environmental- and profit-oriented members
- Aiming for a diverse set-up of actors
- Ultimately, the energy community has to be able to attract suitable potential new members to guarantee its performance over the years
- Larger communities are not as "sensitive" to changes as smaller communities → certain duration of contract essential

Future outlook:

- Analysis of different settlement patterns
- Analysis of the effects on the DSO and the community manager

Thank you for your attention!

https://github.com/tperger/FRESH-COM

open ENergy TRansition ANalyses for a low-Carbon Economy

https://openentrance.eu/

* * * * * * * * *

This project has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement No. 835896