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Abstract. We study (coalitional) exchange stability , which Alcalde
[Economic Design, 1995] introduced as an alternative solution concept for
matching markets involving property rights, such as assigning persons to
two-bed rooms. Here, a matching of a given Stable Marriage or Sta-
ble Roommates instance is called coalitional exchange-stable if it does
not admit any exchange-blocking coalition, that is, a subset S of agents
in which everyone prefers the partner of some other agent in S. The
matching is exchange-stable if it does not admit any exchange-blocking
pair , that is, an exchange-blocking coalition of size two.

We investigate the computational and parameterized complexity of
the Coalitional Exchange-Stable Marriage (resp. Coalitional
Exchange Roommates) problem, which is to decide whether a Sta-
ble Marriage (resp. Stable Roommates) instance admits a coali-
tional exchange-stable matching. Our findings resolve an open question
and confirm the conjecture of Cechlárová and Manlove [Discrete Applied
Mathematics, 2005] that Coalitional Exchange-Stable Marriage
is NP-hard even for complete preferences without ties. We also study
bounded-length preference lists and a local-search variant of deciding
whether a given matching can reach an exchange-stable one after at
most k swaps, where a swap is defined as exchanging the partners of the
two agents in an exchange-blocking pair.

1 Introduction

An instance in a matching market consists of a set of agents that each have
preferences over other agents with whom they want to be matched with. The
goal is to find a matching, i.e., a subset of disjoint pairs of agents, which is fair .
A classical notion of fairness is stability [14], meaning that no two agents can
form a blocking pair , i.e., they would prefer to be matched with each other rather
than with the partner assigned by the matching. This means that a matching is
fair if the agents cannot take local action to improve their outcome. If we assign
property rights via the matching, however, then the notion of blocking pairs
may not be actionable, as Alcalde [3] observed: For example, if the matching
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represents an assignment of persons to two-bed rooms, then two persons in a
blocking pair may not be able to deviate from the assignment because they
may not find a new room that they could share. Instead, we may consider the
matching to be fair if no two agents form an exchange-blocking pair , i.e., they
would prefer to have each other’s partner rather than to have the partner given
by the matching [3]. In other words, they would like to exchange their partners.
Note that such an exchange would be straightforward in the room-assignment
problem mentioned before. We refer to the work of Alcalde [3], Cechlárová [9],
and Cechlárová and Manlove [10] for more discussion and examples of markets
involving property rights.

If a matching does not admit an exchange-blocking pair, then the match-
ing is exchange-stable. If we also want to exclude the possibility that several
agents may collude to favorably exchange partners, then we arrive at coalitional
exchange-stability [3]. In contrast to classical stability and exchange-stability
for perfect matchings (i.e., everyone is matched), it is not hard to observe that
coalitional exchange-stability implies Pareto-optimality , another fairness con-
cept which asserts that no other matching can make at least one agent better-off
without making some other agent worse-off (see also Abraham and Manlove [2]).
Cechlárová and Manlove [10] showed that the problem of deciding whether an
exchange-stable matching exists is NP-hard, even for the marriage case (where
the agents are partitioned into two subsets of equal size such that each agent of
either subset has preferences over the agents of the other subset) with complete
preferences but without ties. They left open whether the NP-hardness transfers
to coalitional exchange-stability, but observed NP-containment.

In this paper, we study the algorithmic complexity of problems revolving
around (coalitional) exchange-stability. In particular, we establish a first NP-
hardness result for deciding coalitional exchange-stability, confirming a conjec-
ture of Cechlárová and Manlove [10]. The NP-hardness reduction is based on a
novel switch-gadget wherein each preference list contains at most three agents.
Utilizing this, we can carefully complete the preferences so as to prove the desired
NP-hardness. We then investigate the impact of the maximum length d of a pref-
erence list. We find that NP-hardness for both exchange-stability and coalitional
exchange-stability starts already when d = 3, while it is fairly easy to see that
the problem becomes polynomial-time solvable for d = 2. For d = 3, we obtain
a fixed-parameter algorithm for exchange-stability regarding a parameter which
is related to the number of switch-gadgets.

Finally, we look at a problem variant, called Path to Exchange-Stable

Marriage (P-ESM), for uncoordinated (or decentralized) matching markets.
Starting from an initial matching, in each iteration the two agents in an
exchange-blocking pair may swap their partners. An interesting question regard-
ing the behavior of the agents in uncoordinated markets is whether such iterative
swap actions can reach a stable state, i.e., exchange-stability, and how hard is it
to decide. It is fairly straight-forward to verify that if the number k of swaps is
bounded by a constant, then P-ESM is polynomial-time solvable since there are
only polynomially many possible sequences of exchanges to be checked. From
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the parameterized complexity point of view, we obtain an XP algorithm for k,
i.e., the exponent in the polynomial running time depends on k. We further show
that the dependency of the exponent on k is unlikely to be removed by showing
W[1]-hardness with respect to k.

Related Work. Alcalde [3] introduced (coalitional) exchange stability and dis-
cussed restricted preference domains where (coalitional) exchange stability is
guaranteed to exist. Abizada [1] showed a weaker condition (on the prefer-
ence domain) to guarantee the existence of exchange stability. Cechlárová and
Manlove [10] proved that it is NP-complete to decide whether an exchange-stable
matching exists, even for the marriage case with complete preferences without
ties. Aziz and Goldwasser [4] introduced several relaxed notions of coalitional
exchange-stability and discussed their relations.

The P-ESM problem is inspired by the Path-to-Stability via Divorces

(PSD) problem, originally introduced by Knuth [16], see also Biró and Nor-
man [5] for more background. Very recently, Chen [11] showed that PSD is
NP-hard and W[1]-hard when parameterized by the number of divorces. P-

ESM can also be considered as a local search problem and is a special case of
the Local Search Exchange-Stable Seat Arrangement (Local-STA)
problem, introduced by Bodlaender et al. [6]: Given a a set of agents, each hav-
ing cardinal preferences (i.e., real values) over the other agents, an undirected
graph G with the same number of vertices as agents, and an initial assignment
(bijection) of the agents to the vertices in G, is it possible to swap two agents’
assignments iteratively so as to reach an exchange-stable assignment? Herein an
assignment is called exchange-stable if no two agents can each have a higher sum
of cardinal preferences over the other’s neighboring agents. P-ESM is a restricted
variant of Local-STA, where G consists of disjoint edges and the agents have
ordinal preferences. Bodlaender et al. [7] showed that Local-STA is W[1]-hard
wrt. the number k of swaps. Their reduction relies on the fact that the given
graph contains cliques and stars, and the preferences of the agents may contain
ties. Our results for P-ESM that Local-STA is W[1]-hard even if the given
graph consists of disjoint edges and the preferences do not have ties. Finally, we
mention that Irving [15] and McDermid et al. [17] studied the complexity of com-
puting stable matchings in the marriage setting with preference lists, requiring
additionally that the matching should be man-exchange stable, i.e., no two men
form an exchange-blocking pair, obtaining hardness and tractability results.

Organization. In Sect. 2, we introduce relevant concepts and notation, and define
our central problems. In Sect. 3, we investigate the complexity of deciding (coali-
tional) exchange-stability, both when the preferences are complete and when the
preferences length are bounded. In Sect. 4, we provide algorithms for profiles with
preference length bounded by three. In Sect. 5, we turn to the local search vari-
ant of reaching exchange-stability. Section 6 concludes with open questions. Due
to space constraints, results marked by � are deferred to [12].
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2 Basic Definitions and Observations

For each natural number t, we denote the set {1, 2, . . . , t} by [t].
Let V = {1, 2, . . . , 2n} be a set of 2n agents. Each agent i ∈ V has a nonempty

subset of agents Vi ⊆ V which he finds acceptable as a partner and has a strict
preference list �i on Vi (i.e., a linear order on Vi). The length of preference list �i

is defined as the number of acceptable agents of i, i.e., |Vi|. Here, x �i y means
that i prefers x to y.

We assume that the acceptability relation among the agents is symmetric,
i.e., for each two agents x and y it holds that x is acceptable to y if and only if
y is acceptable to x. For two agents x and y, we call x most acceptable to y if x
is a maximal element in the preference list of y. For notational convenience, we
write X �i Y to indicate that for each pair of agents x ∈ X and y ∈ Y it holds
that x �i y.

A preference profile P is a tuple (V, (�i)i∈V ) consisting of an agent set V
and a collection (�i)i∈V of preference lists for all agents i ∈ V . For a graph G,
by V (G) and E(G) we refer to its vertex set and edge set, respectively. Given a
vertex v ∈ V (G), by NG(v) and dG(v) we refer to the neighborhood and degree
of v in G, respectively. To a preference profile P with agent set V we assign
an acceptability graph G(P) which has V as its vertex set and two agents are
connected by an edge if they find each other acceptable. A preference profile P
may have the following properties: Profile P is bipartite, if the agent set V can
be partitioned into two agent sets U and W of size n each, such that each agent
from one set has a preference list over a subset of the agents from the other set.
Profile P has complete preferences if the underlying acceptability graph G(P) is
a complete graph or a complete bipartite graph on two disjoint sets of vertices
of equal size; otherwise it has incomplete preferences. Profile P has bounded
length d if each preference list in P has length at most d.

(Coalitional) Exchange-stable Matchings. A matching M for a given profile P is
a subset of disjoint edges from the underlying acceptability graph G(P). Given a
matching M for P, and two agents x and y, if it holds that {x, y} ∈ M , then we
use M(x) (resp. M(y)) to refer to y (resp. x), and we say that x and y are their
respective assigned partners under M and that they are matched to each other;
otherwise we say that {x, y} is an unmatched pair under M . If an agent x is not
assigned any partner by M , then we say that x is unmatched by M and we put
M(x) = x. We assume that each agent x prefers to be matched than remaining
unmatched. To formalize this, we will always say that x prefers all acceptable
agents from Vx to himself x. A matching M is perfect if every agent is assigned a
partner. It is maximal if for each unmatched pair {x, y} ∈ E(G(P))\M it holds
that x or y is matched under M . For two agents x, y, we say that x envies y
under M if x prefers the partner of y, i.e., M(y), to his partner M(x). We omit
the “under M ” if it is clear from the context.

Matching M admits an exchange-blocking coalition (in short ebc) if there
exists a sequence ρ = (x0, x1, . . . , xr−1) of r agents, r ≥ 2, such that each agent xi

envies her successor xi+1 in ρ (index i + 1 taken modulo r). The size of an ebc
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is defined as the number of agents in the sequence. An exchange-blocking pair
(in short ebp) is an ebc of size two. A matching M of P is exchange-stable (resp.
coalitional exchange-stable) if it does not admit any ebp (resp. ebc). Note that a
coalitional exchange-stable matching is exchange-stable. For an illustration, let
us consider the following example.

Example 1. The following bipartite preference profile P with agent
sets U = {x, y, z} and W = {a, b, c}
admits 2 (coalitional) exchange- x : a � b � c , a : y � x � z ,

y : b � a � c , b : x � y � z,

z : a � c � b, c : x � y � z.

stable matchings M1 and M2 with
M1 = {{x, c}, {y, b}, {z, a}} (marked
in red boxes) and M2 = {{x, b},
{y, c}, {z, a}} (marked in blue boxes).
Matching M3 with M3 = {{x, c}, {y, a}, {z, b}} is not exchange-stable and hence
not coalitional exchange-stable since for instance (y, z) is an exchange-blocking
pair of M3.

As already observed by Cechlárová and Manlove [10], exchange-stable (or coali-
tional exchange-stable) matchings may not exist, even for bipartite profiles with
complete preferences. Every coalitional exchange-stable matching is maximal (�).

We are interested in the computational complexity of deciding whether a
given profile admits a coalitional exchange-stable matching.

Coalitional Exchange-Stable Roommates (CESR)

Input: A preference profile P.
Question: Does P admit a coalitional exchange-stable matching?

The bipartite restriction of CESR, called Coalitional Exchange-Stable

Marriage (CESM), has as input a bipartite preference profile. Exchange-

Stable Roommates (ESR) and Exchange-Stable Marriage (ESM) are
defined analogously.

We are also interested in the case when the preferences have bounded length.
In this case, not every coalitional exchange-stable (or exchange-stable) matching
is perfect. In keeping with the literature [9,10], we focus on the perfect case.

d-Coalitional Exchange-Stable Roommates (d-CESR)

Input: A preference profile P with preferences of bounded length d.
Question: Does P admit a coalitional exchange-stable and perfect matching?

We analogously define the bipartite restriction d-Coalitional Exchange-

Stable Marriage (d-CESM), and the exchange-stable variants d-Exchange-
Stable Roommates (d-ESR) and d-Exchange-Stable Marriage (d-ESM).
Note that the above problems are contained in NP [10].

Finally, we investigate a local search variant regarding exchange-stability. To
this end, given two matchings M and N of the same profile P, we say that M
is one-swap reachable from N if there exists an exchange-blocking pair (x, y)
of N such that M = (N \ {{x,N(x)}, {y,N(y)}}) ∪ {{x, y}, {N(x), N(y)}}.
Accordingly, we say that M is k-swaps reachable from N if there exists a
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sequence (M0,M1, · · · ,Mk′) of k′ matchings of profile P such that (a) k′ ≤ k,
M0 = N , Mk′ = M , and (b) for each i ∈ [k′], Mi is one-swap reachable
from Mi−1.

The local search problem variant is defined as follows:

Path to Exchange-Stable Marriage (P-ESM)

Input: A bip. preference profile P, a matching M0 of P, and an integer k.
Question: Is there an exchange-stable matching M for P that is k-swap
reachable from M0?

3 Deciding (Coalitional) Exchange-Stability is
NP-complete

Cechlárová and Manlove [10] proved NP-completeness for ESM. It is, however,
not immediate how to adapt Cechlárová and Manlove’s proof to show hardness
for coalitional exchange-stability since their constructed exchange-stable match-
ing is not always coalitional exchange-stable. To obtain a hardness reduction
for CESM, we first study the case when the preferences have length bounded
by three, and show that 3-CESM is NP-hard, even for strict preferences. We
reduce from an NP-complete (�) variant of 3SAT, called (2,2)-3SAT: Is there
a satisfying truth assignment for a given Boolean formula φ(X) with variable
set X in 3CNF (i.e., a set of clauses each containing at most 3 literals) where no
clause contains both the positive and the negated literal of the same variable,
and each literal appears exactly two times?

A crucial ingredient for our reduction is the following switch-gadget which
enforces that each exchange-stable matching results in a valid truth assignment.
The gadget and its properties are summarized in the following lemma.

Lemma 1 (�). Let P be a bipartite preference profile on agent sets U and W .
Let A = {az | z ∈ {0, 1, . . . , 6}} and B = {bz | z ∈ {0, 1, . . . , 6}} be two
disjoint sets of agents, and let Q = {α, β, γ, δ} be four further distinct agents
with A ∪ {α, γ} ⊆ U and B ∪ {β, δ} ⊆ W . The preferences of the agents from A
and B are as follows; the preferences of the other agents are arbitrary but fixed.

a0 : b1 � β , b0 : a1 � α ,

a1 : b0 � b2 � b1, b1 : a0 � a2 � a1,

a2 : b3 � b1 � b2, b2 : a2 � a3 � a1 ,

a3 : b2 � b3 � b4 , b3 : a4 � a3 � a2 ,

a4 : b4 � b3 � b5 , b4 : a3 � a5 � a4,

a5 : b6 � b4 � b5, b5 : a6 � a4 � a5,

a6 : b5 � δ , b6 : a5 � γ .
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Every perfect matching M of P satisfies the following, where

N1 := {{α, b0}, {a6, δ}} ∪ {{az−1, bz} | z ∈ [6]},

N2 := {{a0, β}, {γ, b6}} ∪ {{az, bz−1} | z ∈ [6]}, and
ND := {{α, b0}, {a0, β}, {a6, δ}, {γ, b6},

{a1, b2}, {a2, b1}, {a3, b3}, {a4, b5}, {a5, b4}}.

(1) If M is exchange-stable, then either (i) N1 ⊆ M , or (ii) N2 ⊆ M , or (iii)
ND ⊆ M .

(2) If N1 ⊆ M , then every ebc of M which involves an agent from A (resp. B)
also involves α (resp. δ).

(3) If N2 ⊆ M , then every ebc of M which involves an agent from A (resp. B)
also involves γ (resp. β).

(4) If ND ⊆ M , then every ebc of M which involves an agent from A (resp. B)
also involves an agent from {α, γ} (resp. {β, δ}).

Using Lemma 1, we can show NP-hardness for bounded preference length.

Theorem 1. 3-CESM, 3-ESM, 3-CESR, and 3-ESR are NP-complete.

Proof. As already mentioned [10], by checking for cycles in the envy graph all
discussed problems are in NP (�). For the NP-hardness, it suffices to show that
3-CESM and 3-ESM are NP-hard. We use the same reduction from (2,2)-3SAT

for both. Let (X,C) be an instance of (2,2)-3SAT where X = {x1, x2, · · · , xn̂}
is the set of variables and φ = {C1, C2, · · · , Cm̂} the set of clauses.

We construct a bipartite preference profile on two disjoint agent sets U and
W . The set U (resp. W ) will be partitioned into three different agent-groups: the
variable-agents, the switch-agents, and the clause-agents. The general idea is to
use the variable-agents and the clause-agents to determine a truth assignment
and satisfying literals, respectively. Then, we use the switch-agents from Lemma
1 to make sure that the selected truth assignment is consistent with the selected
satisfying literals. For each literal liti ∈ X ∪ X that appears in two different
clauses Cj and Ck with j < k, we use o1(liti) and o2(liti) to refer to the indices j
and k; recall that in φ each literal appears exactly two times.

The Variable-agents. For each variable xi ∈ X, introduce 6 variable-agents vi,
wi, xi, xi, yi, yi. Add vi, xi, xi to U , and wi, yi, yi to W . For each literal liti ∈
X ∪ X let y(liti) denote the corresponding Y -variable-agent, that is, y(xi) = yi

and y(xi) = yi. Define X := {xi | i ∈ [n̂]}, and Y := {yi | i ∈ [n̂]}.

The Clause-agents. For each clause Cj ∈ C, introduce two clause-agents cj , dj .
Further, for each literal liti ∈ Cj with lit ∈ {x, x}, introduce two more clause-
agents ei

j , f
i
j . Add cj , f

i
j to U , and dj , e

i
j to W . For each clause Cj ∈ φ,

define Ej := {ei
j | liti ∈ Cj}, and Fj := {f i

j | liti ∈ Cj}. Moreover,
define E :=

⋃
Cj∈φ Ej and F :=

⋃
Cj∈φ Fj .
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The Switch-agents. For each clause Cj ∈ C, and each literal liti ∈ Cj introduce
fourteen switch-agents az

i,j , b
z
i,j , z ∈ {0, 1, · · · , 6}. Define Ai,j = {az

i,j | z ∈
{0, 1, . . . , 6}} and Bi,j = {bz

i,j | z ∈ {0, 1, . . . , 6}}. Add Ai,j to U and Bi,j to W .
In total, we have the following agent sets:

U := {vi | i ∈ [n̂]} ∪ X ∪ X ∪ {cj | j ∈ [m̂]} ∪ F ∪ ⋃
Cj∈φ∧liti∈Cj

Ai,j , and
W := {wi | i ∈ [n̂]} ∪ Y ∪ Y ∪ {dj | j ∈ [m̂]} ∪ E ∪ ⋃

Cj∈φ∧liti∈Cj
Bi,j .

The Preference Lists. The preference lists of the agents are shown in Fig. 1.
Herein, the preferences of the switch-agents of each occurrence of the literal
correspond to those given in Lemma 1. Note that all preferences are specified
except those of αi,j and δi,j , which we do now. Defining them in an appropriate
way will connect the two groups of switch-agents that correspond to the same
literal as well as literals to clauses. For each literal liti ∈ X∪X, recall that o1(liti)
and o2(liti) are the indices of the clauses which contain liti with o1(liti) < o2(liti).
Let

αi,o1(liti) := liti, δi,o1(liti) := b0i,o2(liti),αi,o2(liti) := a6
i,o1(liti), δi,o2(liti) := y(liti). (1)

Fig. 1. The preferences constructed in the proof for Theorem 1. Recall that for each
literal liti ∈ X ∪ X, expressions o1(liti) and o2(liti) denote the two indices j < j′ of
the clauses that contain liti. For each clause Cj ∈ φ, the expression [Ej ] (resp. [Fj ])
denotes an arbitrary but fixed order of the agents in Ej (resp. Fj).
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This completes the construction of the instance for 3-CESM, which can
clearly be done in polynomial-time. Let P denote the constructed instance with
P = (U �W, (�x)x∈U∪W ). It is straight-forward to verify that P is bipartite and
contains no ties and each preference list �x has length bounded by three. Before
we give the correctness proof, for each literal liti ∈ X ∪ X and each clause Cj

with liti ∈ Cj we define the following three matchings:

N1
i,j := {{αi,j , b

0
i,j}, {a6

i,j , δi,j}} ∪ {{az−1
i,j , bz

i,j} | z ∈ [6]},

N2
i,j := {{a0

i,j , e
i
j}, {b6i,j , f

i
j}} ∪ {{az

i,j , b
z−1
i,j } | z ∈ [6]}, and

ND
i,j := {{αi,j , b

0
i,j}, {a0

i,j , e
i
j}, {a6

i,j , δi,j}, {f i
j , b

6
i,j},

{a1
i,j , b

2
i,j}, {a2

i,j , b
1
i,j}, {a3

i,j , b
3
i,j}, {a4

i,j , b
5
i,j}, {a5

i,j , b
4
i,j}}.

(2)

Now we show the correctness, i.e., φ admits a satisfying assignment if and only
if P admits a perfect and coalitional exchange-stable (resp. exchange-stable)
matching. For the “only if” direction, assume that σ : X → {true, false} is a
satisfying assignment for φ. Then, we define a perfect matching M as follows.

– For each variable xi ∈ X, let M(xi) := wi and M(vi) := yi if σ(xi) = true;
otherwise, let M(xi) := wi and M(vi) := yi.

– For each clause Cj ∈ φ, fix an arbitrary literal whose truth value satisfies Cj

and denote the index of this literal as s(j). Then, let M(cj) := e
s(j)
j and

M(f s(j)
j ) := dj .

– Further, for each literal liti ∈ X ∪ X and each clause Cj with liti ∈ Cj , do:
(a) If s(j) = i, then add to M all pairs from N1

i,j .
(b) If s(j) 
= i and liti is set true under σ (i.e., σ(xi) = true iff. liti = xi), then

add to M all pairs from ND
i,j .

(c) If s(j) 
= i and liti is set to false under σ (i.e., σ(xi) = true iff. liti = xi),
then add to M all pairs from N2

i,j .

One can verify that M is perfect. Hence, it remains to show that M is coalitional
exchange-stable. Note that this would also imply that M is exchange-stable.

Suppose, for the sake of contradiction, that M admits an ebc ρ. First, observe
that for each variable-agent z ∈ X ∪ X ∪ Y ∪ Y it holds that M(z) either is
matched with his most-preferred partner (i.e., either vi or wi) or only envies
someone who is matched with his most-preferred partner. Hence, no agent
from X ∪ X ∪ Y ∪ Y is involved in ρ. Analogously, no agent from E ∪ F is
involved in ρ. Next, we claim the following.

Claim 1 (�). For each literal liti ∈ X ∪ X and each clause Cj with liti ∈ Cj, it
holds that neither αi,j nor δi,j is involved in ρ.

Using the above observations and claim, we continue with the proof. We succes-
sively prove that no agent is involved in ρ, starting with the agents in U .

– If vi is involved in ρ for some i ∈ [n̂], then he only envies someone who is
matched with yi. By the preferences of yi, this means that M(yi) = a6

i,o2(xi)
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and vi envies a6
i,o2(xi)

. Hence, a6
i,o2(xi)

is also involved in ρ. Moreover, since
M(a6

i,o2(xi)
) = yi, we have N1

i,o2(xi)
⊆ M or ND

i,o2(xi)
⊆ M . By Lemma 1(2)

and Lemma 1(4) (setting α = αi,o2(xi), β = ei
o2(xi)

, γ = f i
o2(xi)

, and δ =
δi,o2(xi)), ρ involves an agent from {αi,o2(xi), f

i
o2(xi)

}. Since no agent from F
is involved in ρ, it follows that ρ involves αi,o2(xi), a contradiction to Claim 1.

– Analogously, if cj ∈ ρ for some j ∈ [m̂], then this means that Ej contains
two agents ei

j and et
j such that M(cj) = et

j but cj prefers ei
j to et

j , and
M(ei

j) ∈ ρ. Since M is perfect and cj is not available, it follows that M(ei
j) =

a0
i,j , implying that a0

i,j ∈ ρ. Moreover, by the definition of M we have that
N2

i,j ⊆ M or ND
i,j ⊆ M . By Lemmas 1(3)–(4) (setting α = αi,j , β = ei

j ,
γ = f i

j , and δ = δi,j), ρ involves an agent from {αi,j , f
i
j}, a contradiction

since no agent from Fj is involved in ρ and by Claim 1 αi,j is not in ρ.
– Analogously, we can obtain a contradiction if wi with i ∈ [n̂] is in ρ: By

the definition of M , if wi ∈ ρ, then M(xi) = b0i,o1(xi)
and wi envies b0i,o1(xi)

.
Hence, b0i,o1(xi)

is also involved in ρ. Moreover, since M(b0i,o1(xi)
) = xi, it

follows that N1
i,o1(xi)

⊆ M or ND
i,o1(xi)

⊆ M . By Lemmas 1(2) and (4) (setting
α = αi,o1(xi), β = ei

o1(xi)
, γ = f i

o1(xi)
, and δ = δi,o1(xi)), ρ involves an agent

from {ei
o1(xi)

, δi,o1(xi)}. Since no agent from E is involved in ρ, it follows that
ρ involves δi,o1(xi), a contradiction to Claim 1.

– Again, analogously, if dj ∈ ρ for some j ∈ [m̂], then we obtain that δi,j is
involved in ρ, which is a contradiction to Claim 1.

– Finally, if ρ involves an agent from Ai,j (resp. Bi,j), then by Lemma 1(2) and
(4) (setting α = αi,j , β = ei

j , γ = f i
j , and δ = δi,j), it follows that ρ involves

an agent from {αi,j , f
i
j} (resp. {βi,j , e

i
j}), a contradiction to our observation

and to Claim 1.

Summarizing, M is coalitional exchange-stable and exchange-stable.
For the “if” direction, assume that M is a perfect and exchange-stable match-

ing for P. We show that there is a satisfying assignment for φ. Note that this
then also implies that, if M is perfect and coalitional exchange-stable, then there
is a satisfying assignment for φ.

We claim that the selection of the partner of wi defines a satisfying
truth assignment for φ. More specifically, define a truth assignment σ : X →
{true, false} with σ(xi) = true if M(wi) = xi, and σ(xi) = false otherwise. We
claim that σ satisfies φ. To this end, consider an arbitrary clause Cj and the
corresponding clause-agent. Since M is perfect, it follows that M(cj) = ei

j for
some liti ∈ Cj . Since ei

j is not available, it also follows that M(a0
i,j) = b1i,j . By

Lemma 1(1) (setting α = αi,j , β = ei
j , γ = f i

j , and δ = δi,j), it follows that
N1

i,j ⊆ M . In particular, M(αi,j) = b0i,j so that αi,j is not available to other
agents anymore.

Now, if we can show that liti = αi,o1(liti) is matched to b0i,o1(liti), then since
M is perfect, we have M(wi) = xi if liti = xi, and M(wi) = xi otherwise By
definition, we have σ(xi) = true if liti = xi and σ(xi) = false otherwise. Thus,



On (Coalitional) Exchange-Stable Matching 215

Cj is satisfied under σ, implying that σ is a satisfying assignment. It remains to
show that liti is matched to b0i,o1(liti). We distinguish between two cases;

– If j = o1(liti), then liti = αi,o1(liti) is matched to b0i,o1(liti), as required.
– If j = o2(liti), then by definition, it holds that αi,j = a6

i,o1(liti)
and δi,o1(liti) =

b0i,j . In other words, M(a6
i,o1(liti)

) = δi,o1(lit1). By Lemma 1(1) (setting α =
αi,o1(liti), β = ei

o1(liti)
, γ = f i

o1(liti)
, and δ = δi,o1(liti)), it follows that N1

i,j ⊆ M

or ND
i,j ⊆ M . In both cases, it follows that αi,o1(i) is matched to b0i,o1(i). ��

Next, we show how to complete the preferences of the agents constructed in
the proof of Theorem 1 to show hardness for complete and strict preferences.

Theorem 2. CESM and CESR are NP-complete even for complete and strict
preferences.

Proof. We only show NP-hardness for CESM as the hardness for CESR will
follow immediately by using the same approach as [10, Lemma 3.1]. To show
hardness for CESM, we adapt the proof of Theorem 1. In that proof, given (2,2)-

3SAT instance (X,φ) with X = {x1, x2, · · · , xn̂} and φ = {C1, C2, · · · , Cm̂}, we
constructed two disjoint agent sets U and W with U := {vi | i ∈ [n̂]} ∪ X ∪ X ∪
{cj | j ∈ [m̂]} ∪ F ∪ ⋃

Cj∈φ∧liti∈Cj
Ai,j and W := {wi | i ∈ [n̂]} ∪ Y ∪ Y ∪ {dj |

j ∈ [m̂]} ∪ E ∪ ⋃
Cj∈φ∧liti∈Cj

Bi,j . For each agent z ∈ U ∪ W let Lz denote the
preference list of z constructed in the proof. The basic idea is to extend the
preference list Lz by appending to it the remaining agents appropriately.

We introduce some more notations. Let �U and �W denote two arbitrary but
fixed linear orders of the agents in U and W , respectively. Now, for each subset
of agents S ⊆ U (resp. S ⊆ W ), let [S]� denote the fixed order of the agents in S
induced by �U (resp. �W ), and let S \ Lz denote the subset {t ∈ S | t /∈ Lz},
where z ∈ W (resp. z ∈ U). Finally, for each agent z ∈ U (resp. z ∈ W ),
let Rz denote the subset of agents which do not appear in Lz or in Y ∪ Y ∪
E (resp. X ∪ X ∪ F ). That is, Rz :=

(
W \ (Y ∪ Y ∪ F )

) \ Lz (resp. Rz :=
(
U \ (X ∪ Y ∪ F )

) \ Lz).
Now, we define the preferences of the agents as follows.

∀z ∈ U, z : Lz � [Y ∪ Y ∪ E \ Lz]� � [Rz]�, and

∀z ∈ W, z : Lz � [X ∪ X ∪ F \ Lz]� � [Rz]�.

Let P ′ denote the newly constructed preference profile. Clearly, the con-
structed preferences are complete and strict. Before we show the correctness, we
claim the following for each coalitional exchange-stable matching of P ′.

Claim 2 (�). If M is a coalitional exchange-stable matching for P ′, then

(i) for each agent z ∈ U ∪ W it holds that M(z) /∈ Rz, and
(ii) for each agent z ∈ U ∪W \ (X ∪X ∪F ∪Y ∪Y ∪E) it holds that M(z) ∈ Lz.
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Now we are ready to show the correctness, i.e., φ admits a satisfying assignment
if and only if P ′ admits a coalitional exchange-stable matching.

For the “only if” direction, assume that φ admits a satisfying assignment,
say σ : X → {true, false}. We claim that the coalitional exchange-stable match-
ing M for P that we defined in the “only if” direction of the proof for Theorem 1
is a coalitional exchange-stable matching for P ′. Clearly, M is a perfect matching
for P ′ since G(P ′) is a supergraph of G(P). Since each agent z ∈ U ∪ W has
M(z) ∈ Lz, for every two agents z, z′ ∈ U (resp. W ), it holds that z envies z′ only
if M(z′) ∈ Lz. In other words, if M would admit an ebc ρ = (z0, z1, · · · , zr−1)
(r ≥ 2) for P ′, then for each i ∈ {0, 1, . . . , r − 1} it must hold that M(zi) ∈ Lz−1

(z − 1 taken modulo r). But then, ρ is also an ebc for P, a contradiction to our
“only if” part of the proof for Theorem 1.

For the “if” direction, let M be a coalitional exchange-stable matching for P ′.
Note that in the “if” part of the proof of Theorem 1 we heavily utilize the
properties given in Lemma 1(1). Now, to construct a satisfying assignment for φ
from M , we will prove that the lemma also holds for profile P ′. To this end,
for each literal liti ∈ X ∪ X and each clause Cj with liti ∈ Cj , recall the three
matchings N1

i,j , N2
i,j , ND

i,j and the agents αi,j and δi,j that we have defined in
Eqs. (2) and (1) .

Claim 3 (�). Matching M satisfies for each literal liti ∈ X ∪X and each clause
Cj ∈ φ with liti ∈ Cj, either (i) N1

i,j ⊆ M , or (ii) N2
i,j ⊆ M , or (iii) ND

i,j ⊆ M .

Now we show that the function σ : X → {true, false} with σ(xi) = true if
M(wi) = xi, and σ(xi) = false otherwise is a satisfying truth assignment for φ.
Clearly, φ is a valid truth assignment since by Claim 2(ii) every variable agent wi

is matched to either xi or xi. We claim that σ satisfies φ. Consider an arbitrary
clause Cj and the corresponding clause-agent cj . By Claim 2(ii), we know that
M(cj) = ei

j for some liti ∈ Cj . Since ei
j is not available, by Claim 2(ii), it also

follows that M(a0
i,j) = b1i,j . By Claim 3, it follows that N1

i,j ⊆ M . In particular,
M(αi,j) = b0i,j so that αi,j is not available to other agents anymore.

We aim to show that αi,o1(liti) is matched to b0i,o1(liti) by M , which implies
that liti is not available to wi since αi,o1(liti) = liti by the definition of αi,o1(liti).
We distinguish two cases: If j = o1(liti), then by the definition of αi,j , it
follows that αi,o1(liti) is matched to b0i,o1(liti). If j = o2(liti), then by the def-
inition of αi,j , we have αi,j = a6

i,o1(liti)
and by the definition of δi,o1(liti)

we have δi,o1(liti) = b0i,o2(liti) = b0i,j . In particular, since M(αi,j) = b0i,j we
have M(a6

i,o1(liti)
) = δi,o1(lit1). By Claim 3, it follows that N1

i,o1(liti)
⊆ M or

ND
i,o1(liti)

⊆ M . In both cases, it follows that αi,o1(liti) is matched to b0i,o1(liti). We
have just shown that liti is not available to wi. Hence, by Claim 2(ii), M(wi) = xi

if liti = xi, and M(wi) = xi otherwise. By definition, we have that σ(xi) = true
if liti = xi and σ(xi) = false otherwise. Thus, Cj is satisfied under σ, implying
that σ is a satisfying assignment. ��



On (Coalitional) Exchange-Stable Matching 217

4 Algorithms for Bounded Preferences Length

When bounding the preference length by two it is not hard to show that (coali-
tional) exchange-stability can be decided in linear time.

Theorem 3 (�). 2-ESM, 2-ESR, 2-CESM, and 2-CESR can be solved in linear
time.

Fixed-parameter Algorithm for 3-ESR. We now turn to preference length at
most three . In Theorem 1 we have seen that even this case remains NP-hard,
even for bipartite preference profiles. Moreover, the proof suggests that a main
obstacle that one has to deal with when solving 3-ESM (and hence 3-ESR)
are the switch gadgets. Here we essentially show that they are indeed the only
obstacles, that is, if there are few of them present in the input, then we can solve
the problem efficiently. We capture the essence of the switch gadgets with the
following structure that we call hourglasses.

Definition 1. Let P be a preference profile and VH ⊆ V a subset of 2h agents
with VH = {ui, wi | 0 ≤ i ≤ h − 1}. We call the subgraph G(P)[VH ] induced
by VH an hourglass of height h if it satisfies the following:

– For each i ∈ {0, h − 1} the degrees of ui and wi are both at least two
in G(P)[VH ];

– For each i ∈ [h − 2], the degrees of ui and wi are exactly three in G(P)[VH ];
– For each i ∈ {0, 1, . . . , h − 1} we have {ui, wi} ∈ E(G(P)[VH ]);
– For each i ∈ {0, 1, . . . , h − 2} we have {ui, wi+1}, {ui+1, wi} ∈ E(G(P)[VH ]).

We refer to the agents ui and wi from VH as layer-i agents. We call an hour-
glass H maximal if no larger agent subset V ′ � V (H) exists that induces an
hourglass.

Given an hourglass H in G(P), we call a matching M for P perfect for H if
for each agent v ∈ V (H) we have M(v) ∈ V (H) \ {v}. Further, M is exchange-
stable for H if no two agents from V (H) can form an exchange-blocking pair.

Notice that the smallest hourglass has height two and is a cycle with four
vertices. We are ready to show the following fixed-parameter tractability result.

Theorem 4 (�). An instance of 3-ESR with 2n agents and 
 maximal hour-
glasses can be solved in O(6� · n

√
n) time.

The main ideas are as follows. The first observation is that a matching for a
maximal hourglass can interact with the rest of the graph in only six different
ways: The only agents in an hourglass H of height h that may have neighbors
outside H are the layer-0 and layer-(h − 1) agents; let us call them connecting
agents of H. A matching M may match these agents either to agents inside
or outside H. Requiring M to be perfect means that an even number of the
connecting agents has to be matched inside H. This then gives a bound of at
most six different possibilities of the matching M with respect to whether the
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connecting agents are matched inside or outside H. Let us call this the signature
of M with respect to H. Hence, we may try all 6� possible combinations of
signatures for all hourglasses and check whether one of them leads to a solution
(i.e., an exchange-stable matching).

The second crucial observation is that each exchange-blocking pair of a per-
fect matching yields a four-cycle and hence, is contained in some maximal hour-
glass. Thus, the task of checking whether a combination of signatures leads to a
solution decomposes into (a) checking whether each maximal hourglass H allows
for an exchange-stable matching adhering to the signature we have chosen for H
and (b) checking whether the remaining acceptability graph after deleting all
agents that are in hourglasses or matched by the chosen signatures admits a
perfect matching.

Task (b) can clearly be done in O(n ·√n) time by performing any maximum-
cardinality matching algorithm (note that the graph G(P) has O(n) edges). We
then prove that task (a) for all six signatures can be reduced to checking whether
a given hourglass admits a perfect and exchange-stable matching. This, in turn,
we show to be linear-time solvable by giving a dynamic program that fills a
table, maintaining some limited but crucial facts about the structure of partial
matchings for the hourglass.

5 Paths to Exchange-Stability

We now study the parameterized complexity of P-ESM with respect to the
number of swaps. Observe that it is straightforward to decide an instance of
P-ESM with 2n agents in O((2n)2k+2) time by trying k times all of the O(n2)
possibilities for the next swap and then checking whether the resulting matching
is exchange-stable. The next theorem shows that the dependency of the exponent
on k in the running time cannot be removed unless FPT = W[1].

Theorem 5 (�). Path to Exchange-Stable Marriage is W[1]-hard with
respect to the number k of swaps.

Proof (Sketch). We provide a parameterized reduction from the W[1]-complete
Independent Set problem, parameterized by the size of the independent
set [13]: Therein, given a graph H and an integer h, we want to decide whether
G admits an h-vertex independent set, i.e., a subset of h pairwise nonadjacent
vertices.

Let I = (H,h) be an instance of Independent Set with vertex set V (H) =
{v1, v2, . . . , vn} and edge set E(H). We construct an instance I ′ = (P,M0, 2h) of
P-ESM where P has two disjoint agent sets U and W , each of size 2n+ h. Both U
and W consist of h selector-agents and 2n vertex-agents with preferences which
encode the adjacency of the vertices in V (H). More precisely, for each j ∈ [h],
we create two selector-agents, called sj and tj , and add them to U and W ,
respectively. For each i ∈ [n], we create four vertex-agents, called xi, ui, yi, wi,
add xi and ui to U , and add yi and wi to W . Altogether, we have U = {sj | j ∈
[h]} ∪ {ui, xi | i ∈ [n]} and W = {tj | j ∈ [h]} ∪ {wi, yi | i ∈ [n]}.
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Now we define the preferences of the agents from U ∪ W . For notational
convenience, we define two subsets of agents which shall encode the neighborhood
of a vertex: For each vertex vi ∈ V (H), define Y (vi) := {yz | {vi, vz} ∈ E(H)}
and U(vi) := {uz | {vi, vz} ∈ E(H)}.

∀j ∈ [h] : sj : w1 � · · · � wn � tj , tj : u1 � · · · � un � x1 � · · · � xn � sj ,
∀i ∈ [n] : xi : t1 � · · · � th � yi, yi : ui � xi � [U(vi)],
∀i ∈ [n] : ui : wi � [Y (vi)] � yi � t1 � · · · � th, wi : s1 � · · · � sh � ui .

Herein, [Y (vi)] (resp. [U(vi)]) denotes the unique preference list where the agents
in Y (vi) (resp. U(vi)) are ordered ascendingly according to their indices. Observe
that the acceptability graph G(P) includes the following edges:

– For all i ∈ [h] and j ∈ [n], the edges {si, ti}, {si, wj}, {ti, xj}, {ti, uj},
{wj , uj}, {yj , xj}, {yj , uj} are in E(G(P)).

– For all edges {vi, vi′} ∈ E(G), the edges {ui, yi′} and {ui′ , yi} are in E(G(P)).

We define an initial matching M0 on G(P) as M0 = {{sj , tj} | j ∈ [h]}
∪ {{wi, ui}, {yi, xi} | i ∈ [n]}. This completes the construction of I ′, which can
clearly be done in polynomial time. It is straight-forward to check that that P is
bipartite and the construction can be done in linear time. The correctness proof
is given in the full version [12]. ��

6 Conclusion

Regarding preference restrictions [8], it would be interesting to know whether
deciding (coalitional) exchange-stability for complete preferences would be
become tractable for restricted preferences domains, such as single-peakedness
or single-crossingness. Further, the NP-containment of the problem of checking
whether a given matching may reach an exchange-stable matching is open.
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