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Abstract 
Building stock models are increasingly applied for 
deriving policy recommendations in achieving climate 
neutrality of the building sector. However, they are 
associated with significant uncertainties, which usually 
are not systematically analysed. We apply the elementary 
effects method on scenarios calculated with the model 
Invert/EE-Lab. Among others, we identified parameters 
relevant for the decision making algorithm within the 
model as most influential. This has implications on the 
interpretation of results, in particular for the future mix of 
energy carriers which show very similar costs and 
attractiveness. The systematic application of global 
sensitivity analyses can help to improve the understanding 
of building stock modelling results and better substantiate 
related policy conclusions.  
 
 
Key Innovations 

• This paper presents a global sensitivity analysis 
of the techno-socio-economic building stock 
energy model Invert/EE-Lab in scenarios up to 
2030 using the Elementary Effects Method as 
implemented in the SAFE-Toolbox (Pianosi et 
al, 2015).  

• Techno-economic building stock models in 
general are very input data intensive. Despite 
this large amount of relevant – and by nature 
uncertain – input data, sensitivity analysis are 
only rarely carried out in a systematized way, 
partly because of limitations of computational 
efforts.  

• Thus, we consider the application of a global 
sensitivity analysis for identifying the most 
sensitive input parameters in an established 
building stock model carried out for several EU 
countries in this way as a highly innovative and 
relevant aspect.  

• Besides implementing the general approach and 
deriving new, innovative conclusions for the 
further work, also computational wise the work 
presented in this paper is innovative in our field: 
In total, more than 20,000 simulation runs per 
country, partly on a scientific computing cloud 
service have been carried out, requiring efficient 

handling in the processing of input and output 
data.  

 
Practical Implications 
First, we expect that as practical implementation of our 
work sensitivity analyses will become more common 
practice in this field of modelling, leading to a better 
identification of most sensitive input parameters and thus 
to a better understanding of model results. Second, the 
conclusions regarding the parameters identified as the 
most sensitive ones may serve as indication for special 
attention to these type of parameters in future modelling 
work. Finally, this should help to improve the policy 
recommendations derived from building stock models.  
 
Introduction 
For various planning and policy issues the scenario 
development of future heating and cooling demand as 
well as the related HVAC systems, energy carrier mix and 
resulting GHG-emissions is of great importance. For this 
purpose, building stock bottom-up models are more and 
more frequently used. However, techno-socio-economic 
building stock energy models used for energy and 
emission development projections and policy assessment 
involve considerable uncertainty: The models are very 
input-data intensive, e.g. data on the existing building 
stock, in particular in case of high granularity of the 
archetypes applied in the models, techno-economic data 
of technologies and measures (e.g. renovation measures, 
heating systems), future energy prices, interest rates, 
lifetime of technologies or parameters of decision making 
algorithms. Each of these input data has a potentially high 
impact on the results. Partly because of the high 
computational effort related with sensitivity analyses, 
systematic uncertainty analysis and sensitivity analyses 
are rarely applied for building stock models.  
 
The key research question of this paper is: What are the 
input parameters showing the highest impact on results in 
techno-socio-economic building stock models for 
developing scenarios of future energy demand and 
technology uptake? By elaborating answers to this 
question for the case of the model Invert/EE-Lab, we 
analyse and demonstrate the applicability of global 
sensitivity analyses on data-intensive techno-socio-
economic bottom-up building stock models.  



 
There is a broad literature on sensitivity analyses for 
scientific models. Morris, (1991) developed a on-at-a-
time elementary effects method. This has been extended 
e.g. towards variance-based sensitivity analyses, a global 
sensitivitiy analysis (Sobol′, 2001). Authors like 
Campolongo et al., (2007), Campolongo et al., (2011) 
further extended the approach and its application and 
partly also developed tools for supporting the sensitivity 
analyses (e.g. Pianosi et al., (2015), (Herman et al., 2020). 
Among others it was the reason of computational time 
constraints which made us take the decision for the Morris 
method and applying the SAFE-toolbox (Pianosi et al., 
2015).  
 
The application of global sensitivity models in building 
stock modelling is not common practice. One of the rather 
rare examples is (Branger et al., 2015).  
 
Within the IEA EBC Annex 70 on “Building Energy 
Epidemiology” a group of building stock modelling teams 
applied different approaches of global sensitivity analyses 
and exchanged results and experiences. This work also 
was carried out in the frame of this exchange.  
 
In this paper we apply the building stock model 
Invert/EE-Lab (www.invert.at), using the Elementary 
Effects Method as a global sensitivity analysis, a method 
appropriate for the 
degree of complexity of 
the model. We provide 
exemplary results for 
selected parameters for 
selected countries. The 
method and discussion 
of parameter selection is 
based on the IEA EBC 
Annex 70 – Building 
Energy Epidemiology 
project. Invert/EE-Lab 
is a techno-socio-
economic bottom-up 
building stock model 
which has been applied 
in more than 40 projects 
in EU-27+ countries 
(Müller, 2015), (Kranzl 
et al., 2018). The model 
builds on input data 
including a 
disaggregated building 
stock database on 
country level, supply 
technologies, regional 
climate, energy prices 
and energy carrier 
potentials as well as 
behavioural aspects and 
investment decision 

criteria. Within this article we focus on the analysis of the 
influence of relevant indicators such as interest rates, 
costs, energy prices, selected technical parameters and 
behavioural aspects on the final energy demand, 
respectively related energy carrier shares or installed 
capacities. 
 
 
Methods 
As explained above, in this paper we apply the elementary 
effects method in line with (Morris, 1991) as a means of 
sensitivity analysis. The Elementary Effects method can 
be seen as a randomized “One-At-a-Time” design. Thus, 
for every model run one input parameter is modified by a 
random sampling method. Elementary effects for each 
input are computed from different points in the input 
space, leading to mean and standard deviation that can be 
taken as a measure of importance of a specific input 
variable and its interactions with other inputs. It’s 
important to note that both results, i.e. the mean and 
standard deviation are required to consider for the 
conclusion. This method is applied to the building stock 
model Invert/EE-Lab, which is described below and in 
Figure 1.  
For the application of the EE-method to Invert/EE-Lab we 
use the SAFE toolbox (Pianosi et al, 2015) to generate the 
input samples used for the model iterations as well as for 
analysis and visualization. The great variety of input 

 
Figure 1 Overview structure of the simulation tool Invert/EE-Lab 
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parameters was broken down to 11 parameters, 
comprising of interest rates, different investment decision 
parameters, heating system and renovation costs, energy 
prices, lifetime of buildings and heat pump coefficient of 
performance, as well as factors representing user 
behaviour (see explanation and the rationale for their 
selection below).  
 
Invert/EE-Lab 
Invert/EE-Lab is a dynamic techno-socio-economic 
bottom-up building stock model that evaluates the effects 
of different framework conditions (in particular different 
settings of economic and regulatory incentives) on the 
total energy demand, energy carrier mix, CO2 reductions 
and costs for space heating, cooling and hot water 
preparations in buildings. The model describes the 
building stock, heating, cooling and hot water systems on 
highly disaggregated level, calculates related energy 
needs and final energy demand, determines reinvestment 
cycles and new investment of building components and 
technologies and simulates the decisions of various agents 
(i.e. owner types) in case that an investment decision is 
due for a specific building segment. The core of the tool 
is a myopical, multinominal logit approach, which 
optimizes objectives of “agents” under imperfect 
information conditions and by that represents the 
decisions maker concerning building related decisions. 
Myopical in this context means that the model does not 
assume a perfect foresight rationale of the decision 
makers. Rather, they assume that the framework 
conditions affecting the decision will remain constant in 
the future, although in reality – and in the scenario model 
run – this may not be the case. The model applies a nested 
logit approach in order to calculate market shares of 
heating systems and energy efficiency measures 
depending on building and investor type. Invert/EE-Lab 
covers residential and non-residential buildings. The 
model has been applied in more than 40 projects for 
various countries and for EU-27 (+UK and selected 
neighboring countries), among others also for the 
European Commission.  

More information is 
available at www.invert.at 
or e.g. in (Müller, 2015)) 
and (Kranzl et al., 2018). 
 
Standard outputs from the 
Invert/EE-Lab on an 
annual basis are: 
• Installation of 
heating and hot water 
systems by energy carrier 
and technology (number of 
buildings, number of 
dwellings supplied) 

• Refurbishment 
measures by level of 
refurbishment (number of 
buildings, number of 
dwellings) 

• Total delivered energy by energy carriers and 
building categories (GWh) 

• Total energy need by building categories (GWh) 
• Policy programme costs, e.g. support volume for 

investment subsidies (M€) 
• Total investment (M€) 

 
 
Uncertainty analysis: OAT and the SAFE Toolbox 
As a method for evaluation and comparison of the 
Sensitivity/Uncertainty analysis we carried out several 
variable variation variants using the Elementary Effects 
method by Morris (Campolongo et al., 2007), calculating 
mean and standard deviation of elementary effects.  
The analysis was implemented in the SAFE Toolbox 
(MATLAB), complemented by data management scripts 
written in Python (https://www.safetoolbox.info/info-
and-documentation/).  
The implementation process of the sensitivity analysis 
was carried out in the following steps:  

1) Generate input data structure (Python) 
2) Generate input data sample (SAFE) 
3) Adapt input data (Python) 
4) Run model Invert/EE-Lab (Multiple model runs 

per sample and averaging of output values to 
reduce impact of model stochastics) 

5) Get mean results of output parameters (Python) 
6) Compete elementary effects and visualize results 

(SAFE) 
 
For the selected input parameters (see ), after generating 
the input data structure based on Invert/EE-Lab data, the 
SAFE toolbox has been used to generate the input data 
sample, for which latin hypercube has been selected as 
sampling strategy. This modified data sample is used to 
modify Invert/EE-Lab input data, which is run multiple 
times for the created input data samples. For the resulting 
output parameters indicators are created and visualized.  

Table 1. Input parameters considered in the global sensitivity analysis 

 
 

https://www.safetoolbox.info/info-and-documentation/
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 shows the number (M) of selected 11 input parameters 
(including one dummy for testing purposes).  
As can be seen from , the number of possible input 
parameters which could be selected for the sensitivity 
analysis is high. It ranges from the description of the 
building stock, to techno-economic data of heating 
systems and renovation measures, energy prices, various 
restrictions, policy instruments, user behaviour, 
preferences or parameters affecting the decision process. 
First, we neglected parameters which mainly have an 
impact on the current state of the building stock. Although 
we are aware that there are significant uncertainties in the 
description of the current stock, in principle it is well 
calibrated e.g. against national energy balances. Second, 
we decided to analyse the impact on heat pump related 
outputs like installed power of heat pumps. Thus, we also 
selected some parameters with obvious (or potential) 
effect on the model’s heat pump related outputs like COP 
of heat pumps, energy prices, including electricity prices 
and heating system costs. Renovation activities (driven 
strongly by renovation costs) in the model have an impact 
on the COP of heat pumps and thus on the economic 
viability and diffusion of heat pumps. This is why they 
also have been chosen. Third, from previous analysis (e.g. 
Müller, 2015) the authors know that the model shows 
some sensitivity on user behaviour and certain parameters 
affecting the decision process, although the scale of this 
impact was not yet known. Thus, we selected these 
parameters as well.  
We decided to evaluate two variation sets: (1) a general 
variation: sample within a -/+ 30% margin and (2) a 
variation within a range based on expert guess for each of 
the parameters. In the second case we acknowledged the 
fact that the possible variation of some parameters 
probably is not symmetric but may be larger on the right 
hand side of the mean value.  
 
The number of elementary effects was varied as r = 20, 
30, 40, 100. The final number of model evaluations results 
in r*(M+1). Due to the fact that Invert/EE-Lab shows 
some stochastic behaviour (Müller, 2015), we carried out 
3-5 model runs per sample and calculated the mean output 
value of these model runs (2nd box from the right in ). 
Overall, for the case of France, this led to a number of 
20400 model runs.  
 
Due to the restricted space availability in the paper, as 
output-variables we selected the following: installed 
power of heat pumps in the year 2030 and final energy 
consumption of gas for space heating and hot water in 
2030.  
 

                                                           
1 In the discussion section we examine to which extent the 
stochasticity of the model distorts the conclusions and 
what would need to be done as further work in order to 

Selected scenarios and countries 
In order to show the applicability of the uncertainty 
method indicated above, we selected existing scenarios 
for the countries Sweden and Spain. The scenarios have 
been developed in the project SET-Nav and the scenario 
logic and background scenario data of this so-called 
“reference scenario” is described in more detail in 
(Hartner et al., 2018) and Crespo del Granado et al., 
(2020). The selected scenario shows the impact of current 
policies in place (status 2015), and thus are in contrast to 
strong (or even complete) decarbonisation scenarios. 
However, still some significant changes in the technology 
mix and energy demand occur by 2050. Due to the fact 
that the main intention of this paper is to demonstrate the 
applicability of global sensitivity analysis in this type of 
model we decided to show results only for the year 2030, 
in order to reduce computation time.  
 
 
Results 
 
The following figures show the results for the selected 
output variables for the case of Sweden (Figure 2 to 
Figure 5) and Spain (Figure 6 to Figure 9).  
For each output variable (and each for the case of fixed 
bandwidth factor and specific values for the input 
parameter variation sampling) we present a graph of the 
standard deviation of the elementary effects over the 
mean of the elementary effects. Thus, in each of the 
figures, the impact of the variation of the selected input 
parameters (Table 1) on a certain output parameter 
(described above) is indicated. The x-axis shows the mean 
of the elementary effect (EE), i.e. how strongly the output 
parameters are varying with varying input parameters. 
The y-axis shows the standard deviation of EEs, i.e. how 
strongly the EE deviate in the whole set of model runs 
while also varying the other input parameters. Thus, the 
y-axis is also an indicator for how strongly the impact of 
an input parameter depends on other input parameters. 
Since this is done in each figure for each of the 11 selected 
input parameters, we can identify those parameters with 
the highest impact on standard deviation and mean of the 
elementary effect.  
Figure 2 shows the first exemplary result graph. The 
dummy variable (red circle), which was introduced for 
testing purposes should show no elementary effect. The 
reason for the slightly positive mean and standard 
deviation of the elementary effect is the stochastic 
behaviour of the model. Although we derived the mean of 
several model runs for each set of input parameters, a 
slightly positive effect is still visible. This should also be 
considered for the other result graphs.1  
 

separate the impact of the model stochasticity from the 
sensitivity analysis due to the variation of input 
parameters.  



Sensitivity analysis results for the case of Sweden 

 
Figure 2 Sensitivity analysis results, installed power of 
heat pumps in 2030, fixed bandwidth factor, Sweden2 

 

 
Figure 3 Sensitivity analysis results, final energy 

consumption of gas for space heating and hot water 
demand in 2030, fixed bandwidth factor, Sweden 

 
Output parameter “installed power of heat pumps” 
For the output parameter “installed power of heat pumps” 
and in case of the “specific values of parameter variation”, 
the following two variables prove to be the most sensitive 
in both countries (i.e. Figure 2 and Figure 4 for SWE and 
Figure 6 and Figure 8 for ESP, for fixed bandwith and 
specific values, respectively): (1) "awa s" is a factor that 
determines the level of awareness of support 
instruments, i.e. to which extent decision makers are 
aware that support instruments exist and may be an 
attractive incentive. Obviously, the existence of a support 
scheme for heat pumps and its awareness among building 

                                                           
2 The following abbreviations apply for the following 
figures: IR - interest rate; eco w - weight of the economic 
rational calculus in decision making regarding building 
renovation and heating system choice; awa sub - subsidy 
awareness - factor determining the degree of awareness of 
subsidy instruments; lambda - coefficient in the logit 
approach for determining the market share of 

owners is a significant factor. In both countries the 
scenario setting assumes that such support schemes are in 
place. However, the factor “awa sub” determines how 
well they are communicated and how effective the 
scheme works. (2) The lambda value represents the 
coefficient in the logit approach of the model that 
describes the sensitivity of building owners' decision 
behaviour with regard to the reaction to differences 
between heating system options. Thus, if two heating 
systems have very similar but slightly different costs (or 
other properties relevant for the utility function), the 
lambda factor determines how strongly different actors 
respond to this difference when choosing a heating 
system. The high sensitivity of the lambda factor thus 
shows that some heating systems have very similar costs 
(or other properties relevant to the utility function) and 
that it is important to interpret the model results 
accordingly. 
However, the comparison with the result graphs “fixed 
bandwidth factor” for the output parameter “installed heat 
pumps” reveals that this is largely driven by the 
assumptions for the parameter ranges chosen according to 
Table 1. For both countries, other input parameters show 
also comparable sensitivity, for Spain even the first 
ranked parameter changed: only for “specific values” the 
lambda values is the first ranked parameter. 
  

 
Figure 4 Sensitivity analysis results, installed power of 

heat pumps in 2030, specific values, Sweden 
 

technologies; hs cost - heating system cost; ren cost - 
renovation cost; e price - energy price; Lt - lifetime of 
heating systems; cop hp - annual performance factor of 
heat pumps; serv f - service factor that determines to 
which extent buildings are heated; dummy - dummy 
parameter for testing purposes. 



 
Figure 5 Sensitivity analysis results, final energy 

consumption of gas for space heating and hot water 
demand in 2030, specific values, Sweden 

 
Output parameter “final energy consumption of gas” 
As far as the final energy consumption of natural gas for 
space heating and domestic hot water is concerned, in 
addition to the previously mentioned input parameters, 
the following also turn out to be sensitive: In the case of 
Sweden, the variation of the energy price as well as the 
coefficient of performance (COP) of heat pumps shows 
a relatively high effect. On the one hand, this is due to the 
fact that the energy price level is already relatively high 
due to taxation (at least higher than in Spain). On the other 
hand, the importance of the model sensitivity to the 
annual performance factor of heat pumps shows that heat 
pumps are a relevant competitor to natural gas in the 
model results, although the annual performance factor 
plays a not insignificant role in how attractive heat pumps 
are compared to gas boilers. In the case of Spain, it is the 
lifetime of heating systems that shows a significantly 
higher influence on the results than the variation of other 
input parameters. This is because there is a higher stock 
of gas heating systems compared to Sweden. Depending 
on when these are due for replacement due to reaching 
their service life, there is a more or less rapid replacement 
of gas boilers with renewable heating systems. 
For the case of “fixed bandwidth”, the service factor 
turns out to be the most sensitive input parameter. The 
service factor in the model Invert/EE-Lab determines part 
of the effect that often, only a certain share of the space 
heating energy demand is actually covered by the heating 
system. I.e. the higher the service factor, the higher is the 
comfort level and the higher the effective indoor 
temperature during the heating season. The factor depicts 
the part of this effect which in reality is triggered by the 
type of heating system. E.g. automatized, central heating 
systems typically trigger a higher service factor than 
manually fed wood log single stoves. On the one hand, the 
factor is used for considering this difference between 
heating system observed. On the other hand, this is one of 
the factors which the authors apply for calibrating the 
model to national energy balances. Still, despite the fact 
that there is some empirical evidence available, e.g. (Haas 

et al., 1998), the choice of this parameter in particular for 
different household types and regions across Europe is 
subject to uncertainty. At least for the case of fixed 
bandwidth parameter variation, the analysis shows a 
relevant impact of this parameter on the final energy 
consumption. This is a plausible result, since the overall 
level of energy consumption is affected by this factor.  
 
Sensitivity analysis results for the case of Spain 

 
Figure 6 Sensitivity analysis results, installed power of 

heat pumps in 2030, fixed bandwidth factor, Spain 
 

 
Figure 7 Sensitivity analysis results, final energy 

consumption of gas for space heating and hot water 
demand in 2030, fixed bandwidth factor, Spain 

 



 
Figure 8 Sensitivity analysis results, installed power of 

heat pumps in 2030, specific values, Spain 
 

 
Figure 9 Sensitivity analysis results, final energy 

consumption of gas for space heating and hot water 
demand in 2030, specific values, Spain 

 
 
Discussion and conclusions 
The analysis was carried out with respect to the output 
variables installed capacity of heatpumps and final energy 
consumption of natural gas heating systems. The results 
for installed heatpump capacity show different levels of 
importance and interconnections for the evaluated input 
variables. Whereas the parameter economic weight can be 
considered to be of significant influence and great 
interconnection with other variables, others like interest 
rates, costs and behavioural factors can be considered as 
less influential on the observed output variable. It has to 
be mentioned tough, that the results are highly dependent 
on the selected value ranges for the input parameters, as 
well as on country specific datasets and pre-sets. This 
becomes clear when comparing the results for the 
                                                           
3 On the other hand, the high variation that the authors 
suggested to apply for the case of „specific values“ for the 
lambda value (table 1), can also be considered as pre-
judgement, since the authors were already aware of the 

“specific values” parameter variation and the “fixed 
bandwidth” variation. In our analysis, it was not possible 
to determine the choice of the range of parameter 
variation by means of empirical, historical values. For 
some of the input parameters, like energy prices or COPs 
this would be feasible. For others, it would mean 
substantially higher effort. Thus, overall we need to keep 
this for further research. As long as such an empirical 
substantiation of parameter variation ranges is not 
possible, the consideration of both fixed bandwidth 
variation and specific values – defined on the basis of 
expert estimations – both are important for determining 
the parameters with the highest sensitivity on a certain 
output parameter.  
The high relevance of the logit-coefficient lambda 
(Müller, 2015) on some output parameters indicates that 
the scenario results regarding heating system (and related 
energy carrier) mixes for technologies with relatively 
similar costs should be considered with caution3. And it 
shows the need for further research of understanding the 
decision making behaviour of different types of building 
owners and how this can be integrated in building stock 
models.  
 
As described above, we can observe a slightly positive 
value of the dummy variable due the stochastic behaviour 
of the model. In order to clearly identify and quantify the 
impact of the stochastic model behaviour on the 
sensitivity results, it would be required to identify the 
range of output parameters resulting from this effect. 
However, since this would need to be done for the 
significant amount of scenario results, we need to keep 
this task for further research. Müller (2015) described the 
stochastic behaviour of the model in more detail. In 
particular, he showed that final energy demand results are 
close to a normal distribution. For the settings chosen in 
our analysis for the stochastic behaviour we estimate that 
the role of the stochastic behaviour of the model is much 
less relevant than the variation of (some of) the selected 
input parameters. This is underlined by the fact that the 
dummy value shows comparably low EE_mean and 
EE_standard deviation results.   
 
Overall, the sensitivity analysis carried out through the 
elementary effects method provides valuable insights for 
the influence of various input parameters. The insights 
gained can be used for improved scenario development as 
well as deeper result interpretation trough better model 
understanding. 
The analyses presented in this paper were done only for 
the model Invert/EE-Lab. We assume that similar 
conclusions can be derived for similar type of techno-
socio-economic bottom-up building stock models. 
However, the exact behaviour of the models and 

relevance and uncertainty of this parameter. For the “fixed 
bandwidth” variation, the impact of the lambda value at 
least for some output parameters is much smaller.  



comparison of the sensitivity of different models remains 
an open question for further research activities.  
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