
Pacific Graphics (2021) Work in Progress
M. Okabe, S. Lee, B. Wuensche, and S. Zollmann (Editors)

View-Dependent Impostors for Architectural Shape Grammars

C. Jia , M. Roth, B. Kerbl , M. Wimmer

TU Wien, Institute of Visual Computing & Human-Centered Technology

surrogate

α β

α

Figure 1: (left) Our approach automatically identifies opportunities for placing surrogate rules (α) in shape grammar derivation trees,
either directly or only for partial subtrees (β). At runtime, surrogate rules can evaluate to simple impostors that replace detailed geometry
in procedurally generated scenes. (center) Our approach uses view-dependent factors to decide on the applicability of impostors, achieving
high visual fidelity (original/ours). (right) Wireframes indicate the significantly reduced geometry in the rendered scene (original/ours).

Abstract
Procedural generation has become a key component in satisfying a growing demand for ever-larger, highly detailed geometry
in realistic, open-world games and simulations. In this paper, we present our work towards a new level-of-detail mechanism
for procedural geometry shape grammars. Our approach automatically identifies and adds suitable surrogate rules to a shape
grammar’s derivation tree. Opportunities for surrogates are detected in a dedicated pre-processing stage. Where suitable,
textured impostors are then used for rendering based on the current viewpoint at runtime. Our proposed methods generate
simplified geometry with superior visual quality to the state-of-the-art and roughly the same rendering performance.

1. Introduction

As realism in computer games and movies rapidly advances,
the demand for massive and detailed virtual environments has
surged. It is becoming increasingly infeasible to create such com-
pelling models within a reasonable amount of time and budget
using the traditional process. Procedural approaches have found
great use in automating the process of modeling scene geom-
etry [DBLP:journals/tog/WonkaWSR03] and can easily gen-
erate vast, detailed environments. However, any geometry that
is rendered in real-time must eventually be transferred to the
Graphics Processing Unit (GPU), which, for potentially bil-
lions of triangles, incurs a significant overhead. Several ap-
proaches have been proposed to produce procedural geome-
try via so-called shape grammars in parallel, directly on the
GPU, such as the parallel generation of architecture (PGA)
system presented by DBLP:journals/cgf/SteinbergerKKWS14
[DBLP:journals/cgf/SteinbergerKKWS14]. But even then, as
DBLP:journals/cgf/SteinbergerKKWS14 pointed out, further
optimizations are required to relieve memory bottlenecks for highly

detailed procedural models. The authors proposed using techniques
such as visibility pruning and frame-to-frame coherence. They also
suggested the use of level-of-detail (LOD) mechanisms as an im-
portant performance factor, but their solutions did not offer meth-
ods for exploiting LODs automatically. Their hand-crafted LOD
models were further selected only based on viewing distance, thus
ignoring orientation, projection and parallax effects. To address
these issues, we propose an automatic, view-dependent impostor
generation for shape grammars via surrogate rules.

2. Method

Our surrogate rules are capable of either evaluating the original
shape grammar rules of their corresponding subtree or returning
a simplified impostor instead (Figure 1). Starting from the root of
the shape grammar’s derivation tree, at each node α representing a
rule, we check whether it is sensible to insert a surrogate rule. The
policy for this decision is use case-dependent and made based on
the rules and parameter ranges in α’s subtree. We then evaluate the

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://orcid.org/0000-0003-2304-5976
https://orcid.org/0000-0002-5168-8648
https://orcid.org/0000-0002-9370-2663


C. Jia et al. / View-Dependent Impostors for Architectural Shape Grammars

Figure 2: A facade viewed from different perspectives. Parts that
are invisible from one view direction become visible from another.

grammar from α down to its leaves to generate the detailed geome-
try. To avoid redundant computation, we run a full evaluation of the
whole derivation tree in one pass and store the generated geometry
in global vertex and index buffers. From the detailed geometry, tex-
tures are created for each surrogate rule’s impostor. We achieve this
by rendering the detailed geometry with orthographic projection
oriented towards the current rule’s impostor shape, a fitted quadri-
lateral. Due to the parallax effect, one impostor texture made from
a single view direction is very limited in capturing the appearance
of detailed geometry, especially when it significantly extrudes out
of the impostor shape (Figure 2). These errors may still be notice-
able, even if viewed from a great distance. Therefore, we generate
multiple textures for each impostor by rendering the corresponding
detail geometry from several view directions into an impostor grid
and defer selection of the impostor texture to runtime.

Given point Q on plane P and a point P /∈ P , we define

poviP,Q(P) =
QH
∥QP∥ , (1)

where H is the orthogonal projection of point P onto plane P . For
a given impostor shape S, we define the impostor plane PS to be
the plane in which S resides, and the origin OS of plane PS to be
the center of S. For the camera position E, the POV indicator of
E is computed as φφφS,E = poviPS ,OS (E), which can be seen as
the orthogonal projection of the view vector OSE onto plane PS ,
normalized by the distance between the camera and the center of S
(see Figure 3). Thus, φφφS,E is independent of ∥OSE∥. We subdivide
the unit square in the impostor plane PS into a (2k+1)× (2k+1)
uniform grid, k ≥ 1. Given a certain view distance d, for each grid
cell with center O′, corresponding camera position E’ is computed:

E′ = OS +d · (OSO′+nS ·
√

1−∥OSO′∥2),

where nS is the outgoing unit normal vector of S. Obviously OSO′

is the POV indicator of the camera positioned at E′. Then we render
the detailed geometry for each surrogate from those camera posi-
tions and generate (2k+1)2 textures from the rendered images.

Based on the implicit information stored in the impostor grid,
we can now select view-dependent impostors at runtime. During
the evaluation of the derivation tree when geometry is procedurally
generated, we calculate the POV indicator at each added surrogate
rule. The texture for the impostor is chosen based on which cell of
the impostor grid the POV indicator lies in. Subtree rules will be
fully evaluated if the POV indicator lies outside the impostor grid.

E
PS

OS

(a)

OS

H
E

PS

(b)

PS H ′

OS

(c)

Figure 3: (a) An impostor shape S centered at OS resides in plane
PS , with a camera positioned at point E; (b) Vector OSH is the
orthogonal projection of the view vector OSE onto PS ; (c) POV
indicator OSH′ = poviPS ,OS (E) = OSH/∥OSE∥. Clearly,
OSH′ lies inside the unit circle centered at point OS .

3. Preliminary Results and Future Work

To evaluate the overall performance of our method, we tested four
static scenes of varying complexity (when fully evaluated): bal-
cony (167.8M triangles), town (6.1M triangles, Figure 1), dorms
(836.7K triangles) and facade (3.2M triangles). For these four
scenes, we randomly sampled 647 camera configurations in to-
tal, with different positions and view directions. In our tests,
we used a 3 × 3 impostor grid by setting k = 1, and the reso-
lution of the impostor texture for each point of view is set to
128× 128. Then we evaluated the unmodified grammar and mod-
ified grammars with adaptive level of details regarding perfor-
mance and visual quality and compared to the PGA approach pre-
sented in [DBLP:journals/cgf/SteinbergerKKWS14]. With our
method, we achieved better visual scores than PGA in all three
test scenes (20% on average), according to the Butteraugli metric
[DBLP:journals/corr/AlakuijalaOSSVW17]. Compared to the
unmodified version, our method was able to eliminate 83% of tri-
angles on average and achieve roughly the same rendering frame
rate as DBLP:journals/cgf/SteinbergerKKWS14’s PGA. How-
ever, compared to DBLP:journals/cgf/SteinbergerKKWS14, our
method may still generate about 5–20× as many geometry prim-
itives. This seemingly drastic difference is easily explained by
the fact that DBLP:journals/cgf/SteinbergerKKWS14’s LOD
method depends solely on the view distance to determine the appli-
cability of an impostor; hence, their approach trivially achieves a
hugely beneficial side effect of occlusion culling. However, during
the analysis of the derivation tree, we could easily bake outer and
inner hulls of procedural geometry into our surrogate rules, which
should enable us to apply proper occlusion culling and produce fa-
vorable results to the current state of the art and, alongside further
improvements, bring our work to fruition.

Acknowledgements

This work was supported by the Research Cluster “Smart Commu-
nities and Technologies (Smart CT)” at TU Wien.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.


