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Figure 1: Visualization of machine cycles with the multiple coordinated views of our tool. (A) The line plot presents the orig-
inal values of different features. (B)–(D) panel for the exploration of distinct data subsets with alternative methods. (E) The
message banner to track the user’s selections. (F) The Heatmap displays the normalized values of the DTW-processed time
series features. (G) The feature selection panel for choosing specific features to plot. (H) The user-adjustable t-SNE’s hyper-
parameters. (I)–(J) The t-SNE and PCA plots form groups of points that can be examined further. (K) The PCP highlights the
correlation between features. The colors used in (I)–(K) views are computed by applying k-means clustering to the PCA plot.

ABSTRACT
The recent development in the data analytics field provides a boost
in production for modern industries. Small-sized factories intend
to take full advantage of the data collected by sensors used in their
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machinery. The ultimate goal is to minimize cost and maximize
quality, resulting in an increase in profit. In collaboration with do-
main experts, we implemented a data visualization tool to enable
decision-makers in a plastic factory to improve their production
process. We investigate three different aspects: methods for pre-
processing multivariate time series data, clustering approaches for
the already refined data, and visualization techniques that aid do-
main experts in gaining insights into the different stages of the
production process. Here we present our ongoing results grounded
in a human-centered development process. We adopt a formative
evaluation approach to continuously upgrade our dashboard design
that eventually meets partners’ requirements and follows the best
practices within the field.
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CCS CONCEPTS
•Human-centered computing→Visual analytics; •Comput-
ing methodologies → Unsupervised learning.
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1 INTRODUCTION
Modern production lines accommodate a high number of sensors
and actuators with the aim of improving the quality and reliability
of products, enhancing the efficiency of maintenance routines, and
ensuring the proper working conditions for several machines [18].
These devices generate a wide variety of data ranging from environ-
mental data (e.g., temperature andweather conditions) to data about
the production process and the production state (e.g., if a machine
is on or off). Analyzing historical data originated from the afore-
mentioned sources can help to accurately forecast whether there
will be a change in production speed due to external reasons [37].

Smart factories rely on careful data management and the choice
of appropriate tools for the analysis of data [26]. However, col-
lecting and examining the data using statistical or computational
approaches does not satisfy the requirements of an agile produc-
tion environment [16]. Domain expertise is crucial for data (and
model) interpretation [10, 11] as each production line (or even
machine) produces different sensor readings depending on many
variables—for example, the air pressure at specific parts of a product
and the type of the product. Therefore using visual analytics (VA) to
involve the domain experts in the data analysis phase is inevitable.

The plastic industry employs several data-driven technologies
to optimize the production process [14]. Smart factories today pro-
duce plastic parts more efficiently and cost-effectively than ever
before. Blow molding is one of the most common methods in the
manufacturing of plastic [3]. For simplicity, this process could be
summed up in two stages: melting the parison (i.e., plastic material)
and shaping it in the mold by an air blow [42].

Our industry partner develops robotic andmachine learning (ML)
solutions for such smart factories. One of their clients produces
automobiles plastic parts using the blow molding process. Lately,
they introduced a product that collects data remotely through the
sensors installed in a blow molding machine. The accumulated data
provides a potential for valuable insights related to the production
process that can be used to assist factory’s management in decision-
making. However, the exploration of multivariate time series data
captured by the sensors poses a challenge [43]. Indeed, temporal
data requires thoughtful methods to extract the important features
from tightly coupled multidimensional data. Finally, settling on the
optimal visualization techniques requires an extensive investigation
of users’ prior experience and their needs [5].

Based on continuous discussions with our industry partner, we
collected the following requirements (R1–R3):

• (R1) highlight emerging patterns of the production process;
• (R2) enable the identification of the important features that

heavily affect the production process; and
• (R3) cover any remaining gaps of their other deployed ML

tools to facilitate even further data-driven decision making.

To satisfy the previously defined requirements, we present vi-
sualization techniques for interactive data analysis of remotely
collected data in a plastic production factory. We preprocess the
data and allow users to explore particular features using clustering
and dimensionality reduction (DR) methods [30], as shown in Fig-
ure 1. Our proposed VA tool enables the factory’s management
and technicians to make informed maintenance and production
decisions. We follow a user-centric approach by involving a visu-
alization expert and an industry partner from the early stages of
development to improve our tool’s design iteratively.

2 RELATEDWORK
The dynamic time warping (DTW) method is one of the most pop-
ular algorithms used to simplify the representation of time series
data. Many variations of this algorithm were developed (e.g., local
DTW [41]) since Berndt and Clifford [6] suggested the use of DTW
to identify patterns in time series data. The underlying process
systematically compares data points between two vectors to find
the distance between two time series data sets.

Martins and Kerren [22] propose the SlideDTW algorithm as a
more accurate and less demanding alternative compared to Fast-
DTW [31], PrunedDTW [34], and DTW supported by experiments
performed in five data sets. The modified algorithm tackles the
DTW problem of being computational demanding. The outcome
is that SlideDTW may be optimal for work on large time series,
but DTW remains the best option for smaller time series. Steed
et al. [35] successfully employs DTW for the visual analytics of
multivariate time series data in additive manufacturing.

Angelopoulos et al. [4] reviewed clustering and DR methods for
fault detection in the industrial sector. In their survey, they found
that PCA [1] was a popular unsupervised algorithm to monitor the
production processes. Moreover, k-means [19] was discovered to
be faster compared to the hierarchical agglomerative and Gaussian
mixture. It was one of the sensitive algorithms inmultivariable value
fluctuations. Similarly, Gittler et al. [17] affirmed that k-means is an
efficient clustering tool despite its drawbacks. Themethod is rigid as
the number of clusters has to be predetermined, however, coupling
t-SNE [38] with PCA algorithms could overcome its weaknesses.

Chen et al. [13] implement a cross-filtering [40] interactivity
in their dashboard. The authors segment the view and use color-
encoding to represent multivariate temporal data. They claim that
t-SNE will distort the points at the global dimension. Nonetheless,
we deem a better solution is to display multiple perspectives of the
data with the help of visualization, clustering, and DR.

Time series visualization represents many challenges, while mul-
tivariate time series data add to this complexity [2]. Several different
approaches have been developed addressing the issues presented in
this paper [24, 35, 36]. Fujiwara et al. [15] present a VA framework
for gaining insights from multivariate time series data. The authors
aim to address problems due to the complexity of time series data,
similar to our case. They use PCA and UMAP [23], which are linear
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and nonlinear DR methods, respectively. Their approach might
distract the user as the features are being represented in different
plots. Thus, a parallel coordinates plot (PCP) could be proven amore
useful tool for comparison. Furthermore, processing the data with
two layers of DR might lead to consecutive losses of information.
Consequently, the use of separate DR methods might be beneficial.

3 DATA COLLECTION AND PREPROCESSING
As mentioned before, the blow molding machine is equipped with
sensors to collect readings from the various stages of the produc-
tion process remotely. We received real data samples to use in the
development and evaluation phases of our tool. It contains infor-
mation from two main sections. The first section consists of 10
features. In detail, seven temperature readings along with speed,
pressure, and torque data collected from the extruder sensors. For
the eject cylinder in the second section, we choose 11 features out
of the 14 recorded after a discussion with the domain expert.

The current prototype works with these 21 features produced
by the extruder and eject cylinder sensors. These numbers are not
final as there are plans to install even more sensors in the future.
Furthermore, we added the totalTime (derived from metadata) as
an additional feature as requested by our industry partner who
identified it as one of the reasons for the variations in the data.
His suggestion was to focus on cycles with totalTime between [50,
150] seconds. Outside this range, the data may be faulty. Thus,
we filtered out any instance outside of this range. In this way, we
manage to remove noisy data. Overall, users can choose to explore
the data by focusing on: (1) Extruder, (2) Eject Cylinder, or (3) All.

The term cycle in the data describes the loading of a new product
material into the accumulator. Each data file represents the informa-
tion on one cycle (one data point). The cycles are linear and slightly
overlapping. Moreover, each cycle is illustrated as multivariate time
series data. An important point to notice here is that ideal data
points are expected for each sensor. This ideal setting is calculated
in two ways depending on the sensor in question. The first way
is by running some experimental cycles of production where the
ideal setting is derived. The second way is by deriving this value
based on preceding cycles during production. Normally, the actual
production readings (in red) differ from the ideal ones (blue lines
in Figure 2). The extent of such difference might influence product
quality or even lead to production failure. Consequently, it is essen-
tial to gain insightful information about the differences between
the ideal and actual sensor data points, leading us to the next step.

Sn = fDTW (Cn , I ) (1)

Sn = fDTW (Cn ,Cn−1) (2)

Sn = fDTW (Cn ,
(Cn−3 +Cn−2 +Cn−1)

3
) (3)

Sn = fDTW (Cn ,CAV ) (4)
Each cycle’s time series data is preprocessed and transformed

by the DTW into similarity score (S) using one of the four different
methods, as seen in (Equation (1) – Equation (4)). Thus, aCycleVector
of sensor similarities is created for each cycle (as seen in Figure 2).
Equation (1) calculates the distance between each cycle’s feature

Figure 2: Hypothetical timelines of N sensor readings.

vector (C) to the ideal setting value (I ). In contrast, Equation (2) cal-
culates distance to the previous cycle (i.e., green line). Equation (3)
and Equation (4) calculate the distance to a simple average of the
previous three cycles or all cycles, respectively. We also process the
data set in terms of product unit derived from its given cycles (i.e.,
overlaps over two cycles) rather than a single machine cycle.

4 VISUAL ANALYTICS TOOL
Our methodology includes the end-user in the development process,
as declared in Section 1. Monthly video meetings scaffold the de-
velopment of the initial prototype. For this tool, we used Dash [28]
as a framework and Plotly [27] for the visualizations. The tool was
hosted on a server to facilitate the evaluation phase (cf. Section 6).

Figure 1(A) plots each feature for all cycles plus the setting vector
in green for comparison. It gives a view of the original data which
enables users to take a closer look to deviations within a single
feature. Figure 1(B) enables users to select the group of features
to analyze. In Figure 1(C), users can select 1 out of the 6 different
methods to simplify the representation of the time series data. Also,
a new data set can be uploaded, as shown in Figure 1(D).

The users’ activity is emphasized in a banner that displays tex-
tual descriptions of the filters applied at that time (see Figure 1(E)).
The proposed tool provides feature selection possibilities for knowl-
edgeable users. They can unselect/select the features they wish to
explore further (see Figure 1(G)). Afterwards, the tool reprocesses
the data and reclusters the points automatically.

Additionally, users have the option to train t-SNE models based
on the adjustments of perplexity and iterations parameters (cf. Fig-
ure 1(H)) . The default values are 15 for the former and 1,000 for
the latter. This feature gives control to the users to try out alter-
native embeddings. However, it requires as a prerequisite to have
experience with t-SNE and its hyperparameter tuning [12].

The data is visualized with t-SNE (see Figure 1(I)) and PCA al-
gorithms (Figure 1(J)). The t-SNE’s and PCA’s features are trained
from the normalized values of the selected features. These views
can illustrate a general topology of the data set that users can use
as a starting point for exploring the data. We run k-means on the
PCA features to color-encode the clusters for the DR views. Using
the elbow method [25], we conclude that two clusters (represented
in orange and purple colors [7]) are optimal in our case. Finally, by
clicking on top of these representations, all plots are reset.

PCP visualizes the processed features of each cycle, as indicated
in Figure 1(K). This view supports the analysis by highlighting the
correlation between features. The x-axes represent the features se-
lected in the analysis, and the y-axes are the range of the processed
data for each feature before normalization. Users can select differ-
ent ranges and rearrange the position of the features in the PCP. In
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addition, a Heatmap allows the comparison of the active features
for the normalized values (cf. Figure 1(F)). The x-axes exhibit the
selected features for analysis, while the y-axes depict the ordered
cycles. The color scale in blue reflects the range from 0 to 1.

Cross-filtering functionalities are available for most of the plots.
Users can select points on any of the two projections using a lasso
(e.g., Figure 1(J), in black). This interaction leads to filtering of the
selected points on the other embedding, the PCP, and the Heatmap
views. Brushing and linking also work through PCP selections.

5 USE CASE
In a hypothetical scenario, Maria is a technician in a plastic factory.
She wants to examine all the data recorded by the blow molding
machine. She recognizes that the quality of the products varies, and
she needs to understand which features have the highest impact
on the production quality. As seen in Figure 1(J), she chooses the
points that seemed to belong to a dispersed cluster using the lasso
functionality. She hopes that this interaction can tell her something
about the optimal value ranges for the features and highlight any
possible deviations. She notices that the t-SNE plot (Figure 1(I))
reveals a few distinct clusters in the upper bound. Therefore, she
expects some variance in the feature values (R1).

With the initial PCA selection of 203 points, the technician ex-
amines the PCP (see Figure 1(K)). She knows from experience that
changes in the temperature of Feed Zone might affect the quality of
the parison. From the tempFZ axis, she selects all instances with de-
viation values up to ≈10 (also indicated in Figure 1(E)). She observes
from Figure 1(K) that these instances compose the majority of the
cycles in the purple cluster. However, she notices large deviations
from the default values in almost all other readings (R2).

Afterwards, the technician confirms her findings by examining
the Heatmap in Figure 1(F). For the selected points, she understands
that tempZA10 and tempZA2 of C2020061601018 cycle deviate from
the standard range. Moreover, the values of exSpeed, exTorque, ex-
Pressure, and totalTime fluctuate between cycles. She further exam-
ines the exPressure feature in the line plot (cf. Figure 1(A)). Accord-
ingly, the technician plans ahead for a closer inspection of units
produced in the deviating cycle mentioned above, and she orders a
further investigation of the cause behind the variations in the read-
ings of the extruder sensors. She uses the insight to adjust models
in the other installed ML and artificial intelligence (AI) tools (R3).

6 EVALUATION
There are many different approaches and guidelines for evaluating
VA tools/systems and visualization approaches [9, 29, 32, 33]. Since
our tool evolves as our industry partner extends the number of sen-
sors and subsystems installed in the production lines, we evaluate
it using a formative usability evaluation method [20, 21].

In detail, we conducted three evaluation sessions in five months.
In each session, the VA tool was assessed by a visualization expert
(E1) and an industry partner (E2). The former is a coauthor of this
paper, however, he was unaware of this fact up until the first two
evaluations. The experts used the tool on their personal machines
via an online link, and they had to follow a set of concrete instruc-
tions divided into three core stages. In the first stage, they tested
the solution based on a checklist of all possible functionalities to

Table 1: Results from the ICE-T and SUS feedback forms.

Components 7
Participant 5 6
Participant 4 5
Participant 2 4
Participant 3 3
Participant 1 2

95% C.I. 1

Questions 1 2 3 4 5 6 7 8 9 10
Participant 5 5 1 4 1 5 2 4 1 5 2
Participant 4 5 1 5 1 5 1 3 1 4 4
Participant 2 3 1 4 1 4 2 4 1 4 1
Participant 3 3 2 4 1 4 1 1 2 3 1
Participant 1 4 2 3 3 4 2 3 2 4 3

Legend: 1 2 3 4 5 1 2 3 4 5Legend:

85

65

82.5

Confidence Average
6.67
5.75
5.25

90
Score

Le
ge

nd
:

5.78 ± 0.58
5.33
5.51
5.62
5.94

5.88
6.13

5.92 ± 0.51

Essence
6.50
6.00
5.75
5.50
4.75

5.70 ± 0.80
6.20

70

ICE-T

SUS

5.40
5.60
6.00
6.40
Time

6.13 ± 0.29
6.13

6.52

5.38 ± 1.12
4.25
5.00

Insight
6.50
6.00

identify logical errors. The second stage is related to benchmarking
and satisfaction of users’ expectations in general. In the third stage,
the focus is on the experts’ impressions about the tool.

In the first evaluation session, although no bugs were found, E1
highlighted numerous logical issues in cross-filtering processes. He
also found various inconsistencies in the colors of the plots. We
selected a diverging color scheme that is colorblind safe to avoid
deceptive perception issues [7]. Thus, the user interface (UI) was
updated to resolve those problems. E2 reported that “the ability to
easily filter and select which data to analyze” is the most important
functionality of this tool. Moreover, E1 and E2 wanted to have the
ability to associate the processed values to the real-world data. We
added this functionality in the last version of the tool.

Both experts reported a satisfactory improvement of the dash-
board in everyway and excellent time responsiveness for the second
version of the tool. However, E1 said that the Heatmap seemed “dis-
connected from the other visualizations.” Thus, we used orange and
purple colors for the y-axis text labels to correspond to the other
plots’ clusters (cf. Figure 1). Additionally, E2 emphasized the need
to “test the tool in real-life situations” to assess it better. Finally, he
recommended implementing the ability to upload new data sets.

As for the last session, E2 was impressed with the updates. Par-
ticularly, the new functionality of choosing different methods for
comparing the original values of the various features visually is a
game-changer because it fits the analytical workflow of our tool.

Finally, we also requested qualitative feedback from three VA
researchers and two domain experts (one of them was E2). The
five participants filled out the ICE-T evaluation form [39], and they
answered the system usability scale (SUS) questionnaire [8]. Overall,
the results were positive and encouraging, as shown in Table 1.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we employed several VA techniques to provide a
plastic factory’s technicians with valuable insights from a blow-
molding machine sensory data. We developed an interconnected
dashboard that uses the DTWmethod to preprocess the data, t-SNE
and PCA approaches to reduce the dimensionality of our data, and
k-means for clustering all available cycles into two clusters. Finally,
the evaluation sessions yielded encouraging results.

In the future, the firm plans to install several cameras throughout
the production process that will use image recognition to measure
the quality of the products for classifying them. Connecting the new
data to the patterns emerging from our tool is a future direction.
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