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Evaluation of Monocular and Stereo Depth Data for Geometry-Assisted
Learning of 3D Pose

Andreas Kriegler 1,2, Csaba Beleznai 1 and Margrit Gelautz 2

Abstract— The estimation of depth cues from a single image
has recently emerged as an appealing alternative to depth
estimation from stereo image pairs. The easy availability of
these dense depth cues naturally triggers research questions,
how depth images can be used to infer geometric object and
view attributes. Furthermore, the question arises how the
quality of the estimated depth data compares between different
sensing modalities, especially given the fact that monocular
methods rely on a learned correlation between local appearance
and depth, without the notion of a metric scale. Further
motivated by the ease of synthetic data generation, we propose
depth computation on synthetic images as a training step
for 3D pose estimation of rigid objects, applying models on
real images and thus also demonstrating a reduced synth-to-
real gap. To characterize depth data qualities, we present a
comparative evaluation involving two monocular and one stereo
depth estimation schemes. We furthermore propose a novel
and simple two-step depth-ground-truth generation workflow
for a quantitative comparison. The presented data generation,
evaluation and exemplary pose estimation pipeline are generic
and applicable to more complex geometries.

I. INTRODUCTION

Recent scientific trends increasingly allow for an enhanced
spatial perception of a given environment and its actors. On
one hand, this is partly facilitated by the recent surge in
representational capacity and flexibility of learned represen-
tations. On the other hand, the emergence of enhanced depth-
sensing modalities such as high-quality stereo vision, monoc-
ular depth estimation, LiDAR, Radar offer new geometry-
encoding cues, which are highly invariant with respect to
view, appearance and photometric variations. These spatial
cues, along with appearance attributes, are often exploited in
robotic perception and interaction tasks, such as pose-aware
grasping and path planning.

3D object pose denotes the spatial transform needed to
align the coordinate reference of an observed object with
that of the observer. As depth data contains distinctive cues
linked to the sought translational and rotational object pose
parameters, in this paper we present a focused study on
examining the data quality of monocular and stereo depth
modalities in light of a learned pose estimation task.

A primary motivation of our work stems from the fact
that models trained on synthetic data often exhibit a severe
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Fig. 1. Overview of the various depth and surface normals generation
pipelines from synthetic and real data. Depth (computed surface normals)
from synthetic images is used for training a pose-aware detector, which is
tested on real images. Our proposed ground truth depth generation scheme
is used to generate reference depth/surface normals data.

degradation when facing the real data domain [8], or learning
requires a photorealistic pipeline [2] to close the gap between
simulated and real data. To mitigate this problem, we propose
depth computation from synthetic images, with the objective
to derive a representation exhibiting less synthetic qualities.
Depth data estimated from synthetic images (via monocular
or stereo estimation schemes), however, still might convey
specific characteristics, which limit generalization towards
real-world situations. Therefore, we propose a depth-data-
specific comparison based on the computed surface normals
to examine how quality discrepancies of different depth
modalities relate to each other. Furthermore, we also examine
the use of such training data with synthetic origins in
the context of learning 3D pose-aware detectors, as it is
described later on.

To support a quantitative comparison between the differ-
ent depth modalities, we also propose a novel quantitative
evaluation pipeline based on a simple ground truth gener-
ating procedure, yielding dense metric depth ground truth.
Comparison of monocular depth estimates to a metric depth
ground truth, however, is not straightforward due to the lack
of metric scaling. To this end we propose an object-centered
evaluation scheme, which compares computed surface nor-
mals at an object level and in a pixel-wise manner. Finally,
to validate that a given transition to depth data narrows
the synth-to-real gap, we present pose estimation experi-
ments purely trained on depth from synthetic imagery. These
experiments employ a baseline encoder-decoder-type pose
estimation methodology and cylindrical objects as training
and test objects. The presented data generation, evaluation
and pose estimation scheme, however, is generic and also
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applicable to more complex object geometries.
In summary, the paper proposes the following three con-

tributions:
• Ground truth generation: we introduce a novel and

generic annotation pipeline for computing dense and
accurate depth and pose data for a wide variety of real
scenes,

• Depth quality assessment: we propose a quantitative
assessment scheme, comparing monocular and stereo-
based estimates to ground truth via an object-centered
analysis of computed surface normals,

• Initial results for 3D pose estimation trained on syn-
thetic data: we demonstrate the feasibility of inferring
3D pose in real images via learned models trained on
monocular and stereo depth normals, estimated from
synthetic data.

The remainder of the paper is structured as follows: section
II gives an overview on related work. Section III describes
two data generation tasks: synthetic data generation for
learning and depth ground truth generation for evaluation,
both via Blender [3]. Section IV presents the proposed
depth quality evaluation scheme. Finally, section V shows
the applicability of a synthetic-data-based training pipeline
to learn and predict object poses in real and synthetic images.

II. RELATED WORK
Recent research activities targeting learned representa-

tions of geometric traits encompass a large set of works,
given that geometric shape and structure are intrinsic object
properties which are highly invariant for different viewing
and illumination conditions. This emerging field of geo-
metric deep learning is well summarized in [4], [5], where
geometric principles are highlighted to explain regularities
often observed in the physical world, i.e. gravitational or
right-angle structuring of man-made objects. Depth data
naturally conveys geometric information, therefore under-
standing depth computation, its data characteristics and its
failure modes are highly pertinent. [27] outlined four steps
commonly encountered in classical stereo image pipelines.
Despite representational advances via Deep Learning, these
steps continue to play a key role [37]. Depth estimation from
a single image, also denoted as monocular depth estimation,
has recently emerged as an appealing alternative to depth
estimation from stereo image pairs [36]. One of the first
methods was [11] who also introduced scale-invariant eval-
uation metrics to measure the quality of the estimated depth
maps. The proposed evaluation technique seeks an optimum
depth scaling best aligning estimated depth and ground truth,
a search step which is sensitive in presence of large depth
discrepancies. Later works have explored continuously im-
proving representations to learn a robust correlation between
the appearance of a scene and its geometry [13], [22], [21].
Some works [20] approached this learning task as part of a
multi-task learning scenario, where estimating the apparent
motion and scene depth (from the viewpoint of a mobile
observer) are formulated as two correlated and mutually-
supporting learning tasks. An enhanced generalization of

monocular depth models is attained via a mixture of datasets
in [24]. Recent representational advances based on vision
transformers [9], exploiting the attention-mechanism [32] are
capable to accurately capture long-range semantic relations
[23], see also [19] for a survey.

Nevertheless, the task of inferring absolute depth from
a single image is an ill-posed problem, most prominently
because of the prevailing scale ambiguity, making it un-
reliable in certain situations. These shortcomings lead to
the conclusion in [28] that stereo vision is still required
for accurate depth estimation, as stereo methods employ a
principled, well understood, multi-view processing frame-
work using concepts of the pinhole camera model [16]. In
stereo vision, ambiguities are generated from other sources.
In particular, stereo matching - that is, finding corresponding
points in two (or more) stereo images for disparity estimation
- is typically challenged by homogeneous image regions,
repetitive patterns, depth discontinuities and occlusions, and
particular surface reflectance properties. CNNs are known to
be very powerful feature extractors and multiple learning-
based deep neural network architectures exploit this capabil-
ity for enhanced feature matching of stereo images, such as
in [6], [12], [7]. AANet [34] provides a very good speed-
accuracy trade-off.

While both monocular and stereo-based depth reconstruc-
tion methods have their individual advantages and limita-
tions, one of the goals of our work is to provide a quantitative
comparison of the two approaches in the context of a geomet-
ric deep learning task. Research works having a similar data
characterization scope are still lacking. Although [28] pro-
vide a comparison between depths generated from monocular
frameworks vs. stereo-setups, it is largely qualitative, and it
does not use state of the art methods from the respective
fields. [24] proposes several dataset-specific metrics, which
are nevertheless difficult to relate across different datasets.

Finally, our paper is closely related to 3D object pose esti-
mation from appearance and/or depth cues. Representational
advances in recent years have resulted in an increasing ac-
curacy and robustness with respect to clutter, occlusions and
pose-ambiguous object types. This evolution is prominently
reflected in the BOP Challenge series [18]. This paper leans
on its resulting insights, that data availability and the domain
gap between synthetic training and real test often represent a
hurdle. These findings motivate us to devise data generation
schemes which yield data conveying spatial cues and better
bridge the domain gap.

III. GROUND TRUTH FOR DEPTH AND POSE

In the present data-driven era of Deep Learning, model
performance is closely linked to the quantity and quality of
training data [24]. The generation of synthetic data using
GANs [14] has proven successful, while the inclusion of
data from different sources such as YouTube videos [1] or
movie datasets [24] is gaining interest as well. Nevertheless,
the exploitation of frameworks commonly used in computer
graphics applications is still largely unexplored [25]. One
such program is Blender [3], which is commonly used to
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Fig. 2. Our proposed 3D object annotation pipeline yielding synthetically-correct per-pixel depth values and object 6DoF poses for real images captured
with an RGB camera. The pipeline comprises five steps: 1) Alignment of two sets of parallel lines (red and green) where the sets are orthogonal, forming the
ground plane. Additionally, a line segment of known length (blue) is set. 2) Creation of synthetic camera with estimated intrinsic and extrinsic parameters.
3) Camera and frames to be annotated are imported in Blender to create a synthetic twin of the scene. 4) Rendering of 16bit depth images. 5) Final
transform of depth maps to surface normal images.

render synthetic imagery based on modelled or procedurally-
generated scenes. In this work the use of the Blender
platform is two-fold: training data generation for learning
pose-aware object detectors, and 3D scene annotation for
generating dense depth ground truth. These functionalities
are explained in detail below:
Synthetic data generation: We procedurally generate a
large synthetic dataset (consisting of cylindrical objects)
along with 3D pose annotations. Diversity is introduced in
form of various spatial object configurations and varying
view parameters. We generate a rich set of object-specific
annotations in form of 6DoF pose parameters, metric object
dimensions, 2D bounding box, center point location and
occlusion indicators using ray-tracing. Example renders can
be seen at the top left side of Fig. 3, with textures randomized
for each view. Please note that texture plays only a minor role
as the RGB domain is not used directly for learning. Random
textures, on one hand, generate a notion of the governing
perspective and corresponding locations, thus facilitating the
task of monocular and stereo depth estimation. Furthermore,
random textures also introduce small-scale texture-induced
monocular depth artifacts, thus robustifying a learned model
with respect to locally corrupted depth/normal data. 56k of
such synthetic samples (resolution 768×512px) are used to
train and validate our object location and pose regression
models, as described in Section V.
3D scene calibration, ground-truth-depth generation:
Trained pose-aware models shall be evaluated on a real image
dataset. To this end, we capture 120 rectified stereo image
pairs using a Stereolabs ZED2 stereo camera [30] with a
resolution of 1920×1080px. Captured images depict four
different office environments (further on denoted as scenar-
ios) with a variable number of cylindrical objects lying on
a common ground plane. To generate a dense reconstruction

for all scenes with as little effort as possible, we rely on a
simple photogrammetric concept. We employ the technique
by Guillou et al. [15], requiring two vanishing points and a
line segment of known length. The two vanishing points can
be easily defined by two line pairs, pairwise orthogonal to
each other in the real world. Given these inputs, the camera
rotational and translational parameters can be determined,
along with its focal length. To perform the calibration and
scene reconstruction, we execute following steps:
• Calibration: for a given scenario, we assume a station-

ary camera mounted on a tripod. We create a blank
rectangular (cardboard) shape with at least one known
dimension to use as a calibration target (see Step 1 in
Fig.2). In the very first frame of a given scenario, the
edges of the calibration target can be used to manually
delineate two pairs of parallel line segments, yielding
the sought camera parameters. In later images of a
given scenario the target can be removed, since the
camera views remain stationary. The publicly available
fSpy toolkit [31] offers an interactive interface for the
calibration algorithm [15]. It also provides a Blender
camera generator functionality to create an equivalent
camera within Blender, adequately oriented, translated
and scaled, existing within a 3D space defined by the
line segments leading to the vanishing points.

• 3D scene annotation in Blender: in this step we would
like to spatially align a number of geometric objects
within the 3D metric space of the camera. Each image
of a scenario contains N (1< N <4) cylindrical objects,
randomly placed in a lying pose. We measure the
dimensions (length, radius) of these objects, in order
to create cylindrical primitives of the same metric size
in Blender. If objects are known to be on a common
ground plane, object dimensions are not necessary.
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Nevertheless, known dimensions significantly constrain
the possible pose space where placed 3D objects are
aligned with the apparent projections in the view seen
through the camera (Steps 2 and 3 in Fig.2). This step
also naturally leads to object pose attributes (orientation,
translation) with respect to the camera.

• Dense ground-truth-depth generation: after aligning all
3D objects within Blender, the scaled Z-depth informa-
tion can be rendered for the given scene. This depth
information contains the metric depth for every scene
point, similarly to a depth measurement via calibrated
stereo cameras. This step is executed programmatically
and produces float-valued depth entries for every image
point where camera rays hit a previously placed object
(see Step 4 in Fig.2). Note that a scaling factor is
introduced for visualization only.

The presented calibration and ground truth generation
scheme represents a straightforward annotation workflow
for 3D object pose and depth data. It is applicable for a
wide range of object geometries, scale ranges and arbitrary
viewpoints. A detailed documentation, sample scene and
code can be found at [url].

IV. EVALUATION OF MONOCULAR AND STEREO
DEPTH DATA

In this section we describe a data-oriented evaluation
methodology for three state-of-the-art depth estimation
schemes. Our comparison targets the quality evaluation of
structure-encoding surface normals (derived from the depth
data), in the context of representation learning for 3D pose
estimation. The three selected estimation schemes consist of
two monocular depth estimation methods MiDaS v2.1 [24]
and MiDaS v3.0 [23], and a stereo depth estimation model
AANet [34]. Further on, MiDaS v2.1, MiDaS v3.0 (using
the DPT large model) and AANet are denoted as MiDaS,
DPT and AANet for brevity.

MiDaS [24] is a CNN-based depth estimator using the
framework of [33] with a ResNet [17] backbone. It was
trained using up to ten different datasets, including 3D
movies, leveraging the large data quantity and diversity for
generalization. DPT [23] is a vision transformer trained for
multiple dense prediction tasks including depth estimation.
An argument for transformers is that they are able of
capturing long-range semantic relationships in images [9],
which should enforce stronger global structural consistency
in the depth results; a trait which is often lacking for CNN-
based monocular-depth frameworks [23]. Lastly, AANet [34]
consists of an adaptive aggregation model for multi-scale
disparity cost aggregation, resulting in an efficient stereo
matching scheme. We employ the AANet kitti2015+ model
which incorporates GANet [35] for feature matching.

A direct pixel-wise comparison between a monocular
depth estimate and a ground truth is not straightforward,
as monocular-depth frameworks generate disparity (inverse
depth) values with no metric scaling. Furthermore, different
monocular models yield disparity (depth) estimates with
substantially different scaling factors. Therefore, common

stereo vision evaluation metrics - assuming data living in a
metric space - cannot be applied. To overcome this problem,
we propose an object-centered scaling scheme performing a
normalization within object-specific regions. The objective
of this scaling step is to bring monocular, stereo and ground
truth depth data within object foreground regions into a scale-
normalized form. The input for this scaling is a depth image
Di, where i = {0,1,2} indicates ground truth, monocular and
stereo depth, respectively. A corresponding object foreground
mask m0 is also needed (generated via the ground truth
generation process) to spatially constrain the set of pixels
included into the normalization step. This mask contains
unit entries at all object locations, denoted as object mask
region mOb j

0 , and zeros elsewhere. The scaling operation is
performed as:

D∗i = Di / max(1,Di[m
Ob j
0 ]), (1)

resulting in D∗i , a scaled depth image containing unit-
normalized values within the object mask region. This subset
of normalized depth values is used exclusively for further
computation steps towards a quantitative comparison.

We adopt this object-foreground-based normalization pro-
cedure for ground truth, stereo and monocular depth data,
resulting in depth values within the object foreground regions
scaled to a common range. Instead of using the scaled depth
values for an evaluation, we investigate its spatial deriva-
tives, in form of surface normals. The choice of opting for
surface normals stems from a representational consideration:
when seeking to learn representations for objects situated at
varying distances from a camera, computed surface normals
exhibit less variation than depth data. We use a simple
procedure to transform depth images to surface normals. First
we calculate pixel intensity changes as derivatives dx and dy
using the Sobel kernel [29]. With the intensity gradients we
build local support planes, whose normal vectors can be seen
as the normal vectors of the object surface in those pixels.
As matrix norm we use the Frobenius norm. Since the Sobel
kernel size is a configurable parameter, most commonly 3×3,
5×5 or 7×7, we examine resulting surface normal quality
variations in this regard, and also include an alternative
Scharr 3x3 kernel [26]. Images of computed surface normals
are visualized by mapping the directional vector components
to respective 8-bit RGB channels. The 3D vectors of surface
normals are compared to ground truth in a pixel-wise manner
using a 3D cosine similarity, yielding a similarity score in
the range of [−1,1]. Vector similarity scores are mapped to a
[0,1] range and a cumulative score from all object foreground
regions is formed.

V. RESULTS AND DISCUSSION

In this section, we present results on comparing depth data
quality in terms of pixel-wise surface normal similarities with
respect to a corresponding ground truth. The comparison is
generated for a real dataset using the presented three (MiDaS,
DPT and AANet) depth computation modalities. In addition
to a quantitative evaluation, we also present qualitative results
on the depth quality and experimental outcomes for 3D pose
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estimation. In the following, we describe our dataset and
related evaluation results, followed by qualitative depth and
pose estimation results.
Dataset and evaluation results: our 120 real-image dataset
(see Section III) was captured using 4 distinct viewpoint
setups, each scene containing 30 random object configura-
tions. For each of the 120 images a corresponding depth
ground truth was computed. Table I displays surface normal
similarities computed from the MiDaS, DPT and AANet
methods with respect to the ground truth. The table also
shows the effect of the varying kernel-size used for surface
normal computation. The kernel size of -1 denotes the
Scharr, the other numbers relate to the Sobel kernel size.
As it can be seen from the table, the two monocular depth
estimation methods on an average produce very similar
quality. While DPT tends to produce more geometric detail,
in case of our targeted, smoothly varying surfaces it did
not lead to enhanced scores. On the other hand, the AANet
stereo matching scheme clearly outperforms the monocular
models in all cases. The elongated cylindrical objects are
long enough to call for the need of estimating accurate
far-range structural correlations; a trait where monocular
methods are still lacking behind the quality of the stereo
depth data. Monocular methods generate a spatially-smooth
output, where derivative kernels of increasing size deteriorate
the captured geometric details. Therefore, a small kernel
size of 3px seems to produce optimum results. AANet, on
the other hand, benefits from larger kernels, suppressing the
noise associated with the disparity estimation process.
Qualitative depth results: Fig. 3 displays a large set of
qualitative results, partially generated for synthetic renders
(Fig. 3 left half), partially for our real-image dataset. To
facilitate the interpretation of depth quality, besides false-
color depth images we also display two views of the point
cloud representing the given scene. As it can be seen
from the point cloud views, monocular depth estimation
is relatively accurate when considering it locally, but at a
large scale (especially near the image boundaries) significant
spatial deviations occur. This observation also implies that,
if pursuing an object detection or pose estimation task, local
depth cues from monocular estimation can provide valuable
hints, lifting many ambiguities associated with the monocular
nature of the view. However, for problems requiring a global
scale consistency, stereo pipelines still seem to be the more
accurate and less data-dependent choice.
Qualitative pose estimation results: To examine the influ-
ence of data quality onto a 3D pose estimation learning task,
we performed following experiments. Section III describes
our data generation step for learning. The synthetic data, as
single images or stereo pairs, are used within the respective
monocular (MiDaS, DPT) and stereo (AANet) pipelines to
generate depth data. The computed surface normals from
depth and corresponding pose annotations {class, 2D cen-
ter, depth, angular parameters} represent the input of our
learning scheme. Given these inputs, an encoder-decoder-
type framework (CenterNet [10]) was used to train depth-
modality-specific models for 3D pose estimation (see also

TABLE I
QUANTITATIVE COMPARISON OF SURFACE NORMALS COMPUTED USING

DEPTH CUES FROM THREE MODELS. (HIGHER IS BETTER).

k MiDAS v2.1[24] DPT Large[23] AANet[34]

Sc
en

e
1

-1 0.7861 0.7898 0.8801
3 0.7861 0.7898 0.8801
5 0.7846 0.7887 0.8888
7 0.7826 0.7870 0.8922

avg. 0.7849 0.7888 0.8853

Sc
en

e
2

-1 0.8596 0.8722 0.9291
3 0.8596 0.8722 0.9291
5 0.8579 0.8714 0.9362
7 0.8559 0.8702 0.9387

avg. 0.8583 0.8715 0.9333

Sc
en

e
3

-1 0.8382 0.8005 0.8930
3 0.8382 0.8005 0.8930
5 0.8364 0.7984 0.9012
7 0.8341 0.7958 0.9041

avg. 0.8367 0.7988 0.8978

Sc
en

e
4

-1 0.8650 0.8604 0.9212
3 0.8650 0.8604 0.9212
5 0.8630 0.8588 0.9294
7 0.8606 0.8567 0.9324

avg. 0.8634 0.8591 0.9261

Fig. 1). We observe fast convergence within 3-5 epochs.
We demonstrate the applicability of our process to learn

6DoF pose parameters from purely synthetic data and per-
form prediction in real images. Fig. 3 shows pose estimation
results (rows 6, 11 and 16) for the individual depth modali-
ties. As it can be seen from the figure, in the synthetic domain
results exhibit a high recall and a high pose estimation
accuracy. In the real domain, however, inference on surface
normals from monocular techniques shows several failure
modes, a lower recall and precision, in form of occasionally
hallucinating cylindrical objects within the nearby struc-
tural clutter. When using stereo-depth-based surface normals,
however, results improve. Recall is still lacking, but no
objects are hallucinated. Based on these results we believe
that spatial cues derived from synthetic images can represent
a way towards learning geometry-aware representations of
objects and pose, which also exhibit validity within the real
world.

VI. CONCLUSIONS

We present a geometrically-inspired depth data analysis
scheme comparing surface normal cues from monocular and
stereo-based pipelines, with object detection and 3D pose
estimation tasks in mind. To support the data evaluation
task, we propose a novel ground truth generation scheme,
where dense depth and pose data can be created with little
manual interaction. Our evaluations with respect to ground
truth indicate that stereo-depth prevails in terms of data
quality when compared to monocular depth, especially if
a long-range depth data consistency is required. However,
we demonstrate, that monocular depth still captures rele-
vant local geometric details, which is sufficient to learn
pose-aware object detectors from purely synthetic data. The
demonstrated transition from the synthetic to the real domain
seems to offer further geometry-aware analysis perspectives,
while exploiting monocular or stereo depth cues.
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Fig. 3. For the synthetic data domain (left) and real images (right) we visualize example input images as well as depth images, depth point clouds and
surface normals obtained using each of three depth estimation methods. The final rows for each model show CenterNet pose estimation results trained on
surface normals from the large-scale synthetic dataset.
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[15] E. Guillou, D. Méneveaux, E. Maisel, and K. Bouatouch, “Using
vanishing points for camera calibration and coarse 3d reconstruction
from a single image,” Vis. Comput., vol. 16, no. 7, pp. 396–410, 2000.

[16] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518,
2004.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778, 2016.
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