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Abstract—In recent years, the trend to provide more and more
energy from renewable sources and less from conventional forms
of electricity production reduces worldwide carbon emissions. In
general, this is welcome but it also introduces new challenges. The
diversity of electrical energy production grows and puts stress
on the grid, its operators, and energy distribution planning. New
ways for compensating the introduced instabilities are needed.
Energy communities can address distributed production issues
by adjusting the local demand as good as locally possible.
This paper presents a methodology for simulating an energy
community controller to test mechanism for smoothing grid
load by aggregating available flexibilities of energy community
members on a communal level. The controller tries to minimize
load from or to the community by using different flexibilities and
prediction algorithms within the community.

Index Terms—Energy management, Smart Grids, Batteries,
Photovoltaic systems, Machine learning, Prediction methods

I. INTRODUCTION

Power grids are changing by the minute to cover for new
challenges that arise from new technologies and the growing
demand for clean, carbon emission-free energy. In recent years
the amount of energy provided by conventional power plants
decreases, making a place for renewable forms of energy.
The nature of many forms of renewable power plants is that
they provide energy depending on many different conditions
like daytime, weather, and temperature. Distributed renewable
energy forms introduce issues in distributing the energy to
the consumers as the grid’s topology is a top-down approach.
There are times with excess energy production and also times
where the production is at a low. Additionally, demand and
production locations differ at certain times. The European
Union’s (EU)’ Clean Energy for All Europeans Package’ is an
update for the EU’s energy policy framework [1]. In this pack-
age, the European directive [2] lays down the basic rules for
renewable energy communities and [3] for citizen energy com-
munities. The member states are responsible for transforming
them into national legislation until mid-2021. This legislation
enables households and small to medium-sized businesses to
participate in renewable energy communities. A way to cover
for the inhomogeneous production and consumption is to use
already existing flexibilities. These flexibilities range from
unused battery capacities to adaptable loads like heat pumps or
water pumps and electric vehicles (EVs). To use flexibilities,

a controller can orchestrate the process. It covers flexibility
aggregation, predicts future consumption, handles members,
applies different control strategies, and communicates with
other communities or grid operators to ensure grid stability.
There exist many different approaches to test the advantages
of such a system. This paper proposes a concept to simulate
and test different strategies for implementation variants. The
controller is developed as a module for Bifrost, a simulation
and demonstration software.

The key contributions of this paper are:
A. Introduce a flexible Energy Community Controller;
B. Present a methodology for using the simulation environ-

ment to enhance Energy Community control strategies;
C. Verify the approach based on an exemplary community

settlement where local flexibility’s (e.g., battery storage)
optimize for self-sufficient load consumption;

The remainder of this paper is organized as follows. sec-
tion II contains a review of related work, section III presents
the Bifrost environment, and the methodology is described in
section IV. The exemplary use case scenario and the results
are both presented in section V. Finally, conclusions and an
outlook can be found in section VI.

II. RELATED WORK

The power generation mix in power grids in the EU has
increased its share in volatile renewable energy sources like
wind turbines and photovoltaic panels over the last decades [4].
While this increasing pervasion in electricity production from
renewable resources is inarguably a step in the right direction
to address high carbon emissions of conventional fossil-fueled
power plants and meet the ever-increasing energy demand, the
development comes with a new set of challenges for the power
grid and its reliable operation.

Rapidly changing solar irradiance and wind conditions and
their inaccurate forecasts can lead to imbalances between the
power supply and demand. Additionally, the voltage variations
caused by the volatile generation pose the risk of power quality
issues by exceeding the standardized limits many electronic
devices and power grid utilities rely on for normal operation
[5] [6]. As more photovoltaic and wind power connects to the
grid, these problems will become more prominent.

The idea of demand response (DR) is considered a viable
part of the solution to keep up with the need for more978-1-7281-9023-5/21/$31.00 ©2021 IEEE



renewable energy sources while also enabling flexibility on
the power grid to handle their volatility and has been widely
covered in the scientific literature [7] [8]. The term DR is not a
single technique but encompasses multiple distinct methods of
attuning energy demand on the end-user side to the production
- i.e., in residential households, commercial and communal
buildings, and industrial facilities.

The electrical devices available for controlling in a demand
response scheme are, among others, residential and commer-
cial refrigeration systems, building heating systems, batteries,
and electric vehicles. One specific area of DR considers the
volatility of renewable energy sources and devices available
for control as flexibilities in the power grid. The aim is to
allow renewable energy sources with high energy production
variations, such as photovoltaic and wind energy, to be bal-
anced by controllable appliances that can ramp, shift or curtail
their power demand, thereby stabilizing the grid [8] [9] [10].

Simulations of power grids in conjunction with simulations
for information and communication technology can enable
faster and cheaper evaluation of a wide range of future smart
grid and demand response technologies. Because of the inher-
ent complexity and size of the systems studied, homogeneous
simulation tools are prone to oversimplification of the problem
domain or do not scale well to the required size. In con-
trast, co-simulation approaches, consisting of heterogeneous
systems working together, suggest better results [11].

Recent studies on the collective control of multiple build-
ings’ energy consumption have focused on model-predictive-
control architectures for controllers [12], scheduling algo-
rithms for energy flexibility dispatching [13] [14] and vali-
dation of photovoltaic simulation models [15]. Concering the
prediction of residential demands or renewable energy produc-
tion, there is a variety of time series forecasting methods avail-
able [16] from the simple ones such as Autoregression (AR),
Moving Average (MA) merging into Autoregressive Integrated
Moving Average (ARIMA) that is the most commonly used
for a univariate time series with further extension for season-
ality (SARIMA, SARIMAX). Vector Autoregression (VAR),
Vector Autoregression Moving-Average (VARMA) and Vector
Autoregression Moving-Average with Exogenous Regressors
(VARMAX) are used for multivariate time series. Simple
Exponential Smoothing (SES) and Holt Winter’s Exponential
Smoothing (HWES) rounds up the classical approaches [16].
Furthermore, extensive data availability allowed the wide
spread of neural networks in general and Long Short Term
Memory (LSTM) networks. And finally, due to the growing
complexity of applications, hybrid approaches are becoming
widely spread using multiple methods to improve the accuracy
of predictions [17].

A common problem with demand response is the missing
experience regarding the capabilities and the problems emerg-
ing from large scale applications. This lack of experience re-
peatedly results in the need for extensive assumptions in previ-
ous studies [8]. Assessing the viability of control strategies for
flexibilities is costly in real-world field experiments because
of the systems studied’ size and complexity. Other problems

Fig. 1. Energy community settlement with six households and one community
battery in Bifrost

in previous years were regulatory barriers that did not allow
individuals to take part in coordinated control schemes. In the
European Union, this is now becoming possible through the
introduction of legal frameworks like the “Renewable Energy
Community” and “Citizen Energy Community” [2] [3] [18].
Additionally, Jordehi et al. [19] identifies the need to attract
more residential consumers to demand response programs.
Creating tangible simulations that are more easily accessible
for parties interested in joining energy communities could
enable them to anticipate the benefits and reduce the inhibition
level for wavering parties.

III. THE BIFROST ENVIRONMENT

Core: Bifrost1 is a simulation coupling platform with a
web-based 3D interface for the construction and management
of communities. External simulation modules can hook into
the core simulation loop and fill the Bifrost data model with
dynamic data. The core takes care of calling the modules in
a deterministic order and with the desired subscription data
and merging the values they provide into the data model. In
this way, specialized domain models can be chained together
to achieve the desired output at the end of each simulation
loop. Bifrost is designed to run continuously in accelerated
real-time: a simulation iteration takes one second in real-time
and between one second and several hours in simulation time,
dependent on the connected modules and the desired analysis
scale. Figure 1 shows a typical settlement in Bifrost which
serves as the base for the scenario in section V.

Modules: Bifrost uses several modules to provide the de-
sired functionality. Apart from the core module, our envi-
ronment includes a building model representing households,
commercial buildings, community buildings and more. Figure
2 shows the building model with its different sub-modules.
A more detailed description can be found in Section IV.
Furthermore, a weather generator replays weather conditions
for the desired date and location. To adjust the time frame for

1https://bifrost.siemens.com

https://bifrost.siemens.com
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Fig. 2. Building Model functionality with data exchange to EC controller

simulation, it integrates a module called timetargeter, allowing
jumping back and forth in time with adjustable time steps
and more. A battery model serves the purpose of integrating
community batteries. The model provides the option to select
various types of batteries or configure them directly in the
simulation environment. The model features options to inte-
grate self-discharge, ageing and efficiency for the charging
and discharging process. Moreover, it provides the option
to provide DC power to electric cars or similar loads. To
supply the community controller with information about the
grid or other communities, a separate grid operator/higher-
level controller module integrates this functionality.

IV. ENERGY COMMUNITY CONTROLLER

The proposed energy community controller is the ground-
work for testing future renewable and citizen energy com-
munities integrating the EU directives [2] and [3]. It has the
role of a managing instance to ensure the proper function of
such communities. For achieving the highest possible benefit
the underlying algorithms, strategies and data exchanges for a
basic simulation concept are laid out in this section.

Figure 3 shows an overview of all the participants of the
energy community, including the controller, member buildings,
community batteries and the higher-level controller/grid oper-
ator. The chain of command is from left to right, meaning
the higher-level controller may request flexibility from the
community controller, who can reserve flexibilities according
to the request. The community controller aggregates available
flexibility from members, including buildings and community
batteries and orders the members to apply certain flexibilities
upon demand. This process should ensure reducing the grid
load and, when necessary, support the grid. The buildings
can provide different kinds of flexibilities depending on the
installed systems—these range from heat pumps over photo-
voltaics (PV) to batteries. The community batteries provide
flexibility for all members and are shared accordingly.

For simulating requests due to shortages in the grid or
inter-community exchanges, another module simulates a grid

operator/higher-level controller that negotiates flexibility with
the community controller based upon the grid’s status. The
various grid status are based on the definition in [20]. These
states determine which control scheme the controller uses. In
the best case, the grid is in a green state where the community
controller can act independently without interference from a
higher entity. Suppose the grid state is influenced by low
production/consumption, the state changes to yellow. In this
state, the grid operator can signal the community controller to
provide flexibility upon availability. If the state deteriorates
even more and changes to the red state, the grid operator
signals the EC controller to provide a specified amount of
flexibility. In this state, the controller must provide energy as
agreed upon, preventing the grid from greater difficulties. The
community should get appropriate compensation for doing so.

A. Aggregating and Balancing of Flexibilities

The community controller handles the exchange of flexibili-
ties. The exchange includes the distribution of energy, calcula-
tion and logging of the energy exchanges, and communication
with a higher-level controller/grid operator to integrate the grid
status into the calculation and distribution.

Flexibility types: This concept for an energy community
controller simulation includes different flexibility types to
cover as many cases as possible. There are three types in this
framework: full flexibility, shift flexibility, and loss flexibility.
Full flexibility describes units in the system that can provide
their available energy without losing the ability to power
devices like shutting down flexible loads or losing the chance
to use the energy at all. On the other hand, shift flexibility
provides short-term energy that has to be compensated for
shortly afterwards. Loss flexibility is an energy that is not
converted into electrical energy or electrical energy that is not
consumed but cannot be consumed afterwards. Examples for
these types of flexibility would be a battery for full flexibility
being capable of providing energy when needed as long as
the charging level is sufficient. For shift flexibility, a heat
pump or electric car would be an example of delayable energy



Fig. 3. Overview of the EC Controller scheme

consumption. For loss flexibility, an example would be a
photovoltaics converting less radiation energy than available
into electrical energy, therefore ”loosing” potential energy.
Figure 4 shows the community- and member demand with
coloured arrows illustrating possible use of flexibilities and
red and green blocks illustrating the energy consumption and
production of the whole community with demand in black.

The EC controller collects all the flexibilities from the
building and battery controller. The building and battery
controller themselves again collect the flexibilities from the
underlying building model and battery model. The building
model provides the prediction for consumption and production
as well. The community battery does not provide predictive
values as the community solely controls its behaviour.

Scheme for a round of communication: the scheme for
doing one step of community interaction is as follows. All
the community members household controllers collect their
current consumption, which corresponds to the last time
frame’s consumption or step. Furthermore, they collect the
sole consumption of all the separate modules that are capable
of providing flexibility. Afterwards, prediction takes place for
the different loads: the standard household loads not separately
tracked, the PV installation, and heat pumps and flexible loads.
For the batteries, no predictions have to be made as they
are fully controllable. Based on these single predictions, a
prediction for the whole household consumption for the next
step is transmitted to the community controller and ranges
for different flexibility types. On the other hand, the battery
controller also collects the previous consumption for all the
member batteries. It calculates the flexibility for the batteries
based upon the specifications of the batteries and the state
of charge. The community controller then collects all the
aggregated flexibilities and acts upon them. The grid can
be supported if necessary. After determining the grid’s state
by communicating with the grid operator, it balances the
members’ loads. It starts with using the available capacity
of the community batteries as a first approach. If necessary
or desired, the amount of energy that cannot be distributed
among the batteries is distributed to the entities which provide
shift flexibility like heat pumps. These short time flexibilities
should only be used if the grid requires it or if the long-term

Fig. 4. Member and Community Demand with available flexibility and use

perspective allows such measures. As a last resort, the PV
production can be reduced to prevent grid failures.

B. Community Balancing Mechanisms

For the prioritization of member flexibility, different mech-
anisms provide varying advantages. At the current state, two
distinct mechanisms can be selected. The first approach uses
flexibilities evenly from all the household, not considering
which member provides more or less flexibility. In the case
of some members not being able to provide the same amount
of flexibility as others, the remaining flexibility is distributed
among members capable of supplying a higher amount. The
second approach uses a quota scheme where every provision of
flexibility is recorded and used as a base for future distribution
of flexibility. It leads to members providing more energy
than others being able to get more energy later on. The first
approach has its advantage in relying on more diverse sources
of flexibility, whereas the second approach allows a fairer
distribution of energy as members contributing more to the
community to receive more from the community in exchange.



Fig. 5. Prediction models information flow

Regarding balancing the load for 24 hour prediction we want
to use a linear programming method. The simplex algorithm
[21] is a possible solution for such problems and we will use
this algorithm to find an optimal solution.

C. Modeling demand for heating

The building model incorporates a class for heat pumps.
At the current stage, its demand represents the normalized
consumption for a heat pump of that type. The output power at
a given hour of the day calculates with the outside temperature
at that time. For the next stage, a model for thermal demand
of the buildings similar to the one presented in [22] will be
used, providing a building adapted demand for the heat pump.

D. Predicting local energy production and consumption

For the appropriate distribution of energy and flexibilities,
it is necessary to predict future consumption and production.
In a household, the standard loads, heating requirements, PV
production and possible flexible loads should be predicted. A
combination of neural networks and analytical models provide
forecasting for Bifrost to operate where the neural networks
predict household consumption, outdoor air temperature and
solar radiation. The former is directly fed into the control
environment, air temperature is fed into the model of heat
pump, and solar radiation is used in the PV production
model. All three models use LSTM neural networks with 125
neurons of the hidden layer combined with a dense output
layer. The consumption model used for the standard load
profile uses two previous observations as an input and a
single output for prediction, the same way the air temperature
model is structured. The solar radiation model uses five
inputs: Azimuth, Zenith, diffuse-horizontal-, direct-normal-,
and global-horizontal-irradiance (Dhi, Dni, Ghi), each with
two previous observations and three outputs. The consumption
dataset used for training consists of 32.000 measurements for
15-minute intervals, corresponding to roughly 11 months. Air

and Solar base on a common data-set consisting of 470.000
observations in 15 min intervals (∼13 years). Consumption
and Solar datasets have a right-skewed distribution, with the
majority of measurements having small changes and rare
peaks, which challenge forecasting. However, the LSTM mod-
els managed to detect patterns and struggles in peak situations
only. Contrary thereto, the air temperature is characterized by
a normal distribution and shows minimal deviations from the
expected values. These three models are used in the scenario
where planning is performed only for the next 15 min interval.
The other scenario is day-long planning, where the models’
outputs are 96 values of 15 minutes interval using autoencoder
models with LSTM. Figure 5 shows the prediction models with
its necessary information flow.

V. USAGE SCENARIOS AND RESULTS

This section presents a simple usage scenario for the con-
troller in an energy community and preliminary results of the
ongoing development. As mentioned in Section III, Figure 1
shows a Bifrost settlement with a community battery and six
community members. Three of the households have a PV in-
stallation with 5 kW of peak power, each facing southwards. A
community battery extends the settlement capable of supplying
11 kW of power with 100 kWh of capacity. The simulation
starts at a specific point in time with fixed parameters for
weather and environmental conditions and runs for seven
straight days (simulation time) without an active controller.
Afterwards, the simulation is repeated with the controller
actively performing single step predictions and flexibilities
balancing, including the battery.

Figure 6 shows the curves for the community’s power con-
sumption with and without the controller showing a change for
the community’s maximum and minimum power consumption.
The power that was previously inserted into the grid is now
consumed by the battery and afterwards used to compensate
for the demand of the households. The controller has to
predict the household demand and PV production precisely
to request the right amount of flexibility from the battery as
there are only 15-minute values available on the community
controller side. The scenario uses 15-minute time-steps to
verify the behaviour, showing minor inaccuracy in predicting
the community’s demand. The spikes remaining arise from
the battery being empty after some time due to insufficient
charging power from the PV installations.

This scenario shows the operation of the controller in its
current state. The controller reduces the peak power drawn
from the grid by 21.4 % and the power fed into the grid by
89.5 %. The energy drawn from the grid is reduced by 53 %,
and the energy fed into the grid by 98.9 %. More complex
predictions and models will be used for future work, and the
number of available loads and flexibility providers will be
increased. Concerning prediction, all three models were able
to detect the training datasets’ underlying patterns and showed
varying degrees of deviation from the test datasets’ actual
values. The household consumption model struggled to predict
the peak values accurately, but 89 % of the predictions were



Fig. 6. Energy Community Power Consumption over several days

under 10 % deviation. The solar irradiation model showed
similar results but managed to nicely detect peak values (only
3.5 % of Dhi predictions above 10 % deviation from the actual
values, 6.7 % for Dni, and 1.6 % for Ghi). The air temperature
model is most accurate with no deviation above 10 %.

VI. OUTLOOK

Further work will be done regarding prediction accuracy and
bridging Bifrost with a hardware-in-the-loop connection in real
households for further data points in the system. Additional
factors, such as economic feasibility, cost calculation, and
impact of the energy controller towards the CO2-footprint of
the community’s energy mix, will be added to the system.
Regarding the controller, an implementation of the day-ahead
prediction will follow. Furthermore the model predictive con-
trol needs to be finished and included to properly predict
demands. Additionally the buildings heating demand module
needs to be implemented to complete the heat pump. Due to
the fact that the vast majority of changes in the consumption
model are minimal with sudden peaks, anomaly detection
methods would provide better results. The solar irradiation
model might benefit from more input parameters to improve
the performance, whereas the air temperature model may be
substituted by naive forecasting since the changes between
measurements are minimal and gradual.
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