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Abstract
Reduction reactions of unsaturated compounds are fundamental transformations in synthetic chemistry. In this context, the 
reduction of polarized double bonds such as carbonyl or C=C motifs can be achieved by hydrogenation reactions. We describe 
here a highly chemoselective Mn(I)-based PNP pincer catalyst for the hydrosilylation of aldehydes and ketones employing 
polymethylhydrosiloxane (PMHS) as inexpensive hydrogen donor.
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Introduction

The reduction of polarized double bonds such as carbonyl 
motifs is among the most important transformations in 
organic synthesis. To increase atom efficiency and avoid 
massive production of waste, catalytic reactions should 
be employed. Within this context, precious metals are fre-
quently used. However, their production shows high envi-
ronmental impact and their amount is limited. The usage 
of earth abundant metals would decrease the environmental 
impact and could be an interesting alternative to noble met-
als [1].

Within this context, manganese is an interesting can-
didate for investigations due to its low toxicity and high 

abundance [2]. Manganese-based complexes play a major 
role in sustainable oxidation [3–10] and hydrogenation 
[11–18] reactions by now. Although, the use of dihydrogen 
displays advantages such as low costs and easy removal from 
the reaction mixture, several drawbacks should be taken in 
account. Dihydrogen is explosive and expensive reactors 
have to be used. An attractive alternative to that is the use 
of hydrogen donors such as silanes [19, 20]. Since the first 
report on manganese-catalyzed hydrosilylation reactions by 
Yates and coworkers in 1982 [21], several protocols for the 
hydrosilylation of polarized double bonds such as ketones 
[22–27], esters [28, 29], amides [30–32] and acids [33] as 
well as alkenes [34–36] and alkynes [37] were developed.

Our group recently reported on the chemoselective hydro-
genation of aldehydes, catalyzed by a well-defined PNP-
Mn(I) complex [15]. We wondered if the same complex 
is also capable of undergoing hydrosilylation reactions of 
carbonyl compounds and whether the substrate scope could 
be extended to ketones (Scheme 1). Here, we describe the 
chemoselective hydrosilylation of aldehydes and ketones 
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catalyzed by well-defined PNP-Mn(I) complexes based 
upon the 2,6-diaminopyridine scaffold (Scheme 2). As inex-
pensive silane source polymethylhydrosiloxane (PMHS) is 
utilized.  

Results and discussion

To evaluate the potential use of PNP-based Mn(I) com-
plexes, the hydrosilylation of 4-fluoroacetophenone with 
phenylsilane was chosen as model reaction utilizing com-
plexes 1–4 as pre-catalysts. Conversions and yields were 
determined by 19F{1H} NMR-spectroscopy [13, 18]. While 
complexes 1, 3, and 4 are capable of metal–ligand bifunc-
tionality, metal–ligand cooperation is blocked in the case of 
complex 2 due to methylation of the N-linker. As shown in 
Table 1, complexes 1 and 2 gave moderate to good conver-
sion whereas compounds 3 and 4 did not show any reac-
tivity for the hydrosilylation of 4-fluoroacetophenone. The 
hydride ligand seems to be vital for the activity of the sys-
tem. Interestingly, complex 1 and 2 gave similar conversions 
indicating that metal–ligand cooperativity is not crucial for 
the hydrosilylation of ketones.

According to the results represented in Table 1, catalyst 
1 was chosen for further investigations and optimization of 
the reaction parameters. Since the use of phenylsilane as 
hydrogen-source is connected to high costs, we wondered if 
substitution by the inexpensive siloxane polymethylhydrosi-
loxane (PMHS) is possible. PMHS is a byproduct in indus-
trial siloxane product and, therefore, displays an interesting 
candidate as hydrogen-source in hydrosilylation reactions 
[38]. To our delight, the substitution of phenylsilane with 
PMHS even increased the conversion to 92% (Table 2, entry 
1). Increasing the reaction temperature to 110 °C led to full 
conversion of substrate at only 1 mol% catalyst (Table 2, 
entry 4). However, the difference between determined con-
version and yield was attributed to formation of a hemiacetal 
as side product.

Therefore, a screening of solvents was done to circum-
vent the formation of undesired byproduct. Toluene and THF 
gave low conversion, but no formation of hemiacetal could 
be detected. Employing isopropanol as solvent led only to 
traces of product formation. 1,2-Dimethoxyethane (DME) 
revealed to be the best solvent for this transformation, giving 
a clean reaction. To achieve good conversions, the catalyst 
loading was reinvestigated, whereas 2.5 mol% gave the best 
results (Table 2, entry 10).

Scheme 1 
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Table 1   Catalyst screening for hydrosi-
lylation of 4-fluoroacetophenone 

Reaction conditions: 0.35 mmol ketone, 2 mol% catalyst, 0.1 mmol 
PhSiH3, 2 cm3 ACN, 18 h, 80 °C
a Conversion determined via 19F{1H} NMR-spectroscopy
b Yield determined via 19F{1H} NMR-spectroscopy and fluorobenzene 
as standard

Entry Catalyst Conversiona/% Yieldb/%

1 1 78 65
2 2 70 63
3 3 – –
4 4 – –
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Having established the optimized reaction conditions, the 
scope and limitation was investigated and a broad variety 
of different (hetero)aromatic substrates was examined. The 
introduced procedure tolerated halides (7) as well as coordi-
nating groups such as amine (10), ether (9), and nitrile (11) 
functionalities. It should be noted, that high chemoselectiv-
ity towards the reduction of the keto-group in the presence 
of a nitrile moiety could be detected, whereas the nitrile 
functionality stays unaltered. Lower conversion could be 
achieved in the presence of a nitro-group (8). Sterically more 
demanding ketones (14 and 15) gave excellent yields. Furane 
(18)- and pyridine (17)-based systems gave good yields. 
Lower reactivity could be observed in case of aliphatic sys-
tems (19 and 20). However, no reduction of the conjugated 
C–C double bond could be detected in case of 20.

The substrate scope was further extended to aldehydes. 
The challenging substrate salicylaldehyde (21) gave excel-
lent yield. Due to the high chemoselectivity of catalyst 1, 
a variety of challenging aldehydes containing C–C double 
bonds was investigated. Cinnamon aldehyde (22) as well as 
1-methyl-1-butene-carbaldehyde (25) gave good to excellent 
conversion, without any reduction of the conjugated C–C 
double bond. Finally, aldehydes, which are important com-
pounds in fragrance industry were investigated. Excellent 

yields could be detected in case of helional (24), citronel-
lal (26), and citral (27) as substrates. Unfortunately, only 
low conversion could be detected in case of dartanal (29) 
(Table 3).

Conclusion

In sum, we have described an efficient manganese-catalyzed 
hydrosilylation of aldehydes and ketones with the inexpen-
sive siloxane PMHS, which is a byproduct in industry. High 
chemoselectivity for the reduction of carbonyl groups in the 
presence of (conjugated) C–C double bonds or other reduc-
ible groups such as nitro or nitrile functionalities could be 
reported. The scope of the introduced protocol covered a 
broad variety of aromatic ketones. In the case of aldehydes, 
challenging substrates featuring (conjugated) C–C double 
bonds were chosen which are important in the fragrance 
industry.

Experimental

All manipulations were performed under an inert atmos-
phere of argon using Schlenk techniques or in an MBraun 
inert-gas glovebox. The solvents were purified according to 
standard procedures [39]. The deuterated solvents were pur-
chased from Aldrich and dried over 4 Å molecular sieves. 
Complexes [Mn(PNP-iPr)(CO)2H] (1), [Mn(PNPMe-iPr)-
(CO)2H] (2), [Mn(PNP-iPr)(CO)2Br] (3), and [Mn(PNP-
iPr)(CO)2(κ1-O-OCHO)] (4) were prepared according to 
the literature [15, 40, 41]. 1H NMR spectra were recorded 
on Bruker AVANCE-250 and 400. 1H NMR spectra were 
referenced internally to residual protio-solvent, and solvent 
resonances, respectively, and are reported relative to tetra-
methylsilane (δ = 0 ppm). 19F{1H} NMR spectra are reported 
relative to trichlorofluoromethane (CFCl3) (δ = 0 ppm). 
GC–MS analysis was conducted on an ISQ LT Single quad-
rupole MS (Thermo Fisher) directly interfaced to a TRACE 
1300 Gas Chromatographic systems (Thermo Fisher), using 
a Rxi-5Sil MS (30 m, 0.25 mm ID) cross-bonded dimethyl 
polysiloxane capillary column.

General procedure for hydrosilylation reactions

Inside an Ar-flushed glovebox, an 8 cm3 microwave vial 
was charged with complex (0.01–0.03 mol%), carbonyl 
substrate (0.35 mmol), 2 cm3 solvent, and silane (0.035–0.1 
mmol) in this order. A stirring bar was added, and the 
vial was sealed. The closed vial was removed from the 
glovebox and stirred for 18 h at the indicated tempera-
ture in a heated aluminum block. The vial was allowed to 
reach room temperature and the reaction was quenched by 

Table 2   Optimization reactions for hydros-
ilylation of 4-fluoroacetophenone 

Reaction conditions: 0.35 mmol ketone, 2.5 mol% 1, 0.1 mmol 
PhSiH3 or 0.035 mmol PMHS (average MW 1850 g/mol), 2 cm3 sol-
vent, 18 h, 110 °C
a Conversion determined via 19F{1H} NMR-spectroscopy
b Yield determined via 19F{1H} NMR-spectroscopy and fluorobenzene 
as internal standard
c 80 °C
d 0.05 equiv. PMHS

Entry Catalyst load-
ing/mol%

Solvent Conver-
siona/%

Yieldb/%

1c 2 ACN 92 74
2 2 ACN > 99 86
3d 2 ACN > 99 85
4 1 ACN > 99 88
5 2 Toluene 13 13
6 2 THF 26 26
7 2 i-PrOH < 5 < 5
8 2 DME 36 36
9 3 DME > 99 > 99
10 2.5 DME > 99  > 99
11 1 DME 25 25
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exposure to air. In case of screening reactions, fluoroben-
zene (0.35 mmol) was added and the reaction mixture was 
analyzed by 19F{1H} NMR.

Isolation of the product

To the reaction mixture 2 cm3 of a 20 wt% NaOH-solution 
were added and the solution was stirred for 18 h at room 

Table 3   Scope and limitation of 
the hydrosilylation of carbonyls 
catalyzed by 1 

Reaction conditions: 0.35 mmol substrate, 2.5 mol% 1, 0.035 mmol PMHS (average MW 1850 g/
mol), 2 cm3 DME, 18 h, 110 °C in closed microwave vial; isolated yields
a Conversion determined via GC–MS
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temperature. The phases were separated, and the aqueous 
phase was three times extracted with 2 cm3 diethyl ether. 
The combined organic phases were filtrated over a pad of 
silica, dried over Na2SO4 and the solvent was removed. 
Spectroscopic data of all isolated products are in line with 
the literature [11, 42–49].

Supplementary Information  The online version contains supplemen-
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