Modelling of grain boundary cementite growth kinetics in hypereutectoid steels by conventional and autocatalytic ledge growth approaches

Marko Vogric 1,2, Ernst Kozeschnik 2, Jiří Svoboda 3, Sabine Zamberger 4, Erwin Povoden-Karadeniz 1,2

16.09.2021, EUROMAT 2021

1 Christian Doppler Laboratory for Interfaces and Precipitation Engineering CDL-IPE, TU Wien, Vienna, Austria
2 Institute of Materials Science and Technology, TU Wien, Vienna, Austria
3 Institute of Physics of Materials, Academy of Science of the Czech Republic, Brno, Czech Republic
4 voestalpine Forschungsservicegesellschaft Donawitz GmbH, Leoben, Austria
The microstructure of hypereutectoid steels

Bright field light microscopy micrograph of an as-cast hypereutectoid steel (1.2wt%C – 1wt%Mn – 1wt%Cu), 200x magnification

Two relevant parameters for grain boundary (GB) cementite:
- GB cementite thickness
- GB cementite continuity

State of the art – GB cementite thickening

Cementite half-thickness for a Fe–C–Mn–Si steel for different temperatures (a) and grain sizes (b) (redrawn from [1])

Experimental vs. equilibrium cementite half-thickness for a AISI 52100 steel (redrawn from [2])

Experimental cementite half-thickness for an almost pure Fe–C steel and simulations by the Heckel & Paxton [1] or Vandermeer [3] models (redrawn from [3])

1st approach: Precipitate nucleation and growth – Model

Precipitation of cementite spheres at austenite GB:

- Classical nucleation theory

\[J = NZ^\beta \exp \left(\frac{-G^*}{k_B T} \right) \exp \left(\frac{-\tau}{t} \right) \]

- SFFK model for size & chemical evolution of precipitates [1,2]
- Conical diffusion fields & fast GB diffusion [3]
- Interface energy calculated from the Generalized Broken Bond model [4]
- Energy gain at heterogeneous nucleation sites [5]

\[\Delta G_{\text{nucl}} = \frac{4}{3} \pi \rho^3 \Delta G_{\text{vol}} + 4\pi \rho^2 \gamma - \Delta G_{\text{het}} \]

- Nuclei composition control criterion: maximum nucleation rate
- Reduced nucleation site efficiency

→ growth-controlled evolution of precipitates, no influence of coarsening

Simulations on the software MatCalc (v6.04) with mc_fe open thermodynamic & diffusion databases

[5] Miesenberger et al., unpublished research
1st approach: Precipitate nucleation and growth – Results

Experimental and simulated time evolution of grain boundary cementite half-thickness (a); Equilibrium and simulated cementite phase fraction (b); Simulated precipitate number density (c)
1st approach: Precipitate nucleation and growth – Predictive TTP/CCP diagrams

Simulated TTP (a) and CCP (b) diagrams for different values of half-thickness d
Second approach: Autocatalytic ledgewise growth – Model

Control of the thickening kinetics by the ledge formation rate:

- Assuming all ledges have the same height $h = 7$ nm

\[G_L = hN_L \]

\[N_L = N_{L0} \exp \left(\frac{-E_{\text{eff}}}{k_B T} \right) \]

G_L: Cementite thickening rate \hspace{1cm} N_L$: Ledge production rate

- E_{eff} is the effective energy barrier to ledge nucleation

\[E_{\text{eff}} = \alpha \ln \left(\frac{t}{\tau_0} + 1 \right) \]

α: energy factor \hspace{1cm} \tau_0$: incubation time for the 1st ledge = $1/N_{L0}$

- (α, τ_0) determined from experimental data
Second approach: Autocatalytic ledgewise growth – Results

Experimental and simulated half-thickness from the Fullman and integration conversion approaches

Experimental and simulated effective energy barrier from the Fullman and integration conversion approaches
Conclusion & Outlook

Two modeling approaches:

- SFFK model for nucleation and growth of cementite GB precipitates
- Control of cementite thickness by ledge nucleation rate, dependent on time-dependent E_{eff}

Both models deliver significantly improved results compared to previous published models.

Next steps: linking ledge nucleation control to austenite & cementite thermodynamic and thermokinetic parameters

- Understanding austenite/cementite interface evolution, local thickness variations or breaks in GB cementite continuity.

The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged.
Appendix: 2D/3D half-thickness conversion

Fullman approach [1]:
- Assuming spherical grains, homogeneous thickness and disc-like shape for the GB films
- BUT expression defined for derivation of disc thickness, not film thickness

\[d_{2D} = 2d \]

Integration approach:
- Assuming spherical grains and homogeneous thickness
- Based on the integration of the film half-thickness over the quarter of a circle perimeter

\[d_{2D} = \frac{2}{\pi} \int_0^{\frac{\pi}{4}} \left((R + d) \cos \cos \left(\frac{R \sin \sin \theta}{R + d} \right) - R \cos \cos \theta \right) \, d\theta \]

Appendix: 1st model – Influence of model parameters (1/2)

Simulated half-thickness and precipitate number density with or without energy gain at heterogeneous nucleation sites (a,b) and for different nuclei composition criteria (c,d)
Simulated half-thickness and precipitate number density for different values of nucleation site efficiency (e,f) and for different diffusion field geometries (g,h)