
Software and Systems Modeling (2021) 20:405–427
https://doi.org/10.1007/s10270-020-00850-1

SPEC IAL SECT ION PAPER

Mutation testing with hyperproperties

Andreas Fellner1 ·Mitra Tabaei Befrouei2 · Georg Weissenbacher2

Received: 28 February 2020 / Revised: 20 November 2020 / Accepted: 24 November 2020 / Published online: 1 April 2021
© The Author(s) 2021

Abstract
We present a new method for model-based mutation-driven test case generation. Mutants are generated by making small
syntactical modifications to the model or source code of the system under test. A test case kills a mutant if the behavior
of the mutant deviates from the original system when running the test. In this work, we use hyperproperties—which allow
to express relations between multiple executions—to formalize different notions of killing for both deterministic as well
as non-deterministic models. The resulting hyperproperties are universal in the sense that they apply to arbitrary reactive
models and mutants. Moreover, an off-the-shelf model checking tool for hyperproperties can be used to generate test cases.
Furthermore, we propose solutions to overcome the limitations of current model checking tools via amodel transformation and
a bounded SMT encoding. We evaluate our approach on a number of models expressed in two different modeling languages
by generating tests using a state-of-the-art mutation testing tool.

1 Introduction

The ever rising complexity of systems demands automated
methods for creating high quality test suites. In this work, we
present such a method by solving mutation-based test gen-
eration via hyperproperty model checking. Furthermore, we
lay the theoretical foundation for future research in the area
by showing that strong mutation killing is a hyperproperty
and by carefully examining the role of non-determinism for
mutation analysis.

A mutant is a small syntactic modification of some
description of the system under test. The aim of mutation-
based test generation is to construct tests that reveal these
modifications, where revealing either means showing a dif-
ference in internal state (weak mutation [39]), or showing a

Responsible Editor: Gwen Salaün and Peter Csaba Ölveczky.

The research was supported by ECSEL JU under the project
H2020 737469 AutoDrive—Advancing failaware, fail-safe, and fail-
operational electronic components, systems, and architectures for fully
automated driving to make future mobility safer, affordable, and end-
user acceptable, by the Vienna Science and Technology Fund (WWTF)
through grant VRG11-005, and by the Austrian National Research Net-
work S11403-N23 (RiSE).

B Andreas Fellner
fellner.a@gmail.com

1 AIT Austrian Institute of Technology, Seibersdorf, Austria

2 TU Wien, Vienna, Austria

difference in observable output (strong mutation [16]). The
approach is based on two assumptions: (a) the competent pro-
grammer hypothesis [16], which states that implementations
are typically close-to-correct, and (b) the coupling effect [49],
which states that a test suite’s ability to detect simple errors
(and mutations) is indicative of its ability to detect complex
errors. High mutation coverage was shown to correlate well
with high quality test suites [6].

In model-based testing, test cases are generated from an
ideal abstraction of the system under test, for example a
specification. Tests created in this way can verify or reject
whether a system under test is in fact an implementation
of that ideal abstraction. Model checking has been applied
successfully in this context [35]. The idea is that tests are
counter-examples to encodings of coverage criteria. Even
though this success was partially carried over to mutation-
based test generation [36,50], strong mutation analysis does
not quite fit into the framework of classical model checking.
In our work, we explore the reason for this phenomenon,
namely that strong mutation killability is a property reason-
ing over multiple traces at once, i.e. it is a hyperproperty, in
contrast to classical trace-properties that reason over single
traces.

Hyperproperties are an emerging field in automated rea-
soning that studies properties over multiple traces [19].
Its classical field of application is security analysis, where
properties such as non-interference are expressed as hyper-
properties. We present a novel application for that field and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00850-1&domain=pdf
http://orcid.org/0000-0002-3618-2251
https://orcid.org/0000-0002-0143-632X

406 A. Fellner et al.

a powerful test case generation method that can be readily
applied, as we demonstrate in our experimental evaluation on
two different modeling formalisms using off-the-shelf tools.

In summary, the main contributions of our paper are as
follows:

– An encoding of mutation killability in HyperLTL, a logic
for hyperproperties.

– A careful study of the role of non-determinism in muta-
tion analysis and two novel distinctions of mutation
killability: potential and definite.

– Practical solutions for test generation from non-deter-
ministic models.

– An experimental evaluation of mutation-based test case
generation via HyperLTL model checking, using multi-
ple modeling formalisms and leveraging an off-the-shelf
toolchain.

This paper is based on [26]. On top of textual improve-
ments and an extended elaboration of related work, this
version includes the following new contributions:

– AHyperCTL* encoding of tests with inconclusive output
information.

– HyperLTL encodings of killability for mixed determin-
ism cases.

– An encoding of test generation for non-determinisitic
models as a bounded SMT satisfiability problem with
a proof of concept demonstration.

– Detailed proofs of all propositions and lemmas.

The rest of the paper is organized as follows: We con-
clude the introduction by providing a running example. In
Sect. 2, we present our system model and provide the neces-
sary concepts of HyperLTL. In Sect. 3, we discuss mutation
analysis in our setting and define potential and definite killing
of mutants. In Sect. 4, we provide the HyperLTL encod-
ings of both types of killing and multiple settings in terms
of presence or absence of non-determinism, as well as a
HyperCTL* encoding of testswith inconclusive output infor-
mation. In Sect. 5, we discuss handling of non-deterministic
models in practice via a transformation to controllable non-
determinism or a bounded SMT encoding. In Sect. 6, we
present an experimental evaluation of our methods. Finally,
in Sect. 7, we discuss related work and conclude in Sect. 8.
Running example. We illustrate the main concepts of our
work in Fig. 1. We present the main intuitions here, while
the concepts used in the example will be introduced in detail
throughout this work.

Figure 1a shows the SMV [46] model of a beverage
machine, which non-deterministically serves coff (coffee)
or tea after input req (request), assuming that there is still
enough wtr (water) in the tank. Water can be refilled with

input fill. The symbol ε represents absence of input and
output, respectively.

The code in Fig. 1a includes the variable mut (initialized
non-deterministically in line 4), which enables the activation
of a mutation in line 10. The mutant refills 1 unit of water
only, whereas the original model fills 2 units.

Figure 1b states a hyperproperty over the inputs and out-
puts of the model formalizing that the mutant can be killed
definitely (i.e., independently of non-deterministic choices).
Figure 1c shows a linear test, i.e. a sequence of inputs and
outputs, that is a witness for this claim. The test requests two
drinks after filling the tank. For the mutant, the output fol-
lowing the second request after filling the tank must be ε,
which is different from the prescribed output tea, as indi-
cated in Fig. 1d, which shows all possible output sequences
of the mutant for the given test.

2 Preliminaries

This section introduces symbolic transition systems as our
formalisms for representing discrete reactive systems and
provides the syntax and semantics of HyperLTL, a logic for
hyperproperties.

2.1 Systemmodel

A symbolic transition system (STS) is a tuple S =
〈I,O,X , α, δ〉, where I,O,X are finite sets of input, out-
put, and state variables, α is a formula overX ∪O (the initial
conditions predicate), and δ is a formula over I∪O∪X ∪X ′
(the transition relation predicate), where X ′ = {x ′ | x ∈ X }
is a set of primed variables representing the successor states.
An input I , output O , state X , and successor state X ′, respec-
tively, is amapping ofI,O,X , andX ′, respectively, to values
in a range that includes the elements � and ⊥ (representing
true and false, respectively).We call an STS finite if the range
of values is finite. A tuple (I , O, X) of input I , output O and
state X is called a system state. The set of all system states is
denoted by Y . For some variable mapping Q, Q|V denotes
the restriction of the domain of Q to the variables V . Given
a mapping Q and variable v ∈ V , Q(v) denotes the value of
v in Q (if defined) and Q[v 	→ x] denote Q with v mapped
to value x .

We assume that the initial conditions- and transition rela-
tion predicate are defined in a logic that includes standard
Boolean operators ¬, ∧, ∨, →, and ↔. We omit further
details, as our results do not depend on a specific formalism.
We write X , O |� α and I , O, X , X ′ |� δ to denote that α

and δ evaluate to true under an evaluation of inputs I , outputs
O , states X , and successor states X ′. We assume that every
STS has a distinct output Oε, representing absence of output.

123

Mutation testing with hyperproperties 407

Fig. 1 Beverage machine
running example

(a) (b)

(c)

(d)

A state X with output O such that X , O |� α are an initial
state and initial output. A state X has a transition with input
I to its successor state X ′ with output O iff I , O, X , X ′ |� δ,

denoted by X
I ,O−−→ X ′. A trace of S is a sequence of sys-

tem states 〈(I0, O0, X0), (I1, O1, X1), (I2, O2, X2), . . .〉 ∈
Yω such that X0, O0 |� α and ∀ j ≥ 0 . X j

I j ,Oj+1−−−−→
X j+1. We require that every system state has at least
one successor, therefore all traces of S are infinite. We
denote by T (S) the set of all traces of S. Given a trace
p = 〈(I0, O0, X0), (I1, O1, X1), . . .〉, we write p[j] for
(I j , Oj , X j), p[j, l] for 〈(I j , Oj , X j), . . . , (Il , Ol , Xl)〉,
p[j,∞] for 〈(I j , Oj , X j), . . .〉 and p|V to denote
〈(I0|V , O0|V , X0|V), (I1|V , O1|V , X1|V), . . .〉.We lift restric-
tion to sets of traces T by defining T |V as {p|V | t ∈ T }.

S is deterministic iff there is a unique pair of an initial
state and initial output and for each state X and input I , there

is at most one state X ′ with output O , such that X
I ,O−−→ X ′.

Otherwise, the model is non-deterministic.

In the following, we presume the existence of sets of
atomic propositions AP = {API ∪ APO ∪ APX } (inten-
tionally kept abstract)1 and sets AP(I) ⊆ API ,AP(O) ⊆
APO,AP(X) ⊆ APX that uniquely characterize input I ,
output O , and state X . For a system state (I , O, X), we
define AP(I , O, X)

def= AP(I) ∪ AP(O) ∪ AP(X). For a trace
p = 〈(I0, O0, X0), (I1, O1, X1), . . .〉 the corresponding
trace over AP is AP(p) = 〈AP(I0, O0, X0),AP(I1, O1, X1),

. . .〉. We lift this definition to sets of traces by defining
APTr(S)

def= {AP(p) | p ∈ T (S)}.

Example 1 Figure 1a shows the formalization of a beverage
machine in SMV [46]. In Fig. 1b, we use atomic propositions
to reason over the possible values of in and out. This SMV
model closely corresponds to an STS: The initial condition
predicate α and transition relation δ are formalized using

1 Finite domains can be characterized using binary encodings; infinite
domains require an extension of our formalism in Sect. 2.2with equality
that is omitted for the sake of simplicity.

123

408 A. Fellner et al.

integer arithmetic as follows:

α
def=out=ε ∧ wtr=2

δ
def=in=req ∧ wtr>0 ∧ out=coff ∧ wtr’=wtr-1∨
in=req ∧ wtr>0 ∧ out=tea ∧ wtr’=wtr-1∨
in=fill ∧ wtr=0 ∧ ¬mut ∧ out=ε ∧ wtr’=2∨
in=fill ∧ wtr=0 ∧ mut ∧ out=ε ∧ wtr’=1∨
in=ε ∧ out=ε ∧ wtr’=wtr

The trace p = 〈(ε, ε, 2), (req, ε,2), (req,coff, 1),
(ε,tea, 0), . . .〉 is one possible execution of the system (for
brevity, variable names are omitted). Examples of atomic
propositions for the system are [in=coff], [out=ε],
[wtr>0], [wtr=0] and the respective atomic proposition
trace of p is AP(p) = 〈{[in=ε], [out=ε], [wtr>0]},
{[in=req], [out=ε], [wtr>0]}, {[in=req], [out=coff],
[wtr>0]}, {[in=req], [out=tea], [wtr=0]} . . .〉

2.2 HyperLTL

In the following, we provide an overview of the HyperLTL,
a logic for hyperproperties, sufficient for understanding the
formalization in Sect. 4. For details, we refer the reader to
[18]. HyperLTL is defined over atomic proposition traces
(see Sect. 2.1) of a fixed STS S = 〈I,O,X , α, δ〉 as defined
in Sect. 2.1.
Syntax. Let AP be a set of atomic propositions and let π be
a trace variable from a set V of trace variables. Formulas of
HyperLTL are defined by the following grammar:

ψ : := ∃π.ψ | ∀π.ψ | ϕ

ϕ : := aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

Connectives ∃ and ∀ are universal and existential trace
quantifiers, read as “along some traces” and “along all
traces”. In our setting, atomic propositions a ∈ AP express
facts about states or the presence of inputs and outputs. Each
atomic proposition is sub-scripted with a trace variable to
indicate the trace it is associated with. The Boolean connec-
tives ∧, →, and ↔ are defined in terms of ¬ and ∨ as usual.
Temporal operators X andU read next and until, respectively.
Furthermore, we use the standard temporal operators even-
tually ♦ϕ

def= true Uϕ, and always �ϕ
def= ¬♦¬ϕ.

Semantics. Π |�S ψ states that ψ is valid for a given
mapping Π : V → APTr(S) of trace variables to atomic
proposition traces. Let Π [π 	→ p] be as Π except that π is
mapped to p.We useΠ [i,∞] to denote the trace assignment
Π ′(π) = Π(π) [i,∞] for all π . The validity of a formula is
defined as follows:

Π |�S aπ iff a ∈ Π(π)[0]
Π |�S ∃π.ψ iff there exists p ∈ APTr(S) :
Π [π 	→ p] |�S ψ

Π |�S ∀π.ψ iff for all p ∈ APTr(S) :
Π [π 	→ p] |�S ψ

Π |�S ¬ϕ iff Π �|�S ϕ

Π |�S ψ1 ∨ ψ2 iff Π |�S ψ1 or Π |�S ψ2

Π |�S Xϕ iff Π [1,∞] |�S ϕ

Π |�S ϕ1 Uϕ2 iff there exists i ≥ 0 :
Π [i,∞] |�S ϕ2

and for all 0 ≤ j < i we have
Π [j,∞] |�S ϕ1

We write S |� ψ if Π |�S ψ holds and Π is empty.
We call q ∈ T (S) a π -witness of a formula ∃π.ψ , if
Π [π 	→ p] |�S ψ and AP(q) = p.

2.3 HyperCTL*

HyperCTL* is an extension of HyperLTL described in [18].
We recite the necessary concepts of the logic here and refer
the reader to [18] for further details.
Syntax. HyperCTL* syntactically is a strict superset of
HyperLTL. It allows freemixing temporal operators and path
quantifiers. HyperCTL* formulas are defined by the follow-
ing grammar:

ϕ : :=aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ∃πϕ

Further temporal operators, such as � and ♦, are defined as
usual. Universal quantification in HyperCTL* is defined via
negation and existential quantification: ∀πϕ

def= ¬∃π¬ϕ.
Semantics. Quantification in HyperCTL* is over paths,
which are sequences of system states and atomic proposi-
tion pairs, in contrast to HyperLTL where quantification is
over sequences of atomic propositions only. In particular,
paths assigned to path quantifiers within temporal operators,
start in the respective system state currently reasoned over by
the temporal operator. For example, a satisfying path assign-
ment for the formula ∃π�((x ′ = x + 1)π ∧ ∃π ′(x ≥ 0)π ′),
evaluated over a Kripke structure that initializes some x
with 0 and increases x by an arbitrary amount in each
step, assigns to π ′ paths that start in states with x = 0,
x = 1, x = 2, etc. In order to disambiguate the notions,
we write Π∗ : V → (Y × AP)ω for path assignments, |�∗
for the HyperCTL* modeling relation and π∗-witness for
witness paths of HyperCTL* formulas. Finally, for ease of
presentation, when working with HyperCTL* formulas, we
assume that STS have a single initial state and output pair.
An arbitrary STS can easily be transformed into this form
by introducing a unique initial state variable and output and
introducing transitions to all initial states. The formal seman-
tics of HyperCTL* are given as follows:

123

Mutation testing with hyperproperties 409

Π∗ |�∗
S aπ iff a ∈ AP(Π∗(π)[0])

Π∗ |�∗
S ∃π.ψ iff there exists y ∈ (Y × AP)ω such that

y[0] = Π∗(π)[0] and Π∗ [π 	→ y] |�∗
S ψ

Π∗ |�∗
S ¬ϕ iff Π∗ �|�∗

S ϕ

Π∗ |�∗
S Xϕ iff Π∗ [1,∞] |�∗

S ϕ

Π∗ |�∗
S ϕ1 Uϕ2 iff there exists i ≥ 0 : Π∗ [i,∞] |�∗

S ϕ2

and for all 0 ≤ j < i we have Π∗ [j,∞] |�∗
S ϕ1

3 Killingmutants

In this section, we introducemutants, linear and locally adap-
tive tests, and the notions of potential and definite killing.
Furthermore, we discuss how to represent an STS and its
corresponding mutant as a single STS, which can then be
model checked to determine killability.

3.1 Mutants

Mutants are variations of a model S obtained by apply-
ing small modifications to the syntactic representation of
S. A mutant of an STS S = 〈I,O,X , α, δ〉 (the original
model) is an STS Sm = 〈I,O,X , αm, δm〉 with equal sets
of input, output, and state variables as S but a deviating ini-
tial predicate and/or transition relation. We assume that Sm

is equally input-enabled as S, that is T (Sm)|I = T (S)|I ,
i.e., the mutant and model accept the same sequences of
inputs. In practice, this can easily be achieved by using self-
loops with empty output to ignore unspecified inputs.We use
standard mutation operators, such as disabling transitions,
and replacing operators. The mutation operators used in our
experiments are presented in Sect. 6 and in [7]. We combine
an original model represented by S and a mutant Sm into
a conditional mutant Sc(m), in order to perform mutation
analysis via model checking the combined model.

The conditional mutant is defined as Sc(m) def= 〈I,O,

X ∪ {mut}, αc(m), δc(m)〉, where mut is a fresh Boolean
variable used to distinguish states of the original and the
mutated STS. Suppose Sm replaces a sub-formula δ0 of δ by
δm0 , then the transition relation predicate of the conditional
mutant δc(m) is obtained by replacing δ0 in δ by (mut∧δm0)∨
(¬mut∧δ0). We fix the value of mut in transitions adding the
conjunct mut ↔ mut′ to δ. The initial conditions predicate
of the conditional mutant is defined similarly.

Consequently, for a trace p ∈ T (Sc(m)) it holds that if
p|{mut} = {⊥}ω then p|I∪O∪X ∈ T (S), and if p|{mut} =
{�}ω then p|I∪O∪X ∈ T (Sm). Formally, Sc(m) is non-
deterministic, since mut is chosen non-deterministically in
the initial state. However, we only refer to Sc(m) as non-
deterministic if either S or Sm is non-deterministic, as mut
is fixed in the hypertproperties presented in Sect. 4.

Example 1 and Fig. 1a show a conditional mutant as an
STS and in SMV.

3.2 Killing

Killing a mutant amounts to finding inputs for which the
mutant produces outputs that deviate from the originalmodel.
In a reactive, model-based setting, killing has been formal-
ized using conformance relations [52], for example in [4,27],
where an implementation conforms to its specification if all
its input/output sequences are part of/allowed by the specifi-
cation.

In model-based testing, the model takes the role of the
specification and is assumed to be correct by design. The
implementation is treated as black box, and thereforemutants
of the specification serve as its proxy. Tests that demonstrate
non-conformance between the model and its mutant can be
used to verify whether a system under test is an implemen-
tation of the specification or contains the bug reflected in the
mutant.

What exactly constitutes demonstration of non-confor-
mance is system dependent. In particular, it depends on
whether the model from which tests are created is determin-
istic or non-deterministic. In the following paragraphs, we
discuss these differences. We start by defining tests and their
verdicts.

The simplest definition of a test for a reactive system is a
sequence of inputs and outputs, which is typically called a
linear test. The execution of a linear test on a systemunder test
fails if the sequence of inputs of the test triggers a sequence
of outputs that deviates from those predicted by the test and
passes otherwise. Formally, linear tests are defined as fol-
lows:

Definition 1 (Linear Test) A linear test t of length n for S
comprises inputs t |I and outputs t |O of length n, such that
there exists a trace p ∈ T (S) with p[0, n]|I = t |I and
p[0, n]|O = t |O.

Linear tests can be problematic for non-deterministic
models.Aconformant implementationof a non-deterministic
model may resolve some non-deterministic choice of the
model in a different order to a given linear test. As a result,
the implementation delivers an output that is different to the
output of the test and the test fails, even though the delivered
output is allowed by the model. To remedy this situation
tests can be extended with information on multiple non-
deterministic choices. This can either be done by extending
a linear test to a fully adaptive tree that branches out in every
non-deterministic choice, or by adding sets of allowed out-
puts to the test. We discuss here the latter variant.

A locally adaptive test is a sequence of inputs, outputs,
and locally allowed outputs, where an output O is locally
allowed for some state and input I , if there is a successor state
corresponding to input I that has output O . The execution
of a locally adaptive test on a system under test passes if
its sequence of inputs triggers its exact sequence of outputs.

123

410 A. Fellner et al.

Fig. 2 Definitely killing locally
adaptive test (c = coff, t =
tea)

The execution is inconclusive as soon as an allowed output
is given by the system under test that is different to the test’s
output. The execution fails as soon as an output that is not
allowed is given by the system under test. Note that allowed
output information is local in the sense that it follows some
state. A stronger notion would be globally allowed output
that follows some sequence of inputs and outputs. However,
expressing this notion is beyond the capabilities of current
logics for hyperproperties and thus is not discussed further.

In order to express locally adaptive tests, we extend sym-
bolic transition systems with indicator variables for allowed
outputs. Furthermore, in Sect. 4, we discuss hyperproperties
expressing this property.

Let Out be the set of all outputs. Remember that an output
O is a mapping of output variables O to a range of output
values. Therefore,Out is a set ofmappings.Wedefine locally
allowedoutput indicators as the set of freshBoolean variables
A:={a[O] | O ∈ Out} as a subset of state variables X that
are not used in the initial state or transition predicate.

Definition 2 (Locally adaptive test) A locally adaptive test
t of length n for S comprises inputs t |I , outputs t |O, and
allowed outputs t |A of length n, such that there exists a trace
p ∈ T (S) with p[0, n]|I = t |I , p[0, n]|O = t |O and
such that for every j ∈ [0, n] and every O ∈ Out it is the
case that t[j] at a[O] evaluates to � if and only if there
exists a trace p′ ∈ T (S) with p′[0, j − 1] = t[0, j − 1],
p′[j]|I = t[j]|I , and p′[j]|O = O .

Example 2 Consider again the linear test presented in Fig. 1c.
Figure 2 shows the locally adaptive version of that test. Note
that the allowed part is represented as the set of allowed
outputs.

Non-determinism does not only need to be taken into
account during test execution, but already during test cre-
ation. For non-deterministicmodels,wedifferentiate between
two different strengths of killing.We say that a mutant can be
potentially killed if there exist inputs for which the mutant’s
outputs deviate from the original model given an appropri-
ate choice of non-deterministic initial states and transitions.
In practice, executing a test that potentially kills a mutant
on a faulty implementation that exhibits non-determinism
(e.g., a multi-threaded program) may fail to demonstrate
non-conformance (unless the non-determinism can be con-
trolled). In case non-determinism can not be controlled and
the system under test exactly implements the mutant, then a
potentially killing test passes on some executions and fails

on others. Such tests are sometimes referred to as a flaky test,
which are generally undesirable. Since non-determinism can
not always be controlled in practice and system under tests
can be non-deterministic, we provide a stronger notion of
killing. A mutant can be definitely killed if there exists a
sequence of inputs for which the behaviors of the mutant
and the original model deviate independently of how non-
determinism is resolved.

Note potential and definite killability are orthogonal to the
well known notions of weak and strong killing, which cap-
ture different degrees of observability. Formally, we define
potential and definite killability as follows:

Definition 3 (Potentially killable) Sm is potentially killable
if

T (Sm)|I∪O � T (S)|I∪O

Test t (locally adaptive or linear) for S of length n potentially
kills Sm if

{q[0, n] | q ∈ T (Sm) ∧ q[0, n]|I = t |I}|I∪O
� {p[0, n] | p ∈ T (S)}|I∪O.

Definition 4 (Definitely killable) Sm is definitely killable if
there is a sequence of inputs �I ∈ T (S)|I , such that

{q ∈ T (Sm) | q|I = �I }|O ∩ {p ∈ T (S) | p|I = �I }|O = ∅

Test t (locally adaptive or linear) for S of length n definitely
kills Sm if

{q[0, n] | q ∈ T (Sm) ∧ q[0, n]|I = t |I}|O∩
{p[0, n] | p ∈ T (S) ∧ p[0, n]|I = t |I}|O = ∅

Definition 5 (Equivalent Mutant) Sm is equivalent iff Sm is
not potentially killable.

The following proposition relates definite and potential
killabilty:

Proposition 1 If Sm is definitely killable then Sm is poten-
tially killable. If Sm is deterministic then: Sm is potentially
killable iff Sm is definitely killable.

Proof Let Sm be definitely killable. Then there is a trace
q ∈ T (Sm), such that there is no trace p ∈ T (S) with
q|I∪O = p|I∪O, which implies T (Sm)|I∪O � T (S)|I∪O.

123

Mutation testing with hyperproperties 411

Let S be deterministic and Sm be potentially killable.
From the definition of determinism it follows that for traces
q, q ′ ∈ T (Sm) with q|I = q ′|I it is the case that q = q ′. In
other words, for every sequence of inputs �I it is the case that
|{q ∈ T (Sm) | q|I = �I }|O| ≤ 1. From potential killability
(i.e. T (Sm)|I∪O � T (S)|I∪O) it follows that there exists
q ∈ T (Sm), such that q|O /∈ {p ∈ T (Sm) | p|I = q|I}|O.
Since the set of traces in the mutant sharing inputs with q
is a singleton, it is the case that {q ′ ∈ T (Sm) | q ′|I =
q|I}|O ∩ {p ∈ T (S) | p|I = q|I}|O = ∅. Therefore, q is a
witness to Sm being definitely killable. ��

In summary, definite killability is stronger than potential
killabilty, though for deterministic mutants, the two notions
coincide. Therefore, for deterministic mutants, we simply
speak of killing and tests that kill. The following example
shows adefinitely killablemutant, amutant that is only poten-
tially killable, and an equivalent mutant.

Example 3 The mutant in Fig. 1a, is definitely killable, since
we can force the system into a state in which both possible
outputs of the original system (coff, tea) differ from the
only possible output of the mutant (ε).

Consider a mutant that introduces non-determinism by
replacing line 10 with if(in=fill&wtr=0):
(mut?{1,2}:2), indicating that themachine is filled with
either 1 or 2 units of water. This mutant is potentially but
not definitely killable, as only one of the non-deterministic
choices leads to a deviation of outputs.

Finally, consider a mutant that replaces line 7 with
if(in=req&wtr>0):(mut ? coff:
{coff,tea}) and removes the mut branch of line 10,
yielding a machine that always creates coffee. Every imple-
mentation of this mutant is also correct with respect to the
original model. Hence, we consider the mutant equivalent,
even though the original model, unlike the mutant, can out-
put tea.

4 Killing with hyperproperties

In this section, we provide a formalization of potential and
definite killability in terms of HyperLTL, prove the correct-
ness of our formalization with respect to Sect. 3, and explain
how tests can be extracted by model checking the HyperLTL
properties. Furthermore, we present an encoding of locally
adaptive tests in HyperCTL*.

All HyperLTL formulas presented in this section depend
on inputs and outputs of the model, but are model-agnostic
otherwise. The idea of all presented formulas is to dis-
criminate between traces of the original model (�¬mutπ)
and traces of the mutant (�mutπ). Furthermore, we quan-
tify over pairs (π, π ′) of traces with globally equal inputs
(�(Iπ ↔ Iπ ′)) and express that such pairs will eventually

have different outputs (♦(Oπ � Oπ ′)), where for ease of
presentation, we abbreviate

∧
i∈API (iπ ↔ iπ ′) by Iπ ↔ Iπ ′

and
∨

o∈APO ¬(oπ ↔ oπ ′) by Oπ � Oπ ′ . We start by show-
ing some general properties used throughout the following
HyperLTL formalizations of killability.

Lemma 1 Let Π be a trace assignment, Sc(m) a conditional
mutant, and let p, q be sequences of system states of Sc(m)

with AP(p) = Π(π), AP(q) = Π(π ′).

1. Π |�Sc(m) �¬mutπ then p|I∪O∪X ∈ T (S)

2. Π |�Sc(m) �mutπ then p|I∪O∪X ∈ T (Sm)

3. Π |�Sc(m) �
(∧

i∈API (iπ ↔ iπ ′)
)
then p|I = q|I

4. Π |�Sc(m) ♦
(∨

o∈APO ¬(oπ ↔ oπ ′)
)
then p|O �= q|O

Proof The first two statements follow directly from the def-
inition of conditional mutants. The latter two statements
follow directly from the fact that API ,APO uniquely char-
acterize inputs and outputs. ��

4.1 Deterministic model andmutant

To show killability (potential and definite) of a deterministic
mutant for a deterministic model, one needs to find a trace
of the model (∃π) such that the trace of the mutant with the
same inputs (∃π ′) eventually diverges in outputs, which is
formalized via the hyperproperty φ1 as follows:

φ1(I,O):=∃π∃π ′�
(¬mutπ ∧ mutπ ′ ∧ (Iπ ↔ Iπ ′)

) ∧ ♦
(
Oπ � Oπ ′

)

Proposition 2 For a deterministic model S and mutant Sm,
it holds that

Sc(m) |� φ1(I,O) iff Sm is killable.

If p is a π -witness for Sc(m) |� φ1(I,O), then there exists
n ∈ N such that test t

def= p[0, n]|I∪O kills Sm.

Proof We show that Sm is potentially killable iff Sc(m) |�
φ1(I,O). This suffices, since by Lemma 1 and due to the
fact that Sm is deterministic, Sm is definitely killable iff Sm

is potentially killable.
Assume Sm is potentially killable. Let q ∈ T (Sm), such

that q|I∪O /∈ T (S)|I∪O. Since Sm is equally input-enabled,
there exists a trace p ∈ T (S), such that p|I = q|I . Clearly,
p|O �= q|O. Therefore, p and q are satisfying assignments
for φ1(I,O) and π , π ′ respectively.

Conversely, assume Sc(m) |� φ1(I,O). Let p, q be a
π, π ′-witnesses of φ1(I,O). From Lemma 1, we imme-
diately get p|I = q|I , and p|O �= q|O , which shows
T (Sm)|I∪O � T (S)|I∪O.

123

412 A. Fellner et al.

Since p|O �= q|O, there exists an n ∈ N such that p[0, n−
1]|O = q[0, n−1]|O and p[n]|O �= q[n]|O. Clearly, the test
t

def= p[0, n]|I∪O kills Sm . ��

4.2 Non-deterministic model andmutant

For potential killability of non-deterministic models and
mutants, we need to find a trace of the mutant (∃π) such that
all traces of the model with the same inputs (∀π ′) eventually
diverge in outputs, which is formalized via the hyperproperty
φ2 as follows:

φ2(I,O):=∃π∀π ′�mutπ∧
(
�

(¬mutπ ′ ∧(Iπ ↔ Iπ ′)
)→♦

(
Oπ � Oπ ′

))

Proposition 3 For non-deterministic S and Sm, it holds that

Sc(m) |� φ2(I,O) iff Sm is potentially killable.

If q is a π -witness for Sc(m) |� φ2(I,O), then for any trace
p ∈ T (S) with q|I = p|I there is n ∈ N such that the test
t

def= p[0, n]|I∪O potentially kills Sm.

Proof Assume that Sm is potentially killable. That is, there
is a trace q ∈ T (Sm), such that there is no trace p ∈ T (S)

with q|I∪O = p|I∪O. Any trace assignment that maps π

to q satisfies φ2(I,O), since that assignment either violates
the antecedent by mapping a trace p ∈ T (S) with different
inputs than q to π ′, or it violates the consequent by mapping
a trace p ∈ T (S) to π ′ with inputs q|I and outputs that can
only be different to q|O.

Conversely, assume Sc(m) |� φ2(I,O). Let p be a π -
witness and q be a π ′-witness for which the antecedent of the
implication is satisfied, which is in fact satisfiable, since Sm

is equally input-enabled. Clearly, p is aπ -witness for�mutπ
and since q is chosen such that it satisfies the antecedent, q
is a π ′-witness for �¬mutπ ′ . Thus, from Lemma 1, we get
p|I∪O∪X ∈ T (S), q|I∪O∪X ∈ T (Sm), and q|I = p|I .
Since Π [π 	→ p, π ′ 	→ q] satisfies the antecedent of the
implication and the whole formula, the trace assignment also
satisfies the consequent of the implication , i.e., q|O �= p|O
(Lemma 1). Since q was chosen arbitrary (besides satisfying
the antecedent), we can conclude p|I∪O /∈ T (Sm)|I∪O, i.e.,
Sm is potentially killable.

Let q ∈ T (Sm) be a π -witness to Sc(m) |� φ2(I,O) and
let p ∈ T (S) be any tracewith p|I = q|I , which exists since
Sm is equally input-enabled. Clearly, there exists an n ∈ N
such that q[0, n − 1]|O = p[0, n − 1]|O and q[n]|O �=
p[n]|O. Therefore, the test t

def= p[0, n]|I∪O potentially kills
Sm . ��

For definite killability one needs to find a sequence of
inputs of the model (∃π) and compare all non-deterministic

outcomes of the model (∀π ′′) to all non-deterministic out-
comes of the mutant (∀π ′) for these inputs, which is
formalized via the hyperproperty φ3 as follows:

φ3(I,O)
def=

∃π∀π ′∀π ′′�¬mutπ ∧
(
�

(
mutπ ′ ∧ ¬mutπ ′′ ∧(Iπ ↔ Iπ ′)∧(Iπ ↔ Iπ ′′)

)→
♦

(
Oπ ′ � Oπ ′′

))

In Fig. 1b, we present an instance of φ3 for our running
example.

Proposition 4 For non-deterministic S and Sm, it holds that

Sc(m) |� φ3(I,O) iff Sm is definitely killable.

If Sm is finite and p is a π -witness for Sc(m) |� φ3(I,O),
then there exists n ∈ N, such that the test t

def= p[0, n]|I∪O
definitely kills Sm.

Proof Let Sm be definitely killable, which implies that there
is a sequence of inputs �I ∈ T (S)|I , such that for P�I

def= {p ∈
T (S) | p|I = �I } and Q �I

def= {q ∈ T (Sm) | q|I = �I } it is the
case that P�I |O ∩ Q �I |O = ∅. Since �I is the input sequence
of a trace of S, we have that P�I �= ∅. Since Sm is equally
input-enabled, we have Q �I �= ∅. We show that any p ∈ P�I
is a π -witness to Sc(m) |� φ3(I,O). Let q ′ ∈ T (Sm) and
p′′ ∈ T (S) be arbitrary traces, consider a trace assignment
that maps π to p, π ′ to q ′ and π ′′ to p′′ and assume that it
satisfies the antecedent (which is satisfiable, due to P�I �= ∅
and Q �I �= ∅). That is, q ′ ∈ Q �I and p′′ ∈ P�I . Since P�I |O ∩
Q �I |O = ∅, it must be the case that q ′|O �= p′′|O. Since
q ′ and p′′ were chosen arbitrarily, any trace assignment that
maps p to π satisfies the formula, i.e.„ Sc(m) |� φ3(I,O).

Conversely, assume Sc(m) |� φ3(I,O). Let p be a π -
witness, and let q ′ and p′′ be π ′ and π ′′-witnesses for which
the antecedent is satisfied, which is in fact satisfiable, since
Sm is equally input-enabled. Clearly, p is a π -witness for
�¬mutπ and since q ′ and p′′ were chosen such that they
satisfy the antecedent, q ′ is a π ′-witness for �mutπ ′ and p
is a π ′′-witness for �¬mutπ ′′ . Thus, from Lemma 1, we get
p|I∪O∪X , p′′|I∪O∪X ∈ T (S), q ′|I∪O∪X ∈ T (Sm), and
p|I = q ′|I = p′′|I .

Since the Π [π 	→ p, π ′ 	→ q ′, π ′′ 	→ p′′] satisfies the
whole formula and the antecedent, the trace assignment must
also satisfy the consequent. That is, it must be the case that
q ′|O �= p′′|O (Lemma 1). Since q ′ and p′′ were chosen
arbitrarily (besides satisfying the antecedent),we have shown
{q ∈ T (Sm) | q|I = p|I}|O ∩ {p′′ ∈ T (S) | p′′|I =
p|I}|O = ∅, i.e. �I def= p|I is the input sequence showing that
Sm is definitely killable.

Let p ∈ T (S) be a π -witness to Sc(m) |� φ3(I,O).
First, we show that traces of Sm with inputs p|I can not

123

Mutation testing with hyperproperties 413

repeat before having a different output to p. Assume the
contrary, i.e., there are q ∈ T (Sm) and l < j ≤ k, such
that q|I = p|I , q[0, k]|O = p[0, k]|O, and q[l] = q[j].
Trace q can bemodified to a trace that loops between q[l] and
q[j] indefinitely. This trace is a counter-example toSm being
definitely killable. Let n be the finite number of different
non-repeating prefixes of traces of Sm . Clearly, the test t

def=
p[0, n]|I∪O definitely kills Sm . ��

In the case of infinite systems, there might be a definitely
killable mutant for which no (finite) definitely killing test
exists.

Example 4 Consider the following infinite version of the
beverage machine, where capacity=* denotes non-deter-
ministically choosing some integer value capacity ∈ N.
The volume of thewater tank is fixed to this value.Otherwise,
the system behaves similarly to the system with a definitely
killable mutant presented in Example 1. In particular, clearly
the presented mutant is definitely killable, since after fill-
ing the water tank, the mutant will not produce a beverage
upon capacity more beverage requests. However, since
capacity is chosen non-deterministically by the system,
there is no universal length for a finite test that would reveal
this behavior. The infinite trace that continuously requests
beverages after filling could be considered an infinite killing
test though.

α
def=capacity=* ∧ out=ε ∧ wtr=capacity

δ
def=capacity’=capacity∧

(in=req ∧ wtr>0 ∧ out=coff ∧ wtr’=wtr-1∨
in=req ∧ wtr>0 ∧ out=tea ∧ wtr’=wtr-1∨
in=fill ∧ wtr=0 ∧ ¬mut ∧ out=ε ∧ wtr’=capacity∨
in=fill ∧ wtr=0 ∧ mut ∧ out=ε ∧ wtr’=capacity-1∨
in=ε ∧ out=ε ∧ wtr’=wtr)

4.3 Mixed determinismmodel andmutant

We now examine cases where the model is non-deterministic
and the mutant is deterministic and vice versa. It should
be noted that in practice it might not be known a priori
whether a model or mutant is really deterministic. In such
cases, the hyperproperties φ2(I,O) and φ3(I,O) for non-
deterministic mutants can be used to define and construct
killing test cases, as their guarantees hold for determinis-
tic mutants as well. Nevertheless, in this section, we present
theweakest hyperproperties expressing potential and definite
killability for mixed determinism cases.

To showpotential killability of a non-deterministicmutant
for a deterministic model, one needs to find a trace of the
model (∃π) such that there is a trace of the mutant with the
same inputs (∃π ′) that eventually diverges in outputs, which
is exactly formalized by the hyperproperty φ1 above.

Proposition 5 Let the model S with inputs I and outputs O
be deterministic and the mutant Sm be non-deterministic.

Sc(m) |� φ1(I,O) iff Sm is potentially killable.

Let p be a π -witness for Sc(m) |� φ1(I,O), then there exists
n ∈ N such that test t

def= p[0, n]|I∪O potentially kills Sm.

Proof The proof can be conducted similar to the proof of
Proposition 2. ��

To show definite killing of a non-determistic mutant of a
deterministic model, one needs to find a trace of the model
(∃π) such that all traces of the mutant with the same inputs
(∀π ′) eventually diverge in outputs, which is formalized via
the hyperproperty φ4 as follows:

φ4(I,O)
def= ∃π∀π ′�¬mutπ ∧

(
�

(
mutπ ′ ∧(Iπ ↔ Iπ ′)

)→♦
(
Oπ � ↔Oπ ′

))

Proposition 6 Let the model S with inputs I and outputs O
be deterministic and the mutant Sm be non-deterministic.

Sc(m) |� φ4(I,O) iff Sm is definitely killable.

If Sm is finite and p is a π -witness for Sc(m) |� φ4(I,O),
then there exists n ∈ N such that the test t

def= p[0, n]|I∪O
definitely kills Sm.

Proof Assume that Sm is definitely killable. Since S is deter-
ministic, for every input sequence, there is at most one trace
with in T (S) with this input sequence. Therefore, there is an
input sequence �I and a unique trace p ∈ T (S) with pI = �I
and p|I∪O /∈ T (Sm)|I∪O. Any trace assignment that maps
π to p satisfies φ4(I,O), since either the antecedent is vio-
lated by a trace q ∈ T (Sm) assigned to π ′ with different
inputs, or the consequent is violated by a trace q ∈ T (Sm)

assigned to π ′ with inputs �I and outputs that can only be
different to p|O.

Conversely, assume Sc(m) |� φ4(I,O). Let Π be a satis-
fying trace assignment that maps π to q and π ′ to p that
also satisfies the antecedent, which is in fact satisfiable,
since Sm is equally input-enabled. Clearly, p is a π -witness
for �¬mutπ and since q was chosen such that it satisfies
the antecedent, q is a π ′-witness for �mutπ ′ . Thus, from
Lemma 1, we get p|I∪O∪X ∈ T (S), q|I∪O∪X ∈ T (Sm),
and q|I = p|I . Since Π satisfies the whole formula,
it must be the case that Π also satisfies the consequent,
i.e. q|O �= p|O (Lemma 1). Therefore, we can conclude
p|I∪O /∈ T (Sm)|I∪O, which, as argued above, is equivalent
to definite killing in the deterministic model case.

123

414 A. Fellner et al.

The existence of a definitely killing test in case of finite
Sm can be shown analogously to the proof of Proposition 4.

��
Finally, to show killability of a deterministic mutant for

a non-deterministic model, one needs to find a trace of the
mutant (∃π) such that all traces of the model with the same
inputs (∀π ′) eventually diverge in outputs, which is already
expressed via the hyperproperty φ2 above.

Proposition 7 Let the model S with inputs I and outputs O
be non-deterministic and the mutant Sm be deterministic

Sc(m) |� φ2(I,O) iff Sm is killable.

Let q be a π -witness for Sc(m) |� φ2(I,O), then there is
n ∈ N, such for the single trace p ∈ T (S) with p|I = q|I
the test t :=p[0, n]|I∪O kills Sm.

Proof Potential killing directly follows from the more res-
tricted case in Proposition 3. Since Sm is deterministic, by
Proposition 1 it is also definitely killable. The existence of a
killing test can be shown analogously to the proof of Propo-
sition 3. ��

4.4 Locally adaptive tests

We can extend the hyperproperties presented above to force
π -witnesses to have prefixes that are locally adaptive tests.
To this end, we need to reason over the allowed output indica-
tor variables in A. So far, these variables are unconstrained.
However, we can strengthen the hyperproperties expressing
killability, such that only assignments to these variables are
allowed that reflect the semantics of allowed outputs. Unfor-
tunately, these semantics are not expressible in HyperLTL,
since they require to reason over all outgoing traces from
intermediate states of an arbitrary trace. However, the prop-
erty is expressible in HyperCTL*.

For an STS with a finite set of outputs Out and a Hyper-
LTL formula φ of the form ∃πψ , we define its locally
adaptive test extension φA as:

φA def= ∃π

(

ψ ∧
∧

O∈Out

�X
(
a[O]π ↔(∃π ′¬mutπ ′ ∧ (Iπ ↔ Iπ ′)∧

∧

o∈AP(O)

oπ ′ ∧
∧

o∈AP(O)\AP(O)

¬oπ ′
))

)

For example, for φ3(I,O) the full extended formula is
given as follows:

φ3(I,O)A def=
∃π

(

∀π ′∀π ′′�¬mutπ

∧
(
�

(
mutπ ′ ∧ ¬mutπ ′′ ∧ (Iπ ↔ Iπ ′) ∧ (Iπ ↔ Iπ ′′)

) →

♦
(
Oπ ′ � Oπ ′′

))∧
∧

O∈Out

�X
(
a[O]π ↔ (∃π ′¬mutπ ′ ∧ (Iπ ↔ Iπ ′)∧

∧

o∈AP(O)

oπ ′ ∧
∧

o∈AP(O)\AP(O)

¬oπ ′
))

)

Likewise, this extension can be performed for φ1(I,O)

and φ4(I,O). Note that the π path variable in φ2(I,O) is
constrained to evaluate to paths of the mutant. Thus, in order
to leverage this transformation for φ2(I,O), an additional
existential quantifier picking one suitable trace of the original
STS needs to be added to the formula.

We now show that models of these extensions contain
locally adaptive tests.

Proposition 8 Let Sc(m) be a conditional mutant and let φ be
a HyperLTL formula of the form ∃πψ such that Sc(m) |� ψ

and some finite prefix of a π -witness to Sc(m) |� ψ is a linear
test, then Sc(m) |�∗ φA and some finite prefix of the trace
component of a π∗-witness for Sc(m) |�∗ φA is a locally
adaptive test.

Proof Let p ∈ T (S) be a π -witness to Sc(m) |� ψ and
let t

def= p[0, n] be the finite prefix that is a linear test. Since
variables a[O] are unconstrained by the STS, we can assume
that the valuations of these variables in p are chosen such
that p (together with its states) constitutes a π∗-witness for
Sc(m) |�∗ φA. By assumption, there is only one initial state
only one unique output in the STS, so there is nothing to show
in the initial step. To show that t is a locally adaptive test, it
needs to be the case that for every j ∈ [1, n] and every O ∈
Out it is the case that t[j] at a[O] evaluates to� if and only if
there exists a trace p′ ∈ T (S)with p′[0, i−1] = t[0, i−1],
p′[j]|I = t[j]|I , and p′[j]|O = O . Path p is chosen such
that in every step j − 1 and output O , p evaluates a[O]
to � in its successor state if and only if from the current
state there a path of the original system pOj whose next state

exactly has input p[j]|I and output O . Therefore, paths pOj
for every O ∈ Out , prepended with the prefix of p up to j ,
are witnesses to this property. ��

Unfortunately, to the best of the knowledge of the authors,
there currently does not exists a model checker for Hyper-
CTL*. However, the problem was shown to be decidable
in [31], although its complexity grows exponentially in
the number of quantifier alternations. Therefore, on top of
providing formal semantics for locally adaptive tests, the
encoding can be leveraged in practice soon as a HyperCTL*
model checker emerges.

123

Mutation testing with hyperproperties 415

5 Non-deterministic models in practice

Checking the validity of the hyperproperties in Sect. 4 for a
given model and mutant enables test-case generation. Unfor-
tunately, the model checkers for HyperLTL or HyperCTL*
are still in their infancy. To the best of our knowledge,
MCHyper [31] is the only currently available HyperLTL
model checker and there is no HyperCTL* model checker.
Furthermore, HyperLTL formulas with quantifier alterna-
tion, such as killability defining formulas φ2(I,O) and
φ3(I,O) for non-deterministic models, can currently not be
handled with the available version of the tool. In a Web-
based version of MCHyper such formulas can be handled
via a combination with a reactive synthesis tool, as described
in [21]. To remedy this issue and to obtain test cases for
non-deterministic systems, in this section, we propose two
solutions.

Firstly, we present a transformation that makes non-
determinism controllable by means of additional inputs and
yields a deterministic STS.Thequantifier alternation free for-
mula φ1(I,O) can be model-checked over the transformed
model. The result is an over-approximation of killability
in the sense that the resulting test cases only kill some
non-deterministic mutant if non-determinism can also be
controlled in the system under test. However, if equiva-
lence can be established for the transformed model, then the
non-deterministic mutant is also equivalent. In Sect. 5.1 we
define the transformation formally and prove its properties.
In Sect. 5.2, we show how the transformation can be done
syntactically in practice.

Secondly, we propose an encoding of model-checking
φ2(I,O) and φ3(I,O) into a bounded SMT satisfiabil-
ity problem. This problem can be solved with off-the-shelf
solvers such as the SMT solver Z3 [22] or the first-order logic
solver Vampire [42].

5.1 Controlling non-determinism in STS

The essential idea of our transformation is to introduce
an additional input (represented by an auxiliary variable
nd) that enables the control of non-deterministic choices
in a conditional mutant Sc(m) with finite non-deterministic
branching. The new input is used carefully to ensure that
choices are consistent for the model and the mutant encoded
in Sc(m). Without loss of generality, we assume that vari-
able nd has a finite range sufficiently large to encode the
non-deterministic choices in αc(m) and δc(m). We use abbre-
viations nd(X , I , O, X ′), nd(X , O, X ′) for nd = nX ,I ,O,X ′ ,
nd = nX ,O,X ′ and values nX ,I ,O,X ′ , nX ,O,X ′ in the range of
nd that uniquely correspond to the non-deterministic choice
of output O and successor state X ′ from state X and in
response to input I , any input, respectively. Moreover, we

add a fresh Boolean variable xτ to X that we use to encode
a fresh initial state.

Let X+
def= X ∪ {mut} and X+, X ′+, I , O be valuations of

X+, X ′+, I, and O, and X and X ′ denote X+|X and X ′+|X ′ ,
respectively. Furthermore, ψ(X), ψ(X+, I), and ψ(O, X ′+)

are formulas uniquely satisfied by X , (X+, I), and (O, X ′+),
respectively.

Given conditional mutant Sc(m) def= 〈I,O,X+, αc(m),

δc(m)〉, we define its controllable counterpart D(Sc(m))
def=

〈I ∪{nd},O,X+ ∪{xτ }, D(αc(m)), D(δc(m))〉. We initialize
D(δc(m))

def= δc(m) and incrementally add constraints as
described below.
Non-deterministic initial conditions: Let X be an arbitrary,
fixed state. The unique fresh initial state is X τ def= X [xτ 	→
�], which, together with an empty output, we enforce by the
new initial conditions predicate:

D(αc(m))
def= ψ(X τ , Oε)

We add the conjunct ¬ψ(X τ) → ¬xτ ′ to D(δc(m)), in
order to force xτ evaluating to ⊥ in all states other than X τ .
In addition, we add transitions from X τ to all pairs of initial
states/outputs in αc(m). To this end, we first partition the pairs
in αc(m) into pairs shared by and exclusive to the model and
the mutant:

J∩ def= {(O, X+) | X , O |� αc(m)}
Jorig

def= {(O, X+) | ¬X+(mut) ∧ (X+, O |� αc(m))∧
(X+[mut 	→ �], O �|� αc(m))}

Jmut def= {(O, X+) | X+(mut) ∧ (X+, O |� αc(m))∧
(X+[mut 	→ ⊥], O �|� αc(m))}

For each (O, X+) ∈ J∩ ∪ Jmut ∪ Jorig , we add the fol-
lowing conjunct to D(δc(m)):

ψ(X τ) ∧ nd(X τ , O, X ′) → ψ(O, X ′+)

In addition, in order to retain that the model and mutant
are equally input-enabled, for outputs O and successor states
X ′ without corresponding non-deterministic choice in the
model ormutant, we add conjuncts to D(δc(m)) that represent
transitions with empty outputs to the respective successor
state:

∀(O, X+) ∈ Jorig : (
ψ(X τ [mut 	→ �]]) ∧ nd(X τ , O, X ′)

) →
ψ(Oε, X τ ′[mut 	→ �])

∀(O, X+) ∈ Jmut : (
ψ(X τ [mut 	→ ⊥]) ∧ nd(X τ , O, X ′)

) →
ψ(Oε, X τ ′[mut 	→ ⊥])

Non-deterministic transitions:Analogous to initial states, for
each state/input pair, we partition the successors into succes-
sors shared or exclusive to model or mutant:

123

416 A. Fellner et al.

T∩
(X+,I)

def= { (X+, I , O, X ′+) | X I ,O−−→ X ′}
T orig

(X+,I)
def= { (X+, I , O, X ′+) |

¬X+(mut) ∧ (X+
I ,O−−→ X ′+) ∧ ¬(X+[mut 	→ �] I ,O−−→ X ′+)}

Tmut
(X+,I)

def= { (X+, I , O, X ′+) |
X+(mut) ∧ (X+

I ,O−−→ X ′+) ∧ ¬(X+[mut 	→ ⊥] I ,O−−→ X ′+)}

A pair (X+, I) causes non-determinism if

|(T∩
(X+,I) ∪ T orig

(X+,I))|X∪I∪O∪X ′ |
> 1 or |(T∩

(X+,I) ∪ Tmut
(X+,I))|X∪I∪O∪X ′ | > 1.

For each pair (X+, I) that causes non-determinism and
each (X+, I , Oj , X ′+ j) ∈ T∩

(X+,I) ∪ Tmut
(X+,I) ∪ T orig

(X+,I), we

add the following conjunct to D(δc(m)):

ψ(X+, I) ∧ nd(X , I , Oj , X
′
j) → ψ(Oj , X

′+ j)

Finally, to retain that model and mutant are equally input-
enabled, we add conjuncts representing transitions with
empty output for non-deterministic choices that have no cor-
responding transition in the model or mutant:

∀(X+, I , Oj , X ′+ j) ∈ T orig
(X+,I) :

(
ψ(X+[mut 	→ ⊥], I) ∧ nd(X , I , Oj , X ′

j)
)

→
ψ(Oε, X ′+ j [mut 	→ �])

∀(X+, I , Oj , X ′+ j) ∈ Tmut
(X+,I) :

(
ψ(X+[mut 	→ ⊥], I) ∧ nd(X , I , Oj , X ′

j)
)

→
ψ(Oε, X ′+ j [mut 	→ ⊥])

The proposed transformation has the following properties:

Proposition 9 Let S be a model with inputs I, outputs O,
mutant Sm, and finite non-deterministic branching then

1 D(Sc(m)) is deterministic (up to mut).
2 T (Sc(m))|X+∪I∪O ⊆ T (D(Sc(m)))[1,∞]|X+∪I∪O.
3 D(Sc(m)) �|� φ1(I,O) then Sm is equivalent.

Proof Statement 1: We show D(Sc(m)) is deterministic (up
to mut). D(Sc(m)) has a unique (up to mut) initial state X τ

and initial output Oε, since we fix D(αc(m)) to be satisfiable
by exactly this state and output.

Nextwe show that an state/input pair (X , I) uniquely fixes
output O and successor state X ′ in D(Sc(m)). Firstly, due
to the conjunct ¬ψ(X τ) → ¬xτ ′, the value of xτ is fixed
throughout the transition system. Secondly, consider the case
where (X , I) does not cause non-determinism in S. Then, no
constraint for state X and input I is introduced to D(δc(m)),
i.e. every value for nd either leads to the same successor out-
put and state or not such transition is possible at all. Thirdly,

consider the case where (X , I) causes non-determinism in
S. For such pairs, we enumerate all finitely many possible
successor outputs and states and conjunctively add implica-
tions with antecedents that are satisfied by unique values of
values of nd. Therefore, only one conclusion of the form
ψ(Oj , X ′+ j) can be satisfied by a given pair of state X and
input I .

Statement 2: We show p ∈ T (Sc(m))|X+∪I∪O[0, n] then
p ∈ T (D(Sc(m)))[1, n + 1]|X+∪I∪O by induction on n.

First note that sets J∩, Jorig , and Jmut are pairwise dis-
joint and contain every initial state/output pair ofSc(m), since
we use the very definition of initial state/output pairs to define
those sets, possibly splitting themaccording to values ofmut .
Likewise, for each (X , I) sets T ∩

(X ,I)∪Tmut
(X ,I)∪T orig

(X ,I) are pair-
wise disjoint and contain every transition for (X , I) as a tuple
(X , I , O, X ′).

In the base case, n = 0, let p = (I0, X0, O0), where
X0 and O0 are initial state and output of Sc(m). We need
to show that there is a trace q ∈ T (D(Sc(m))), such that
q[1]|Xm∪I∪O = (I0, X0, O0). As noted above (O0, X0) ∈
J∩∪Jorig∪Jmut . Therefore,we add a constraint correspond-

ing to a transition X τ nd(Xτ ,O0,X0),O0−−−−−−−−−−→ X ′
0 to the system.

Furthermore, for (X0, I0), we add a constraint corresponding

to a transition X0
I0,O−−→ X ′ for some output O and successor

X ′. Therefore, the trace q exists.
In the inductive step, assume that the statement holds

for n − 1 and consider the case for n. Let p[n − 1] =
(In−1, Xn−1, On−1) and p[n] = (In, Xn, On). We need
to show that for some trace q ∈ T (D(Sc(m))) with
q[n]|Xm∪I∪O = (In−1, Xn−1, On−1)—which exists due to
the induction hypothesis—it is the case that q|Xm∪I∪O[n +
1] = (In, Xn, On). Since p ∈ T (Sc(m)) it is the case

that Xn−1
In−1,On−−−−→ X ′

n in Sc(m). In case (Xn−1, In−1) does
not cause non-determinism, no constraints are added to the

transition system and Xn−1
In−1,On−−−−→ X ′

n in D(S)c(m). In
case (Xn−1, In−1) causes non-determinism, transitions are
exhaustively enumerated via distinction on values of the fresh

nd variable, i.e., Xn−1
In−1∪{nd(Xn−1,In−1,On ,X ′

n)},On−−−−−−−−−−−−−−−−−−−→ X ′
n in

D(S)c(m).
Note also that a consequence of the above statements,

and the fact that we introduce transitions for different values
of nd exhaustively, is that D(Sc(m)) preserves equal input-
enabledness.

Statement 3: �|� φ1(I,O) then Sm is equivalent is a
direct consequence of the statements about traces, since
�|� φ1(I,O) shows no trace in T (D(Sc(m))) is a witness to
killing the mutant. Since traces of Sc(m) are included in (the
projection of) this set, there can not be a trace in T (Sc(m))

that is a witness to killing the mutant. ��
In summary, the transformed model is deterministic,

since we enforce unique initial valuations and make non-

123

Mutation testing with hyperproperties 417

deterministic transitions controllable through input nd. Since
we only add transitions or augment existing transitions with

input nd, every transition X
I ,O−−→ X ′ of Sc(m) is still

present in D(Sc(m)) (when input nd is disregarded). The
potential additional traces of Statement 2 originate from the
Oε-labeled transitions for non-deterministic choices present
exclusively in the model or mutant. These transitions enable
the detection of discrepancies between model and mutant
causedby the introduction or elimination of non-determinism
by the mutation.

Statement 3 shows what can be achieved by model
checking the quantifier alternation free formula φ1 over
the transformed controllable determinism STS D(Sc(m)).
Equivalent mutants of this system are also equivalent in
the non-deterministic version. Killability purported by φ1,
however, could be an artifact of the transformation: Deter-
minization potentially deprives the model of its ability to
match the output of the mutant by deliberately choosing a
certain non-deterministic transition. Test cases can therefore
only be considered killing under the assumption that non-
determinism can be controlled by the tester. In Example 3,
we present an equivalent mutant which is killable after the
transformation, sincewewill detect the deviating output tea
of the model and ε of the mutant. Therefore, our transforma-
tionmerely allows us to provide a lower bound for the number
of equivalent non-deterministic mutants.

5.2 Controlling non-determinism inmodeling
languages

The exhaustive enumeration of states (J) and transitions (T)
outlined in Sect. 5.1 is purely theoretical and infeasible in
practice. However, an analogous result can often be achieved
bymodifying the syntactic constructs of the underlyingmod-
eling language that introduce non-determinism, namely:

– Non-deterministic assignments.Non-deterministic choice
over a finite set of elements {x ′

1, . . . x
′
n}, as provided

by SMV [46], can readily be converted into a case-
switch construct over nd. More generally, explicit non-
deterministic assignments x:=? to state variables x [48]
can be controlled by assigning the value of nd to x.

– Non-deterministic schedulers. Non-determinism intro-
duced by concurrency can be controlled by introducing
input variables that control the scheduler (as proposed in
[43] for bounded context switches).

In case non-determinism arises through variables under-
specified in transition relations, these variable values can be
made inputs as suggested by Sect. 5.1. In general, however,
identifying under-specified variables automatically is non-
trivial.

Example 5 Consider again the SMV code in Fig. 1a, for
which non-determinism can be made controllable by replac-
ing if(in=req&wtr>0):{coff,tea} with if
(nd=0&in=req&wtr>0):coffelif(nd=1&in=req
&wtr>0):tea and adding init(nd):={0,1}.

Similarly, theSTS representationof thebeveragemachine,
given in Example 1, can be transformed by replacing the first
two rules by the following two rules:

nd=0 ∧ wtr>0 ∧ in=req ∧ out=coff ∧ wtr’=wtr-1∨
nd=1 ∧ wtr>0 ∧ in=req ∧ out=tea ∧ wtr’=wtr-1∨

Finally, the results of the transformation is presented in Fig. 6
on a case study.

5.3 Encoding bounded killability into SMT

Another way of solving killability properties with quanti-
fier alternation is to leverage the first order expressability
of HyperLTL (proven in [32]) and to encode the problem
into a suitable fragment of first order logic. Let Sc(m) def=
〈I,O,X+, αc(m), δc(m)〉 be a conditional mutant, where for
ease of presentation, we abbreviate αc(m) with α and δc(m)

with δ throughout this section. We describe an SMT encod-
ing of potential and definite killability into a bounded (up to
fixed bound k) satisfiability problem in a logic that contains
the logic of the symbolic transition system, as well as quan-
tification over the ranges of state and output variables. The
idea is to create copies of each variable and each step for
the mutant as well as the original. Furthermore, the transi-
tion relation is replicated for each step, using the respective
step variables. Reachable states and outputs are expressed
by universally quantifying over variable values and checking
whether the respective variable assignment satisfies the initial
state-, as well as, the step-wise transition relation- predicate.

Let I = {i0, . . . , imi }, O = {o0, . . . , omo}, and X =
{x0, . . . , xmx }. For each variable i ∈ I and n ∈ 0, . . . , k we
create new variables i[n] with the same range as i . For each
variable v ∈ O and n ∈ 0, . . . , k as well as each v ∈ X
and n ∈ 0, . . . , k + 1, we create new variables v�[n] and
v⊥[n] with the same ranges as v. For a formula ψ , let ψ�

n
be the formula that results from replacing each variable v ∈
I ∪ O ∪ X \ {mut} with v�[n], each variable v′ ∈ X ′ with
v�[n + 1], andmut,mut′ with �. Likewise, ψ⊥

n is defined.
We can encode trace prefixes up to k steps of the original

respectively mutated STS as models of the following for-
mulas with free input, output, and state variables (original
respectively mutated versions):

φSc(m)

otr
def= α⊥

0 ∧
∧

0≤n≤k

δ⊥
n φSc(m)

mtr
def= α�

0 ∧
∧

0≤n≤k

δ�
n

123

418 A. Fellner et al.

Weencode potential killing linear tests of length k asmod-
els of the following formula with free inputs, original output,
and state variables:

φSc(m)

pk
def= ∀o�

0 [0], . . . , o�
mo

[k], x�
0 [0], . . . , x�

mx
[k + 1].

α⊥
0 ∧

∧

0≤n≤k

δ⊥
n ∧ (

(α�
0 ∧

∧

0≤n≤k

δ�
n)

→
∨

0≤ j≤mo

o�
j [k] �= o⊥

j [k])

Likewise, we encode definitely killing linear tests of
length k as models of the following formula with free inputs:

φSc(m)

dk
def= ∀o⊥

0 [0], . . . , o⊥
mo

[k], x�
0 [0], . . . , x�

mx
[k + 1],

o�
0 [0], . . . , o�

mo
[k], x�

0 [0], . . . , x�
mx

[k + 1].
(α�

0 ∧
∧

0≤n≤k

δ�
n ∧ α⊥

0 ∧
∧

0≤n≤k

δ⊥
n)

→
∨

0≤ j≤mo

o�
j [k] �= o⊥

j [k]

In the following proposition, we prove the correctness of
the encoding.

Proposition 10 Let Sc(m) be a conditional mutant, then

1. φSc(m)

otr is satisfiable iff there is trace p ∈ T (S) of length
at least k

2. φSc(m)

mtr is satisfiable iff there is trace p ∈ T (Sm) of length
at least k

3. φSc(m)

pk is sat. iff there is a linear test t for S of length k
potentially killing Sm

4. φSc(m)

dk is sat. iff there is a linear test t for S of length k
definitely killing Sm

Proof Statement 1: Amodel forφotr (Sc(m)) is an assignment
of stepwise copies of input, original output and original state
variables up to step k that satisfies the initial state predicate
and the transition predicate in each step. Clearly, such an
assignment corresponds to the prefix of trace p ∈ T (S) of
length k.
Statement 2 can be shown analogously to Statement 1.
Statement 3: As shown Statement 1, every model of
φpk(Sc(m)) encodes a prefix t of some trace p ∈ T (S) of
length k and every such prefix is encoded in a model. Fur-
thermore, every extension of such a model via assignments
of the universally quantified mutant output and mutant state
variables that encodes a prefix of some trace of q ∈ T (Sm)

with the same input values as p in the first k steps satisfies
the antecedent of the implication and thus needs to satisfy
the consequent. Due to Statement 2 every trace of Sm is cap-
tured via such an assignment. Therefore, there exists a model

corresponding to trace prefix t of the formula if and only if
every trace q ∈ T (Sm) with q|I [0, k] = t |I is such that
q|O[k] �= t |O[k], which is equivalent to t potentially killing
Sm .
Statement 4 can be shown analogously to Statement 3 with
the exception that amodel only encodes a sequence of inputs.
Extensions of that model of universally quantified variables
that satisfy the antecedent encode a trace in the original and
a trace in the mutated STS with equal input. Since also the
consequent needs to be satisfied by such extensions, their
outputs must differ in step k, showing that every trace of
the original STS with the model’s sequence of inputs is a
definitely killing linear test of length k. ��
Example 6 Consider the STS of the beverage machine pre-
sented in Example 1.

α
def=out=ε ∧ wtr=2

δ
def=in=req ∧ wtr>0 ∧ out=coff ∧ wtr’=wtr-1∨
in=req ∧ wtr>0 ∧ out=tea ∧ wtr’=wtr-1∨
in=fill ∧ wtr=0 ∧ ¬mut ∧ out=ε ∧ wtr’=2∨
in=fill ∧ wtr=0 ∧ mut ∧ out=ε ∧ wtr’=1∨
in=ε ∧ out=ε ∧ wtr’=wtr

We present the initial state predicate and transition pred-
icate for the j ′th step for the mutated system. In particular,
note that due to conjuncts ¬� and � in place of ¬mut and
mut only the transition corresponding to the mutant is acti-
vated.

α�
0

def=out�[0] = ε ∧ wtr�[0] = 2

δ�
j

def=(in[j] = req ∧ wtr�[j] > 0 ∧ out�[j]
= coff ∧ out�[j + 1] = out�[j] − 1)∨
(in[j] = req ∧ wtr�[j] > 0 ∧ out�[j]
= tea ∧ out�[j + 1] = out�[j] − 1)∨
(in[j] = fill ∧ wtr�[j] = 0 ∧ ¬� ∧ out�[j]
= ε ∧ wtr�[j + 1] = 2)∨
(in[j] = fill ∧ wtr�[j] = 0 ∧ � ∧ out�[j]
= ε ∧ wtr�[j + 1] = 1)∨
(in[j] = ε ∧ out�[j]
= ε ∧ wtr�[j + 1] = wtr�[j])

In order to evaluate the scalability of this method, we
encoded a parametrized version of the beverage machine,
together with φSc(m)

dk in the SMTlib format and gave it to
the Z3 SMT solver (version 4.8.7). The benchmark encoding
is parametrized with the bound k (5 in the running exam-
ple instance, corresponding to input sequence 〈request,

123

Mutation testing with hyperproperties 419

Fig. 3 Tool pipeline of our
experiments

request, fill, request, request〉), which can
be controlled via the capacity of the water tank (2 in the run-
ning example instance). The encoding and a script to create
parametrized versions of it can be found in [47]. We ran this
proof of concept demonstration on a virtual machine with
one Intel i7 core at 2.8 GHz and 10GB of RAM.

The instance with bound 12 is solved within 20 seconds.
After that, there seems to be a steep increase in complexity.
For the instance with bound 13, Z3 returns unknown after
7 minutes with an error indicating model-based quantifier
instantiation did not find amodel after 1000 attempts. Unsur-
prisingly, the large amount of universal quantification poses
a challenging problem to Z3.

6 Experiments

In this section, we present an experimental evaluation of
the test generation via HyperLTL model checking method.
We start by discussing the deployed tool chain. Thereafter,
we show a validation of our method on one case study
with another model-based mutation testing tool. Finally, we
present quantitative results on a broad range of generic mod-
els.

6.1 Toolchain

Figure 3 shows the toolchain thatwe use to produce test suites
for models encoded in the modeling languages Verilog and
SMV. Verilog models are deterministic while SMV models
can be non-deterministic.
Variable annotation As a first step, we annotate variables as
inputs and outputs. These annotations were added manually
for Verilog, and heuristically for SMV (partitioning variables
into outputs and inputs).
Mutationand transformationWeproduce conditionalmutants
via a mutation engine. For Verilog, we implemented our
own mutation engine into the open-source Verilog com-
piler VL2MV [17]. We use standard mutation operators,
such as replacing arithmetic operators, Boolean relations.
The list of mutation operators used for Verilog can be
found in the Table 1. For SMV models, we use the NuSeen
SMV framework [7,8], which includes a mutation engine
for SMV models. The mutation operators used for SMV
are summarized in Table 2 and explained in detail in [7].

Table 1 List of supported Verilog mutation operators (∗ marks bit-wise
operations)

Type Mutation

Arithmetic Exchange binary + and −
Exchange unary + and −

Relations Exchange == and ! =
Exchange <, ≤, >, ≥

Boolean Exchange ! and ∼∗

Drop ! and ∼∗

Exchange &&,||,&∗,|∗, xor and xnor

Assignments Exchange = and <=
(Blocking & Non-Blocking Assignment)

Constants Replace Integer Constant c by 0, 1, c + 1, and c − 1

Replace Bit-Vector Constant by �0, and �1

Table 2 List of supported SMV mutation operators

Type Mutation

Structural Remove branch in case expression

Swap branches in case expression

Remove variable assignment

Remove variable initialization

Remove transition constraint

Expressions Expression negation (e is replaced by ¬e)

Logical operator replacement (&, |,→,↔, xor , xnor)

Mathematical operator replacement (+,−, ∗, /,mod)

Relational operator replacement (=, �=,<,≤,>,≥)

Stuck at 0/1 (replace by false/true)

Associative shift ((a|b)&c is replaced with a|(b&c))

Values Enumeration replacement

Number replacement

Digit replacement

We implemented the non-determinism controlling transfor-
mation presented in Sect. 5 into NuSeen and applied it to
conditional mutants.
Translation The resulting conditional mutants from both
modeling formalisms are translated intoAIGERcircuits [11].
AIGER circuits are essentially a compact representation for
finite models. The formalism is widely used bymodel check-
ers. For the translation of Verilog models, VL2MV and the

123

420 A. Fellner et al.

Fig. 4 Non-deterministic timed
car alarm system model

ABC model checker are used. For the translation of SMV
models, NuSMV is used.
Test suite creation We obtain a test suite via Hyper-
LTL model checking ¬φ1(I,O) on conditional mutants
using the MCHyper model checker. Tests are obtained as
counter-examples, which are finite prefixes of π -witnesses
to φ1(I,O). In case we can not find a counter-example, and
use a complete model checking method, the mutant is prov-
ably equivalent.

6.2 Car alarm system (CAS) case study

Figure 4 depicts amodel of a car alarm system, represented as
a labeled transition system, which was studied in the model-
based test case generation literature before [2,4,27]. Inputs
and outputs are marked with leading ’?’ and ’!’ symbols,
respectively. Themodel includes timing sensitive transitions.
Discrete time is modeled by hidden propositions t0, t1, . . .
and non-deterministic transitions to states representing that
the respective amount of clock ticks have passed. States for
a range of time are depicted in compacted form.

The modeled car can be opened, closed, locked, and
unlocked. Initially the car is open and unlocked. Once the
car is closed and locked, after some time (20 clock ticks in
the depicted instantiation) the car enters an armed state. In
that armed state, if it is opened before it is unlocked, a visual
(flash) and an acoustic (sound) alarm are triggered. After
some specified time (30 clock ticks in the depicted instan-
tiation), the visual alarm stops. Then after some more time
(270 clock ticks in the depicted instantiation) the acoustic
alarm also stops. At any time, the alarms can be turned off
by unlocking the car.

We can tune the degree of non-determinism of the model
by adjusting the timers of time triggered events. In the
following, we discuss mutants for deterministic and non-
deterministic cases. Note that we display state-machine
representations of the model and its mutants, which are
the result of applying mutations to the underlying syntactic
description of the model.

6.2.1 Deterministic case

In case all timers of time triggered events are 0, the model
is deterministic. In this case, we can study mutations on non
time-triggered transitions. For example, we can introduce
a mutation that disables some transition. In the transition
system representation of themodel, this amounts to replacing
the transition with a self-loop. In a syntactic representation
of the model, this amounts to replacing the condition of a
branch by false.

We depict the relevant parts of a deterministic version of
the car alarm system model in Fig. 5a and a mutant with a
faulty arming mechanism Figure 5b. The mutant does not
enter the armed state after the car is locked and closed. The
test depicted in Fig. 5c definitely kills this mutant, as can be
seen in the response of the mutant to the test in Fig. 5d.

6.2.2 Non-deterministic case

In case some timer of time triggered events is nonzero, the
model is non-deterministic. As discussed in Sect. 5, in order
to deal with non-deterministic models in practice, we need
to make non-determinism controllable. We depict the rele-
vant parts the transformed non-deterministic version of the
car alarm system model in Fig. 6a and a mutant that dou-
bles the time trigger for entering the armed state in Fig. 6b.
Note that due to transformation making non-deterministim
controllable, in contrast to Fig. 4, the time propositions are
input propositions. Further note that due to equal input-
enabledness, bothmodel andmutant have transitions to states
for thewhole range of time from0 to 40 clock ticks, aswell as
states corresponding to anticipating the armed state after 20
and 40 clock ticks, which differ in observable output between
the model and mutant. The test depicted in Fig. 6c kills that
mutant, as can be seen in the response of the mutant to the
test in Fig. 6d, which controls timing. However, note that the
original mutant with uncontrollable non-determinism is only
potentially killable, since after inputs ?open and ?close,
there is a non-deterministic transitions in the mutant that
produces the prescribed output !armed. That is, the test
only kills the mutant reliably when timing can be controlled.
Although in practice it might be difficult to execute a test
that requires to wait an exact amount of time, it should be

123

Mutation testing with hyperproperties 421

Fig. 5 Deterministic mutant of
a deterministic model

(a) (b)

(c) (d)

Fig. 6 Mutant and model with
controllable non-determinism

(a)

(c) (d)

(b)

noticeable whether the time to enter the armed state is twice
as much as the expected time.

The car alarm system model can easily be modified to
illustrate the mixed determinism case. To this end, a model
with all timers being 0 can be compared to one with some
timer greater than 0.

6.2.3 Test suite evaluation

We evaluated the strength and correctness of the test suite
created using the methods, toolchain, and SMV mutation
operators presented in this work via the model-based muta-
tion testing tool MoMuT [1,27] on a non-deterministic
version of the car alarm system. To this end, we manually
formulated the model both in SMV and as an action sys-
tem, which is the native modeling language for MoMuT.
The two modeling mechanisms induce two separate sets
of mutants, i.e.„ those induced by SMV mutation operators
described above and those induced by action system muta-
tion operators, which are out of scope of this work, but are
described in [27]. MoMuT can evaluate a test suite (created

via our toolchain and using SMV mutations) by computing
its mutation score—the ratio of killed to the total number of
mutants—with respect to action systemmutations on a given
action system model.

This procedure evaluates our test suite in twoways. Firstly,
it shows that the tests are well formed, since MoMuT does
not reject them. Secondly, it shows that the test suite is able
to kill mutants other than those it was created from, which is
important, because it suggests that the test suite is also able
to detect faults in implementations.

We created a test suite consisting of 61 tests, using the
toolchain presented in Sect. 6.1 and the mutation operators
presented in Table 2. We automatically map the resulting
test suite to the test format accepted by MoMuT and auto-
matically remove redundant tests. A test is redundant if its
string representation is a prefix of another test. For the test
suite, MoMuT measures a mutation score of 91% on 439
action systemmutants. In comparison, the test suite achieves
a mutation score of 61% on 3057 SMV mutants for which is
was created. These results highlight that the mutation score
is relative to the mutation operators used. On this model,

123

422 A. Fellner et al.

Table 3 Characteristics of
models

Parameters Verilog SMV CAS
μ σ Min Max μ σ Min Max

Models 16 76 1

Input 186 310 4 949 9 13 0 88 58

Output 177 299 7 912 4 4 1 28 7

State 16 16 2 40 – – – – –

Gates 4207 8309 98 25193 189 210 7 1015 1409

Δ Gates (%) 3 3 0.1 10 8 8 0.3 35 0.9

Mutants 260 236 43 774 535 1042 1 6304 3057

the SMV mutation operators produce a lot more equivalent
mutants than the action system mutation operators. Further
characteristics of the resulting test suite are presented in the
following Sect. 6.1.

Finally, we created a separate test suite using MoMuT
with its default settings on the action system model. The
resulting test suite consisted of 6 tests that kill 90% of the
action system mutants, which were 8 mutants less than the
test suite created via hyperproperties. The test suite created
by MoMuT is more compact, because it was created directly
for action system mutants instead of the larger number of
SMV mutants. This result shows that hyperproperty model
checking-based test generation is well suited to kill a large
array ofmutants, whilematuremutation testing tools are able
to create more compact test suites that kill a large proportion
of the mutants. A combined use of both techniques is one
interesting future direction of this work.

6.3 Quantitative experiments

Wepresent experiments on a series of benchmark that demon-
strate the versatility and scalability properties of generating
test suites via hyperproperty model checking. The experi-
ments were run in parallel on a machine with an Intel(R)
Xeon(R) CPU at 2.00GHz, 60 cores, and 252GB RAM. We
used 16Verilogmodelswhich are presented in [31], aswell as
models from opencores.org. Furthermore, we used 76 SMV
models that were also used in [7]. Finally, we used the SMV
formalism of CAS. All models are available in [47]. Ver-
ilog and SMV experiments were run using property driven
reachability based model checking with a time limit of 1
hour. Property-driven reachability based model checking did
not perform well for CAS, for which we therefore switched
to bounded model checking with a depth limit of 100. All
reported values are rounded to the first significant digit.
Characteristics of models Table 3 present characteristics
of the models. For Verilog and SMV, we present average
(μ), standard deviation (σ), minimum (Min), and maximum
(Max) measures per model over the set of models. For CAS
we report the values for that single model. We report the

size of the circuits in terms of the number of Input-, Out-
put-, State variables as well as the number of And Gates,
which corresponds to the size of the transition relation of the
model. Furthermore, in rowΔGates (%), we report the aver-
age absolute size difference (in % of number of Gates) of the
conditional mutant and the originalmodel, where the average
is over all mutants. Finally, Mutants shows the number of
the mutants that are generated and analyzed for the models.

We can observe that our method is able to handle models
of respectable size, reaching thousands of gates. Further-
more, Δ Gates of the conditional mutants is relatively low.
Thus, conditional mutants allow us to compactly encode the
original and mutated model in one model. Hyperproperties
enable us to refer to and juxtapose traces from the original
and mutated model, respectively. Classical temporal logic
does not enable the comparison of different traces. There-
fore, mutation analysis bymodel checking classical temporal
logic necessitates strictly separating traces of the original and
themutatedmodel, resulting in a quadratic blowup in the size
of the input to the classical model-checker, compared to the
size of the input to the hyperproperty model-checker.
Model checking results Table 4 summarizes the quantitative
results of our experiments. Similarly to above, for Verilog
and SMV, we present average (μ), standard deviation (σ),
minimum (Min), and maximum (Max) measures per model
over the set of models as well as the respective values for
the single CAS model. The quantitative metrics we use for
evaluating our test generation approach are Killed (%) the
percentage of killedmutants,Equivalent (%) the percentage
of equivalent mutants, Avg. test length, Max test length,
the average respectively maximal test case length for tests
produced for each killed mutant, as well as Avg. Runtime
(s) the amount ofmodel checking time per killed respectively
equivalent mutant. Furthermore, we report Timeout (%) the
percentage ofmutants exceeding the time limit orBMCdepth
bound. For Verilog and SMV the time limit was 1 hour. For
CAS the depth limit was 100 transitions.

Finally, we report Total time (h/s) the total time for test
suite creation per model, including timeouts, in hours or sec-
onds for very small models. The total time is the sum of

123

Mutation testing with hyperproperties 423

Table 4 Experimental results Metrics Verilog SMV CAS
μ σ Min Max μ σ Min Max

Killed (%) 57 33 5 99 65 31 0 100 62

Avg. test length 4 2 2 8 15 58 4 462 6

Max test length 22 50 3 207 187 1279 4 10006 9

Avg. runtime (s) 83 268 0.01 1068 1 5 – 47 8

Equivalent (%) 33 32 0 95 35 31 0 100 0

Avg. runtime (s) 45 120 – 352 1 2 – 15 –

Timeout (%) 10 27 0 86 0 0 0 0 38

Total time (h/s) 69 169 3s 620 0.4 1 0.1s 7 1

the per mutant model checking times, i.e., assumes sequen-
tial test suite creation. However, since mutants are model
checked independently, the process can easily beparallelized,
which drastically reduces the total time needed to create a test
suite for a model, typically from hours to a few minutes. The
times of the Verilog benchmark suite are dominated by two
instances of the secure hashing algorithm (SHA), which are
inherently hard cases for model checking.

We can see that the test suite creation times are in the
realm of a few hours, which collapses tominutes whenmodel
checking instances in parallel. However, the timing mea-
sures really say more about the underlying model checking
methods than our proposed technique of mutation testing
via hyperporperties. Furthermore, we want to stress that our
method is agnostic to which variant of model checking (e.g.„
property driven reachability, or bounded model checking)
is used. As discussed above, for CAS switching from one
method to the other made a big difference.

Themutation scores average is around 60% for all models.
It is interesting to notice that the scores of the Verilog and
SMV models are similar on average, although we use a dif-
ferent mutation scheme for the types of models. Again, the
mutation score says more about the mutation scheme than
our proposed technique. Notice that we can only claim to
report the mutation score, because, besides CAS, we used a
complete model checking method (property-driven reacha-
bility). That is, in case, for example, 60% of themutants were
killed and no timeouts occurred, then 40% of the mutants
are provably equivalent. In contrast, incomplete methods for
mutation analysis can only ever report lower bounds of the
mutation score.

The Verilog model with the highest percentage of killed
mutants (99%) is a deterministic Verilog version of an car
alarm system without time. In total, that model has 104
mutants of which 103 were killed and one was equivalent.
TheVerilogmodelwith the least percentage of killedmutants
(0%) is an encoding of the SHA encryption algorithm. Such
models are notoriously difficult cases for model-checking
methods. Out of its 687 total mutants, 592 mutants (86%)

timed out during model checking and the remaining 95
mutants (14%) were killed.

Multiple SMV models correspond to the highest percent-
age of killed mutants (100%), including a model of digital
adder with 36 mutants. All models with 100% killing per-
centage are rather small. However, one model of a Java array
implementation with 2554 mutants has a killing percentage
of 97%. Likewise, there are multiple SMV models with the
highest number of equivalent mutants (100%), including, for
example, a model of the rock–paper–scissors game with 187
mutants.

Finally, as discussed above, the 61.7% of CAS translate
to 91% mutation score on a different set of mutants. This
indicates that the failure detection capability of the produced
test suites is well, which ultimately can only be measured by
deploying the test cases on real systems.

7 Related work

7.1 Hyperproperties

Hyperproperties were originally introduced to formally
express security properties, such as non-interference, in [19].
The paper works out the theoretical foundations of hyper-
properties and contrasts them to classical trace properties.
Traditionally, hyperproperties were formulated and used in
a case by case fashion, see for example [41,45,53].

In order to generalize these approaches and to enable
rigorous study of hyperproperties, logics for hyperproper-
ties were developed [18,20]. In particular, HyperLTL and
HyperCTL*, which are hyperproperty sensitive extensions
of classic temporal logics, are used in this work. The expres-
sive power of HyperLTL was characterized to be equivalent
to first order logic over disjoint copies of the natural numbers
and a restricted type of quantification [32].

Furthermore, the satisfiability- [28,29], monitoring- [15,
30], and model-checking [31] problems for HyperLTL were
tackled. The initial lack of model checking techniques for

123

424 A. Fellner et al.

HyperLTL formulas with quantifier alternation was recently
addressed in [21] via a combination of reactive synthesis
and model checking of quantifier alternation free HyperLTL
formulas. Unfortunately, the respective version of the Hyper-
LTL model checkerMCHyper is currently only available in
a Web-based version.

7.2 Model checking-based test generation

A number of test case generation techniques are based on
model checking; a survey is provided in [35]. The approach
has been demonstrated to scale to the industrial setting in
[24]. In [33] a thorough evaluation and comparison of dif-
ferent model checkers applied to the test generation problem
over multiple modeling formalisms is presented.

Mostmodel checking based test generation target, in com-
parison with our work, different coverage metrics and/or
abstraction levels, such as structural coverage criteria for Java
programs [54] and RSML models [51] or information/data
flow criteria for extended finite state machines [38].

However, mutation testing via model checking has been
explored as well. For example, [36] presents an approach to
formulate mutation killing via trap properties. Trap proper-
ties are conditions that, if satisfied, indicate a killed mutant.
In contrast, our approach directly targets the input / output
behavior of the model and does not require to formulate
model specific trap properties.

Mutation based test case generation via module check-
ing is proposed in [13]. The theoretical framework of this
work is similar to ours, but builds on module checking
instead of hyperproperties. Moreover, no implementation or
experimental evaluation is provided, leaving the practical
applicability of the approach open.

In [5] an approach for mutation based test case genera-
tion of timed automata is presented. The test case generation
problem is reduced to a language inclusion problem, which
is solved via bounded SMT model checking. Similarly, [25]
presents an approach to mutation-based test generation via
model checking for embedded software. The authors com-
bine the original model, mutants, and mutation detection
monitors into one timed automaton model. A reachability
property is then model checked over this combined model to
generate killing test cases. In contrast to ourwork, in presence
of non-determinism, the proposed encodings of mutation
killing can not differentiate between potential and definite
killing.

In [34] model checking based test generation is used
to check requirements property focused coverage criteria,
such as mutation of properties. Similarly, [12] presents an
approach to create mutated requirements and use model
checking of SMV models to identify models that fulfill
the faulty requirements. Our work is orthogonal to such

approaches, since we consider test generation over mutations
of the system instead of the property.

7.3 Symbolic test generation

The authors of [4] present an approach to mutation based
test generation for action systemmodels via symbolic refine-
ment condition. The refinement condition as well as sets of
reachable states are iteratively computed by solving SMT
problems. While this work offers an interesting practical
solution for action systems, our approach targets a larger
class of systems that can be encoded as symbolic transition
systems. In a similar fashion, the MuAlloy [55] framework
enablesmodel-basedmutation testing forAlloymodels using
SAT solving. In this work, the model, as well as killing con-
ditions, are encoded into a SAT formula and solved using the
Alloy framework.

In contrast to the latter two approaches, we encode only
the killing conditions into a formula and leave encoding of
the transition system to the model checker. Therefore, our
approach is more flexible and more likely to be applicable in
other domains. We demonstrate this by producing test cases
for models encoded in two different modeling languages.

Symbolic methods for weak mutation coverage are pro-
posed in [10] and [9]. The former work describes the use
of dynamic symbolic execution for weakly killing mutants.
The latter work describes a sound and incomplete method
for detecting equivalent weak mutants. The considered cov-
erage criterion in both works is weakmutation, which, unlike
the strong mutation coverage criterion considered in this
work, can be encoded as a safety traceproperty. However,
both methods could be used in conjunction with our method.
Dynamic symbolic execution could be used to first weakly
kill mutants and thereafter strongly kill them via hyper-
property model checking. Equivalent weak mutants can be
detected with the methods of [9] to prune the candidate
space of potentially strongly killable mutants for hyperprop-
ery model checking.

7.4 Semantics of mutation coverage

A comprehensive survey of mutation testing in multiple
settings is presented in [40]. The foundational ideas of muta-
tion testing were first presented in [23] and [37]. What we
consider the original definition of mutation coverage was
presented in [16], which considers mutants of determinis-
tic programs. In this original definition, a mutant is killed
if it produces different output to the original. However, in
different settings, such as in model-based testing or in the
presence of non-determinism, this simple definition is not
satisfactory, since in the former case tests are created from
an abstraction of the system under test and in the latter case
different non-deterministic behavior has to be differentiated

123

Mutation testing with hyperproperties 425

from real faults. While the basic notion of introducing faults
and seeking differences in outcome remains the same, dif-
ferent system abstraction levels or test requirements might
result in different semantic definitions of mutation coverage.
One goal of our work is to provide rigorous semantics for
non-deterministic systems that are applicable to a large class
of settings.

Refinement relations between systems are used to define
mutation coverage in [4,27] for action systems or in [3] for
the Unifying Theory of Programming. The resulting killing
criteria are essentially equivalent to potential killing, since
for non-deterministic systems, a single spurious output con-
stitutes a killed mutant.

In [14], mutation coverage is defined for communicat-
ing extended finite state machines by comparing all possible
input/output sequences following some input sequence of
original and mutant. The considered notion of killing is sim-
ilar, yet different to the potential or definite killing considered
in this work, since it considers all inputs and outputs after
some prefix inputs, whereas we consider all outputs after a
sequence of inputs.

A unified framework for defining multiple test coverage
criteria, including weak mutation and hyperproperties such
as unique-cause MCDC, is proposed in [44] . While strong
mutation is not expressible in this framework, applying
hyperproperty model checking to the proposed framework
is interesting future work.

8 Conclusion

Our formalization of mutation killability in terms of hyper-
properties provides rigorous semantics, in particular in
presence of non-determinism, and enables the automated
model-based generation of tests using an off-the-shelf model
checker. We overcome limitations of currently available
hyperproperty model checking tooling infrastructure by pro-
viding methods to create test cases for non-deterministic
models via a transformation making non-determinism con-
trollable and an SMT encoding of killability properties that
require quantifier alternation. Furthermore, we evaluated our
approach on publicly available SMV and Verilog models,
demonstrating that the approach is versatile and scalable.

Acknowledgements We thank Pamina Georgiou and Laura Kovács for
helpful discussions on the SMT encoding of killability and support in
developing initial versions of it.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Aichernig, B., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., Tiran,
S.: MoMuT::UML model-based mutation testing for UML. In:
2015 IEEE 8th International Conference on Software Testing, Ver-
ification and Validation (ICST), ICST, pp. 1–8, April (2015)

2. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R.,
Tiran, S.: Killing strategies for model-based mutation testing.
Softw. Test. Verif. Reliab. 25(8), 716–748 (2015)

3. Aichernig,B.K.,He, J.:Mutation testing inUTP.FormalAsp.Com-
put. 21(1–2), 33–64 (2009)

4. Aichernig, B.K., Jöbstl, E., Tiran, S.:Model-basedmutation testing
via symbolic refinement checking. (2014)

5. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants—
model-based mutation testing with timed automata. In: Interna-
tional Conference on Tests and Proofs, pp. 20–38. Springer, Berlin
(2013)

6. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appro-
priate tool for testing experiments? In Gruia-Catalin, R., Griswold
W.G., Nuseibeh B. (eds.) 27th International Conference on Soft-
ware Engineering (ICSE 2005), 15–21 May 2005, St. Louis,
Missouri, USA, pp. 402–411. ACM (2005)

7. Arcaini, P., Gargantini, A., Riccobene, E.: Usingmutation to assess
fault detection capability of model review. Softw. Test. Verif.
Reliab. 25(5–7), 629–652 (2015)

8. Arcaini, P., Gargantini, A., Riccobene, E.: Nuseen: a tool frame-
work for the nusmv model checker. In: 2017 IEEE International
Conference on Software Testing, Verification andValidation, ICST
2017, Tokyo, Japan, March 13–17, 2017, pp. 476–483. IEEE Com-
puter Society (2017)

9. Bardin, S., Delahaye, M., David, R., Kosmatov, N., Papadakis, M.,
Traon, Y.L., Marion, J.-Y.: Sound and quasi-complete detection of
infeasible test requirements. In: 8th IEEE International Conference
on Software Testing, Verification andValidation, ICST 2015, Graz,
Austria, April 13–17, 2015, pp. 1–10 (2015)

10. Bardin, S., Kosmatov, N., Cheynie, F.: Efficient leveraging of sym-
bolic execution to advanced coverage criteria. In: Seventh IEEE
International Conference on Software Testing, Verification and
Validation, ICST 2014, March 31 2014–April 4, 2014, Cleveland,
Ohio, USA, pp. 173–182 (2014)

11. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond,
(2011). fmv.jku.at/hwmcc11/beyond1.pdf

12. Black, P.E., Okun, V., Yesha, Y.: Mutation operators for spec-
ifications. In: The Fifteenth IEEE International Conference on
Automated Software Engineering, 2000. Proceedings ASE 2000,
pp. 81–88. IEEE (2000)

13. Boroday, S., Petrenko, A., Groz, R.: Can a model checker gen-
erate tests for non-deterministic systems? Electron. Notes Theor.
Comput. Sci. 190(2), 3–19 (2007)

14. Boroday, S., Petrenko, A., Groz, R., Quemener, Y.-M.: Test gen-
eration for CEFSM combining specification and fault coverage. In
Schieferdecker, I., König, H., Wolisz, A. (eds.) Testing of Com-
municating Systems XIV, Applications to Internet Technologies
and Services, Proceedings of the IFIP 14th International Confer-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.fmv.jku.at/hwmcc11/beyond1.pdf

426 A. Fellner et al.

ence on Testing Communicating Systems - TestCom 2002, Berlin,
Germany, March 19–22, 2002, volume 210 of IFIP Conference
Proceedings, pp. 355–372. Kluwer (2002)

15. Brett, N., Siddique, U., Bonakdarpour, B.: Rewriting-based run-
time verification for alternation-free hyperltl. In Legay, A., Mar-
garia, T. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22–29, 2017, Proceedings, Part II, volume 10206 of Lecture Notes
in Computer Science, pp. 77–93 (2017)

16. Budd, T.A., Lipton, R.J., DeMillo, R.A., Sayward, F.G: Mutation
analysis. Technical report, DTIC Document (1979)

17. Cheng, S.-T., York, G., Brayton, R.K: Vl2mv: a compiler from
verilog to blif-mv. HSIS Distribution, (1993)

18. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe,
M.N., Sánchez, C.: Temporal logics for hyperproperties, pp. 265–
284. Springer, Berlin (2014)

19. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput.
Secur. 18(6), 1157–1210 (2010)

20. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy
of hyperlogics. In: 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, Vancouver, BC, Canada, June
24–27, 2019, pp. 1–13. IEEE (2019)

21. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying
hyperliveness. In Dillig I., Tasiran, S. (eds.) Computer aided verifi-
cation - 31st international conference, CAV 2019, New York City,
NY, USA, July 15–18, 2019, Proceedings, Part I, volume 11561 of
Lecture Notes in Computer Science, pp. 121–139. Springer (2019)

22. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 4963 of Lecture Notes in Computer Science,
pp. 337–340. Springer (2008)

23. DeMillo, R.A., Lipton,R.J., Sayward, F.G.:Hints on test data selec-
tion: help for the practicing programmer. IEEE Comput. 11(4),
34–41 (1978)

24. Enoiu, E.P., Causevic, A., Ostrand, T.J., Weyuker, E.J., Sundmark,
D., Pettersson, P.:Automated test generationusingmodel checking:
an industrial evaluation. STTT 18(3), 335–353 (2016)

25. Enoiu, E.P., Sundmark, D., Causevic, A., Feldt, R., Pettersson,
P.: Mutation-based test generation for PLC embedded software
using model checking. In: Wotawa, F., Nica, M., Kushik, N. (eds.)
Testing Software and Systems—28th IFIP WG 6.1 International
Conference, ICTSS 2016, Graz, Austria, October 17–19, 2016,
Proceedings, volume 9976 of Lecture Notes in Computer Science,
pp. 155–171 (2016)

26. Fellner, A., Befrouei, M.T., Weissenbacher, G.: Mutation testing
with hyperproperties. In: Csaba Ölveczky, P., Salaün, G. (eds.)
Software Engineering and Formal Methods—17th International
Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019,
Proceedings, volume 11724 of LectureNotes in Computer Science,
pp. 203–221. Springer (2019)

27. Fellner, A., Krenn,W., Schlick, R., Tarrach, T., Weissenbacher, G.:
Model-based, mutation-driven test case generation via heuristic-
guided branching search. In Talpin, J.-P. , Derler, P., Schneider,
K. (eds.) Formal Methods and Models for System Design (MEM-
OCODE), pp. 56–66. ACM (2017)

28. Finkbeiner,B.,Hahn,C.:Decidinghyperproperties. In:Desharnais,
J., Jagadeesan, R. (eds.) 27th International Conference on Concur-
rency Theory, CONCUR 2016, August 23–26, 2016, Québec City,
Canada, volume 59 of LIPIcs, pp. 13:1–13:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2016)

29. Finkbeiner, B.,Hahn,C., Stenger,M.: Eahyper: satisfiability, impli-
cation, and equivalence checking of hyperproperties. In CAV (2),
volume 10427 of LectureNotes inComputer Science, pp. 564–570.
Springer (2017)

30. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring
hyperproperties. FormalMethodsSyst.Des.54(3), 336–363 (2019)

31. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model
checkingHyperLTL andHyperCTL∗. In: Kroening, D., Păsăreanu,
C.S. (eds.) Computer Aided Verification (CAV), Lecture Notes in
Computer Science, pp. 30–48. Springer (2015)

32. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyper-
properties. In: STACS, volume 66 of LIPIcs, pp. 30:1–30:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

33. Fraser, G., Gargantini, A.: An evaluation of model checkers for
specification based test case generation. In: Second International
Conference on Software Testing Verification and Validation, ICST
2009, Denver, Colorado, USA, April 1–4, 2009, pp. 41–50. IEEE
Computer Society (2009)

34. Fraser, G., Wotawa, F.: Complementary criteria for testing tempo-
ral logic properties. In: Dubois, C. (ed.) Tests and Proofs, Third
International Conference, TAP 2009, Zurich, Switzerland, July 2-
3, 2009. Proceedings, volume 5668 of Lecture Notes in Computer
Science, pp. 58–73. Springer (2009)

35. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model check-
ers: a survey. Softw. Test. Verif. Reliab. 19(3), 215–261 (2009)

36. Gargantini, A., Heitmeyer, C.: Using model checking to generate
tests from requirements specifications. In: ACM SIGSOFT Soft-
ware Engineering Notes, vol. 24, pp. 146–162. Springer, Berlin
(1999)

37. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE
Trans. Software Eng. 3(4), 279–290 (1977)

38. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based
theory of test coverage and generation. In: International Confer-
ence on Tools and Algorithms for the Construction and Analysis
of Systems, pp. 327–341. Springer, Berlin (2002)

39. Howden, W.E.: Weak mutation testing and completeness of test
sets. IEEE Trans. Software Eng. 8(4), 371–379 (1982)

40. Jia, Y., Harman, M.: An analysis and survey of the development
of mutation testing. IEEE Trans. Software Eng. 37(5), 649–678
(2011)

41. Karimpour, J., Isazadeh, A., Noroozi, A.A.: Verifying observa-
tional determinism. In: Federrath H., Gollmann, D. (eds.) ICT
Systems Security and Privacy Protection—30th IFIP TC 11 Inter-
national Conference, SEC 2015, Hamburg, Germany, May 26-28,
2015, Proceedings, volume 455 of IFIP Advances in Information
and Communication Technology, pp. 82–93. Springer (2015)

42. Kovács, L., Voronkov, A.: First-order theorem proving and
vampire. In: Sharygina N., Veith, H. (eds.) Computer Aided
Verification—25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13–19, 2013. Proceedings, volume 8044
of Lecture Notes in Computer Science, pp. 1–35. Springer (2013)

43. Lal, A., Reps, T.: Reducing concurrent analysis under a context
bound to sequential analysis. Formal Methods Syst. Des. 35(1),
73–97 (2009)

44. Marcozzi,M.l., Delahaye,M.l., Bardin, S.,Kosmatov,N., Prevosto,
V.: Generic and effective specification of structural test objectives.
In: 2017 IEEE International Conference on Software Testing, Ver-
ification and Validation, ICST 2017, Tokyo, Japan, March 13–17,
2017, pp. 436–441 (2017)

45. McLean, J.: Proving noninterference and functional correctness
using traces. J. Comput. Secur. 1(1), 37–58 (1992)

46. McMillan, K.L.: The SMV system. Technical Report CMU-CS-
92-131, Carnegie Mellon University (1992)

47. Mutation testing with hyperproperies benchmark models.
https://git-service.ait.ac.at/sct-dse-public/mutation-testing-with-
hyperproperties. Uploaded: 2019-04-25

48. Nelson, G.: A generalization of dijkstra’s calculus. ACM Trans.
Program. Lang. Syst. (TOPLAS) 11(4), 517–561 (1989)

49. Jefferson, O.A.: Investigations of the software testing coupling
effect. ACM Trans. Softw. Eng. Methodol. 1(1), 5–20 (1992)

123

https://git-service.ait.ac.at/sct-dse-public/mutation-testing-with-hyperproperties
https://git-service.ait.ac.at/sct-dse-public/mutation-testing-with-hyperproperties

Mutation testing with hyperproperties 427

50. Okun,V., Black, P.E., Yesha, Y.: Testingwithmodel checker: Insur-
ing fault visibility. In: Proceedings of 2002 WSEAS International
Conference on System Science, AppliedMathematics&Computer
Science, and Power Engineering Systems, pp. 1351–1356 (2003)

51. Rayadurgam, S., Per Erik, H., Mats: Coverage based test-case gen-
eration using model checkers. In Engineering of Computer Based
Systems (ECBS), pp. 83–91. IEEE (2001)

52. Tretmans, J.: Test generation with inputs, outputs and repetitive
quiescence. Softw. Concepts Tools 17(3), 103–120 (1996)

53. van der Meyden, R., Zhang, C.: Algorithmic verification of nonin-
terference properties. Electr. Notes Theor. Comput. Sci. 168, 61–75
(2007)

54. Visser, W., Pǎsǎreanu, C.S., Khurshid, S.: Test input generation
with java pathfinder. ACM SIGSOFT Softw. Eng. Notes 29(4),
97–107 (2004)

55. Wang, K., Sullivan, A., Khurshid, S.: Mualloy: a mutation testing
framework for alloy. In InternationalConference onSoftwareEngi-
neering: Companion (ICSE-Companion), pp. 29–32. IEEE (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Andreas Fellner is a PhD candi-
date at Austrian Institute of Tech-
nology and TU Wien, studying
model-based mutation testing.
Beyond automated test case gen-
eration, his research interests incl-
ude verification, logic, and con-
current systems. Andreas has a
joint MSc in Computer science
from TU Dresden, FU Bozen-Bol-
zano, and TU Wien. He is cur-
rently working as a software engi-
neer at Google.

Mitra Tabaei Befrouei com-
pleted her PhD in Dec. 2016 at
Vienna university of technology
(TU Wien) and then worked there
for two more years as a postdoc-
toral researcher. Her PhD thesis
explored dynamic analysis tech-
niques for concurrency bug expla-
nation in shared memory multi-
threaded programs as well as dis-
tributed message passing systems.
After her PhD, she collaborated
with MPI-SWS to investigate ran-
domized testing methods for dis-
tributed message passing systems

like Cassandra and Zookeeper. Their contribution received OOP-
SLA’18 Distinguished Paper Award. She is currently working as a
Software and System architect at Siemens.

Georg Weissenbacher is a profes-
sor at the Faculty of Informatics
of TU Wien. His research inter-
ests include the automated verifi-
cation of software and hardware.
His recent research focus is the
detection and explanation of intri-
cate bugs in concurrent systems.
Weissenbacher studied at TU Graz
and ETH Zurich and holds a doc-
torate in computer science from

the University of Oxford. Prior to his position at TU Wien he was a
postdoctoral research associate and lecturer at Princeton University.

123

	Mutation testing with hyperproperties
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 System model
	2.2 HyperLTL
	2.3 HyperCTL*

	3 Killing mutants
	3.1 Mutants
	3.2 Killing

	4 Killing with hyperproperties
	4.1 Deterministic model and mutant
	4.2 Non-deterministic model and mutant
	4.3 Mixed determinism model and mutant
	4.4 Locally adaptive tests

	5 Non-deterministic models in practice
	5.1 Controlling non-determinism in STS
	5.2 Controlling non-determinism in modeling languages
	5.3 Encoding bounded killability into SMT

	6 Experiments
	6.1 Toolchain
	6.2 Car alarm system (CAS) case study
	6.2.1 Deterministic case
	6.2.2 Non-deterministic case
	6.2.3 Test suite evaluation

	6.3 Quantitative experiments

	7 Related work
	7.1 Hyperproperties
	7.2 Model checking-based test generation
	7.3 Symbolic test generation
	7.4 Semantics of mutation coverage

	8 Conclusion
	Acknowledgements
	References

