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Acoustics on small scales

Modelling viscous effects in MEMS devices
F. Toth , H. Hassanpour Guilvaiee, G. Jank

We present a modelling strategy based on the finite element method to describe flexible, piezoelectric structures surrounded by
a compressible fluid, including viscosity. Non-conforming interfaces based on the Mortar method are used to couple the different
physical domains. Finally, we present an application example of a piezoelectrically actuated MEMS structure to illustrate the modeling
procedure and the impact of viscous effects.
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Akustik auf kleinen Längenskalen: Modellierung viskoser Effekte in Mikrosystemen.

Wir präsentieren eine Finite Elemente-Modellierungsstrategie für flexible und piezoelektrisch erregte Strukturen, welche von einem
viskosen, kompressiblen Fluid umgeben sind. Die unterschiedlichen Bereiche werden anhand der Nitsche-Methode für nicht-konforme
Gitter miteinander gekoppelt. Ein abschließendes Anwendungsbeispiel einer piezoelektrischen MEMS-Struktur dient zur Illustration
der Modellierungsstrategie und zeigt den Einfluss der Viskosität auf das Systemverhalten.
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1. Introduction
In classical acoustics, one uses the wave equation to describe the
physical phenomena. In its derivation, the fluid is assumed as com-
pressible but inviscid. Thus, viscosity, which is present in any real
fluid, is usually neglected. This is a reasonable simplification if the
viscous boundary layer is thin compared to both the acoustic wave
length and relevant feature dimensions of the problem under in-
vestigation. The thickness of the viscous boundary layer, which will
develop in any real fluid, e.g. when particles move tangential to a
wall, can be estimated based on the Stokes boundary layer thickness
δμ = √

μ/(π fρ) (see e.g. [1]). Given usual parameters (dynamic vis-
cosity μ and density ρ of air), we obtain a boundary layer thickness
of approximately 70 µm at a frequency f of 1 kHz. Thus, viscous ef-
fects become important for problems in the micro-scale like MEMS
devices.

Several methods exist to model viscous effects e.g. impedance-like
boundary condition models [2–4] and low reduced frequency mod-
els [5–7]. Despite being computationally reasonable, these models
have a limited range of applicability. The impedance-like bound-
ary condition model has geometric constraints, and its use is rec-
ommended for geometries that are large compared to the viscous
boundary layer thickness. The low reduced frequency model is only
suggested for cases where the acoustic wavelength is considerably
larger than the length scale and the boundary layer thickness. In
modelling the fluid-structure interactions, these models do not con-
sider the coupling of the shear (tangential) velocities with structural
mechanics. Using a full linearised Navier-Stokes (FLNS) formulation
is computationally more challenging. On the other hand, the FLNS
formulation meets the full fluid-structure coupling conditions and
can simulate a compressible viscous fluid [7–11].

Fig. 1. Sketch of a typical problem: A flexible structure Ωs including
active piezoelectric elements Ωp surrounded by a viscous fluid region
Ωv and acoustic far field Ωa

For typical MEMS devices such as microphones [12, 13], viscosity
and density sensors [14–16], the interaction between flexible struc-
ture, e.g., elastic cantilevers, surrounded by a compressible and vis-
cous fluid, and the electric excitation mechanism need to be con-
sidered. A qualitative sketch of such a typical geometry is given in
Fig. 1.

We propose an efficient modelling strategy based on the finite
element method, using the non-conforming interface technique for
coupling solid and fluid mechanic domains with flexible discretiza-
tion. The modelling strategy is illustrated in an example problem.
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2. Physical modelling
The solid mechanics problem comprises the domain of the flexible
structure Ωs and the active piezoelectric material Ωp. We need to
satisfy the balance of momentum

∂2ρiu
∂t2 − ∇ ·σ i = 0 in Ωs ∪ Ωp, (1)

where u denotes the displacement vector, ρi the density of the solid
material, and σ i the stress tensor. The index i ∈ {s, p} is used to dis-
tinguish between flexible structure and active piezoelectric material.
We assume a linear strain-displacement relationship, i.e. the strain
tensor is computed by

s = B(u) = 1
2

(
∇u + (∇u)T

)
, (2)

and consider the material behavior in the structure domain as linear
elastic but anisotropic, relating stress and strain tensor through the
material stiffness tensor C by

σ s = C : s in Ωs. (3)

In the piezoelectric domain we use the linearised piezoelectric
constitutive law (Voight piezoelectricity), i.e.

σ p = C : s − e · E and D = e : s + ε · E in Ωp, (4)

where E and D denote the electric field and flux vectors, respectively,
e is the piezoelectric coupling tensor and ε the electric permittivity
tensor. The assumption of a linear constitutive law is valid for small
perturbations from a reference state, which is appropriate for the
harmonic problems considered in this work. Furthermore, we use
Gauss’ law to describe the electric flux density by

∇ ·D = 0 in Ωp, (5)

and describe the electric field E = −∇φ by the electric scalar po-
tential φ, thus identically fulfilling Faraday’s law for the electrostatic
case, ∇×E = 0. The final linear piezoelectricity formulations are ob-
tained by inserting (4) into (1) and (5).

The viscous compressible fluid is modeled by the linearised bal-
ance of mass and momentum

1
c2

∂pv

∂t
+ ∇ ·(ρ0v) = 0 and ρ0

∂v
∂t

− ∇ ·σ v = 0 in Ωv, (6)

respectively. The variables pv and v denote the fluid pressure and
fluid velocity vector, respectively, which are perturbation quantities
from a reference state. The speed of sound c = √

K/ρ0 is defined via
the adiabatic compression modulus K, and the unperturbed fluid
density ρ0. Note that we have assumed zero background velocity
in the reference state. The viscous effects enter by assuming an
isotropic Newtonian behavior for the fluid, i.e. we describe the fluid
stress tensor by

σ v(pv,v) = −pvI + λ − 2μ

3
∇ ·vI + 2μB(v), (7)

where λ and μ are the fluids bulk and dynamic (shear) viscosity,
respectively, and I is the unit tensor.

Neglecting viscous effects is usually appropriate in regions outside
the viscous boundary layer. In this acoustic far-field region Ωa we
assume μ = λ = 0, which allows to eliminate the velocity from (6)
obtaining the acoustic wave equation for the acoustic pressure

∂2pa

∂t2 − c2∇ ·∇pa = 0 in Ωa, (8)

where the variable pa denotes the acoustic pressure perturbation.
Finally, we need to enforce boundary and coupling conditions.

On the wall boundaries of fluid and solid we require zero veloc-
ity and displacement, respectively. This corresponds to homoge-
neous Dirichlet conditions. At the boundary of the acoustic fluid re-
gion we assume homogeneous Neumann boundary conditions. This
physically correspond to zero normal acceleration of the boundary,
thereby modelling a stationary wall as well as symmetry.

The coupling conditions at the interface between viscous fluid and
solid or piezoelectric domain are the dynamic and kinematic condi-
tion

σ i · n = σ v · n and
∂u
∂t

= v on Γsv ∪ Γpv, (9)

respectively, where n is the outer normal vector of the fluid domain
and reverse direction of outer normal vector of solid or piezoelectric
domains (n = nv = −ni ). These transmission conditions ensure the
traction and velocity continuity at fluid-structure interfaces. Similarly,
the coupling conditions at the fluid-fluid interface between viscous
and acoustic formulation are formulated as

σ v · n = −pan and
∂v
∂t

· n = − 1
ρ0

∇pa · n on Γva. (10)

The outer normal n is defined as n = nv = −na, with the outer nor-
mal of acoustic na.

3. Finite element formulation
To obtain the weak form for the finite element solution, we multiply
the governing PDEs by appropriate test functions, denoted by ()′ in
the following, and integrate them over the whole computational
domain.

In the solid mechanic domain Ωs we consider the balance of mo-
mentum (1) and in the piezoelectric domain Ωp we add Gauss’ law
(5). After integration by parts and insertion of the constitutive rela-
tions (3) and (4) as well as the boundary conditions one obtains

∫

Ωs∪Ωp

u′ · ρi
∂2u
∂t2 dΩ +

∫

Ωs∪Ωp

B(u′) : C : B(u) dΩ

+
∫

Ωp

B(u′) : e · ∇φ dΩ −
∫

Γiv

u′ · σ i · ni dΓ = 0, (11)

−
∫

Ωp

∇φ′ · e : B(u) dΩ +
∫

Ωp

∇φ′ · ε · ∇φ dΩ = 0, (12)

where the surface terms at the interfaces have been retained to
illustrate the surface coupling. In the viscous fluid region we consider
balance of mass and momentum (6), where the latter was integrated
by parts yielding

∫

Ωv

p′
v∇ ·v dΩ +

∫

Ωv

p′
v

1
c2

∂pv

∂t
dΩ = 0, (13)

∫

Ωv

ρ0v′ · ∂v
∂t

dΩ +
∫

Ωv

∇v′ : σ v(pv,v) dΩ

−
∫

Γsv∪Γva

v′ · σ v · nv dΓ = 0. (14)

Similarly we have incorporated boundary conditions but retained the
interface terms. In the acoustic fluid region we obtain the weak form
of the wave equation (8)

∫

Ωa

1
c2

p′
a
∂2pa

∂t2
dΩ +

∫

Ωa

∇p′
a · ∇pa dΩ −

∫

Γva

p′
a∇pa · na dΓ = 0,

(15)
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where we have ready incorporated the homogeneous Neumann
boundary conditions, but retained the interface term.

Coupling of the domains is done via non-conforming interfaces
using the Mortar method, e.g. [17, 18]. At the interface between vis-
cous fluid and acoustic region Γva we can directly insert the interface
conditions (10). For the interfaces between structure or piezoelectric
domain and viscous fluid, Γsv and Γpv, respectively, we use the La-
grange multiplier method. We introduce an additional unknown t
for the traction at the interface, i.e. we have

t = σ v · nv = −σ s · ns = −σ p · np. (16)

Inserting the interface conditions into (11), (14) and (15) yields

∫

Ωs∪Ωp

u′ · ρs
∂2u
∂t2

dΩ +
∫

Ωs∪Ωp

B(u′) : C : B(u) dΩ

+
∫

Ωp

B(u′) : e · ∇φ dΩ +
∫

Γsv

u′ · t dΓ +
∫

Γpv

u′ · t dΓ = 0,

(17)
∫

Ωv

ρ0v′ · ∂v
∂t

dΩ +
∫

Ωv

∇v′ : σ v(pv,v) dΩ

+
∫

Γva

v′ · npa dΓ −
∫

Γsv

v′ · t dΓ = 0,

(18)

∫

Ωa

1
c2

p′
a
∂2pa

∂t2
dΩ +

∫

Ωa

∇p′
a · ∇pa dΩ +

∫

Γva

p′
aρ0

∂v
∂t

· ndΓ = 0.

(19)

Continuity of the velocities, i.e. the kinematic condition in (9) is en-
forced in a weak sense at the interface, i.e. we require

∫

Γsv

t′ ·
(

∂u
∂t

− v
)

dΓ = 0, (20)

which also provides the additional equations necessary for the de-
termination of the introduced unknowns at the interface.

The final weak form is given by equations (17), (12), (18), (13),
(19) and (20) which form the basis for the finite element implemen-
tation, which was done in the open source finite element frame-
work openCFS [19]. One can use standard nodal finite elements with
ansatz functions of variable order. In order to fulfill the inf-sup con-
dition in the viscous fluid region, it is recommended to reduce the
order for the pressure degree of freedom, e.g., use quadratic ansatz
functions for velocity and linear ansatz functions for the pressure de-
grees of freedom. The evaluation of the interface integrals is done
using an intersection mesh between the two non-conforming inter-
faces.

4. Example problem
As an application example for the described modelling strategy, we
consider a cantilever structure. For the sake of simplicity it is treated
as a 2D model, which is accurate for structures that are considerably
wider than long. The model is analyzed in the frequency domain,
i.e. we compute the steady state response to periodic forcing.

4.1 Model description
The cantilever consists of a silicon substrate and a piezoelectric layer,
which is placed between two electrodes. The structure is surrounded
by air. As discussed in Sect. 1, the effect of viscosity is especially sig-
nificant in viscous boundary layer regions. Therefore, the fluid close
to the structure (viscous fluid region) is modelled using the fluid vis-
cous formulation. Further away from the speaker it is possible to

Fig. 2. Composition of the speaker model

Table 1. Dimensions (all values in µm)

Property Value

Cantilever

Silicon thickness hs 15
Electrode thickness he 0.05
Piezo thickness hp 0.2
Length lc 1400

Thermoviscous Region

Gap height hg 10;20;40
Thickness tthv 71

Acoustic Region
Thickness tacou 5000
PML thickness tpml 200

neglect the effect of viscosity. In this region (acoustic region), the air
is represented by the acoustic wave equation. An overview of the
model and some of the most important dimensions can be found in
Fig. 2 and Table 1. The used material properties are given in Table 2.

The piezoelectric cantilever is excited with a harmonic voltage sig-
nal of 1 V across the electrodes. The harmonic solution was calcu-
lated for excitation frequencies from 200 Hz to 200 kHz. Within this
frequency range 500 frequency steps (logarithmic sampling) were
calculated. Apart from the excitation, the cantilever is also fixed at
the nodes along the left boundary.

The velocity at the walls (left boundary below cantilever and floor)
is set to zero in the viscous fluid region. At the left boundary above
the cantilever, the normal velocity is zero to satisfy the symmetry
condition.

In the acoustic region, we apply homogeneous Neumann bound-
ary conditions for the symmetry (left boundary) and walls (floor).
There should be no reflection at the right and the top boundary as
the device is considered in an open domain. This is accomplished by
adding a perfectly matched layer (PML) region, in which the acoustic
waves are damped (i.e. absorbed).

The model was calculated with the quadrilateral mesh shown in
Fig. 3. When meshing the viscous fluid region, it is important to con-
sider the boundary layer thickness δμ. Within this region the velocity
gradients are especially high. In order to resolve these gradients, a
boundary layer mesh was added. This boundary layer mesh has the
thickness of the Stokes boundary layer at the maximum excitation
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Table 2. Material parameters

Property Silicon layer Electrodes

Density ρ in kg/m3 2329 10500
Young’s modulus E in N/m2 1.12 · 1011 7.6 · 1010

Poisson’s ratio νE 0.28 0.37

Property Fluid (Air)

Density ρ in kg/m3 1.225
Bulk modulus K in N/m2 1.4271 · 105

Dynamic viscosity μ in Ns/m2 1.829 · 10−5

Bulk viscosity λ in Ns/m2 1.22 · 10−5

Adiabatic exponent γ 1.406
Specific heat capacity cp in J/K 975.3
Thermal conductivity k in W/(mK) 25.18 · 10−3

Property Piezo layer

Density ρ in kg/m3 7500
Stiffness tensor C in N/m2 C11 = C22 1.2720 · 1011

C33 1.1744 · 1011

C12 = C21 8.0212 · 1010

C13 = C31 8.4670 · 1010

C23 = C32 8.4670 · 1010

C44 = C55 2.2989 · 1010

C66 2.3496 · 1010

Permittivity ε in F/m ε11 = ε22 2.771 · 10−8

ε33 3.010 · 10−8

Piezoelectric
coupling tensor e in
As/m2

e31 = e32 -6.6228
e33 23.240
e24 = e15 17.034

Fig. 3. Mesh used for the simulation at a gap thickness of hg = 40 µm (left) with details of the viscous fluid region mesh (bottom right), the
adaptive refinement close to the cantilever (top center) and the boundary layer mesh (top right)

frequency of 200 kHz. It consists of 5 element layers with a mesh
bias, which gradually increases the thickness of the elements in the
normal direction of the mechanics-fluid interface (see Fig. 3). During
tests with different meshing schemes, it was found that the results
are also sensitive to the tangential resolution within the boundary
layer. Thus, we aim to use approximately square cells (as shown in
the top right detail of Fig. 3) and larger cells outside the bound-
ary layer region (see top center detail of Fig. 3). Using this meshing
strategy made it possible to reduce the computational effort without
sacrificing accuracy in the result (see Fig. 4 and Table 3).

For the acoustic region, the mesh size was determined using the
wavelength λmin at the maximum excitation frequency. In particular,
a mesh size of λmin/10 was applied across the whole region.

The different meshing schemes result in inconsistent mesh sizes
at the boundaries between the various domains (mechanic, viscous
fluid and acoustic regions). Instead of creating a transition mesh,
we use non-conforming interfaces in order to reduce the complexity
and distortion of the mesh (see Fig. 3).

4.2 Results
Parameter studies were conducted to investigate the influence of
the gap thickness below the cantilever, and the effect of the dy-
namic viscosity of the fluid. The computed response for the displace-
ment of point P (see Fig. 2) at the end of the cantilever is shown in
Fig. 5. When comparing the results for different gap thicknesses (see

Table 3. Computational effort for the locally and globally refined
meshes in Fig. 4

Mesh DOFs CPU time
in seconds

Memory usage
in MB

local refinement 64953 6084 1699
global refinement 221052 127385 7612

Fig. 5a) it is apparent that the peaks in the amplitude diagrams are
less prominent for smaller gap heights. This effect is frequency de-
pendent. At low frequencies the peaks are shifted to the left and
more attenuated. As the frequency increases, the curves converge.
For example, the first peak is located at ≈ 8 kHz for hg = 40 µm. For
hg = 20 µm, and hg = 10 µm, the first peaks have turned into sad-
dle points, at ≈ 1 kHz and < 200 Hz At the last peak the difference
between the transfer functions is less extreme. These results suggest
that there is a damping effect which is dependent on the thickness
of the boundary layer relative to the gap height.

By varying the dynamic viscosity, it is possible to directly affect the
ratio between boundary layer thickness and structure dimension,
since the thickness of the viscous boundary layer δμ is square root
proportional to dynamic viscosity μ. In Fig. 5b, a similar effect as in
Fig. 5a can be observed. At low frequencies the peaks are strongly
dampened. As the frequency increases and the boundary layer de-
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Fig. 4. Transfer function of Point P for locally (xlthv = 2 µm; xthv = 10 µm) and globally refined meshes (xthv = xlthv = 2 µm)

Fig. 5. Transfer functions of point P for different gap thicknesses (a) and viscosities (b)

Fig. 6. Fluid velocity in the viscous fluid region for hg = 20 µm; μ = μair. The plots of the whole region are stretched by a factor of 0.5 in
horizontal direction and the details are stretched by a factor of 3 in horizontal direction
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Fig. 7. Acoustic pressure in the far field (top) and in the close surrounding of the cantilever (bottom)

creases in thickness, the damping effect is reduced. Furthermore,
the peaks at lower viscosities are less prominent, which supports
our findings from the study of the gap thickness. We can clearly
see that damping effects increase with relative boundary thickness
compared to gap height.

Figure 6 shows fluid velocity in the viscous fluid region at two
characteristic frequencies: 1000 Hz and 69000 Hz (first saddle point
and peak at hg = 20 µm, μ = μair). At both frequencies the flow
underneath the cantilever is almost unidirectional. The magnitude of
the fluid velocity in this region is much greater compared to the rest
of the domain. As the air escapes the area underneath the cantilever
it spreads out and the velocity magnitude decreases. Close to the
wall the viscous boundary layer is visualised. At the low frequency
the thickness of this region is greater compared to the result at the
higher frequency.

When looking at the acoustic pressure in the far field in Fig. 7 it is
possible to observe spherical wave fronts, typical for point sources.
Comparing the distance between the wave fronts, it appears that
the wavelength is smaller for the higher frequency, as expected. It is
also interesting to note that there is a high pressure region under-
neath the cantilever. Underneath the cantilever the boundary layers
impede the flow of the air. As a result the fluid is compressed and a
high pressure region is formed.

5. Conclusion
The presented modelling strategy allows to describe viscous effects
in acoustic phenomena. By using a linearised Navier-Stokes type
formulation in the viscous fluid region, one can gain detailed in-
sight into pressure and velocity fields in the arising viscous bound-
ary layers. Together with the ability to couple the viscous fluid for-
mulation to solid mechanic and piezoelectric formulations, one can
model typical MEMS devices. The presented application example il-
lustrated the pronounced damping effect of the viscous fluid on the

response of the piezoelectric actuator. Selected parameter studies
clearly demonstrated that the damping effect is more pronounced
if the ratio between the viscous boundary layer thickness and a
characteristic structure dimension is larger. Several strategies have
been suggested to minimize the computational effort arising in the
viscous fluid formulation: Selective refinement of the mesh only in
boundary layer regions is very effective compared to a uniform mesh
size in the viscous fluid domain. Furthermore, the viscous fluid do-
main should be limited to regions where viscous effects need to be
considered. In the acoustic far field, one can neglect viscous effects
and use the acoustic wave equation, thereby reducing the compu-
tational effort significantly. Finally, the presented non-conforming
interface formulation allows for independent meshes on different
domains, which greatly simplifies the meshing procedure in many
cases.
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