

Integrated Physical-Constitutive Computational Framework for Plastic Deformation Modeling

B. Viernstein, E. Kozeschnik

Euromat, September 13th, 2021

- Framework for the simulation of macroscopic stress-strain relations within a wide temperature and strain rate range
- Combination of constitutive creep relations and physically-based microstructure evolution
- Time dependent stress relaxation
- Construction of deformation maps

The model

	Creep		State parameter evolution
Low-temperature plasticity	- Dislocation glide*		Dislocation density evolution – Extended Kocks-Mecking model
	LT – creep*		
Power-law creep	HT – creep*		
Diffusional flow	Harper-Dorn		
	Coble – creep		
	Nabarro-Herring		
	Grain boundary sliding		*Mechanical threshold concept \hat{r}

Thermal activation of dislocation movement

Effect of temperature and strain rate on stress needed to pass the obstacle

•
$$\tau_{\rm th} = \hat{\tau} \cdot \exp\left(-\frac{kT}{\Delta F} \ln\left(\frac{\dot{\varepsilon}_0}{\dot{\varepsilon}}\right)\right)$$

 $\hat{\tau}$... mechanical threshold ΔF ... total energy ΔG ... Gibbs free energy $\dot{\varepsilon}_0$... critical strain rate

Lattice diffusion controlled $n_{\rm HT} = 4.4$ $Q_{\rm tr} = 127.2$ kJ/mol

Core diffusion controlled $n_{\rm LT} = 6.4$ $Q_{\rm C} = 83.2 \text{ kJ/mol}$

 $D_{\rm eff}$... effective diffusion coefficient includes trapping of vacancies at solute atoms, excess vacancies and pipe diffusion enhancement

13.9.2021

Euromat 2021

Power law breakdown

$$\dot{\varepsilon}_{i} = \frac{A_{i} \cdot D_{i} \cdot G \cdot b}{k_{\rm B} \cdot T} \cdot \left[\sinh\left(\alpha' \frac{\sigma_{\rm S}}{G}\right) \right]^{n_{i}}$$

Frost, H., Ashby, M., 1982. Deformation-mechanism maps, 1st ed. Pergamon Press, Oxford.

Euromat 2021

Diffusional creep
Coble – Creep:
$$\sigma_{\rm NH} = \frac{k_{\rm B} \cdot T \, [{\rm K}] \cdot d^2}{42 \cdot b^3 \cdot D_{\rm V}} * \dot{\varepsilon}$$

 $\sigma_{\rm C} = \frac{k_{\rm B} \cdot T \, [{\rm K}] \cdot d^3}{42 \cdot b^3 \cdot \pi \cdot \delta \cdot D_{\rm h}} * \dot{\varepsilon}$

d ... grain diameter D_v...lattice diffusion coefficient δ ... grain boundary thickness D_b...boundary diffusion coefficient

Connection of creep mechanisms

$$\left(\frac{1}{\sigma_{\text{ges}}}\right)^{n_{\text{c}}} = \left(\frac{1}{\sigma_{\text{G}}}\right)^{n_{\text{c}}} + \left(\frac{1}{\sigma_{\text{LT}}}\right)^{n_{\text{c}}} + \left(\frac{1}{\sigma_{\text{HT}}}\right)^{n_{\text{c}}} + \left(\frac{1}{\sigma_{\text{NH}}}\right)^{n_{\text{c}}} + \left(\frac{1}{\sigma_{\text{C}}}\right)^{n_{\text{c}}} + \left(\frac{1}{\sigma_{\text{GBS-GB}}}\right)^{n_{\text{c}}} + \left(\frac{1}{\sigma_{\text{GBS-L}}}\right)^{n_{\text{c}}} + \left(\frac{1}{\sigma_{\text{HD}}}\right)^{n_{\text{c}}}$$

State parameter evolution

- Kocks-Mecking model athermal contribution
 - Dislocation generation (A-term), dynamic recovery (B-term) and static recovery (C-term)
 - A, B and C are calibrated by obtained flow curves

$$\frac{\partial \rho}{\partial \varepsilon} = \frac{M}{b \cdot A} \sqrt{\rho} - 2BM \frac{d_{crit}}{b} \rho - 2CD_d \frac{Gb^3}{\dot{\varepsilon}kT} (\rho^2 - \rho_{equ}^2)$$

$$\sigma = \alpha GbM \sqrt{\rho}$$

Simulation

13.9.2021

Euromat 2021

Deformation maps

1: Dislocation glide 2: LT creep 3: HT creep 4: Coble creep

5: D_{gb} -controlled GBS 6: D_{l} -controlled GBS

Conclusion

- Combination of constitutive creep mechanisms and physically based microstructure evolution models
- Summation rule
- Stress relaxation
- Deformation maps