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Recent studies on superconductivity in NbSe2 have demonstrated a large anisotropy in the super-
conducting critical field when the material is reduced to a single monolayer. Motivated by this recent
discovery, we use density-functional theory (DFT) calculations to quantitatively address the super-
conducting properties of bulk and monolayer NbSe2. We demonstrate that NbSe2 is close to a
ferromagnetic instability, and analyze our results in the context of experimental measurements of the
spin susceptibility in NbSe2. We show how this magnetic instability, which is pronounced in a single
monolayer, can enable sizable singlet-triplet mixing of the superconducting order parameter, contrary to
contemporary considerations of the pairing symmetry in monolayer NbSe2, and discuss approaches as to
how this degree of mixing can be addressed quantitatively within our DFT framework. Our calculations
also enable a quantitative description of the large anisotropy of the superconducting critical field, using
DFT calculations of monolayer NbSe2 in the normal state.
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I. INTRODUCTION

The transition metal dichalcogenides (TMD) exhibit
an astonishing variety of phenomena and phase transi-
tions, which includes charge-density waves (CDWs) [1–5],
superconductivity [6], and magnetism [7]. Bulk 2H-NbSe2,
which is one of the canonical transition metal dichalcoge-
nides, exhibits a rich phase diagram, which includes
a superconducting and a CDW phase [1]. Supercon-
ductivity in bulk NbSe2 has been studied extensively both
experimentally [6,8–11] and theoretically [12,13], and the
superconducting transition temperature Tc has been exper-
imentally identified as ∼7 K [9]. While coupling between
the superconducting and CDW order parameters is cer-
tainly possible, it was found to be weak in NbSe2: the

superconducting phase remains robust while the CDW
phase collapses as a function of increasing pressure [1]
and as a function of increasing disorder introduced by
electron irradiation [14]. Since NbSe2 is also a layered
van der Waals material, this has inspired several studies of
superconductivity in monolayer NbSe2 [15–18] and several
intriguing proposals that seek to exploit proximity induced
effects at interfaces between monolayer NbSe2 and mag-
netic materials [19–22]. Furthermore, while NbSe2 is thus
far the canonical example of an Ising superconductor,
several theoretical studies on other monolayer TMDs such
as TaS2, TaSe2 [16] and preliminary experimental inves-
tigations on monolayer MoS2 and MoTe2 [23,24] have also
shown indications of hosting Ising superconductivity.
Monolayer NbSe2, unlike the bulk structure, lacks

inversion symmetry, which leads to a large spin-orbit (SO)
splitting of the states at the K, and its inversion partner K0,
points [25] (there is an additional Fermi surface with states
around Γ, which we also discuss later in this study). The
magnitude of the SO splitting is larger than the super-
conducting order parameter. The zero-magnetic field Tc of
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monolayer NbSe2 is ∼3 K [15,16], which is lower than the
bulk Tc. The combination of SO coupling and broken
inversion symmetry locks the pseudospins near K and K0 to
be parallel to the c axis of the monolayer. Due to time-
reversal symmetry, pseudospins at the K and K0 points are
antiparallel, and their energies are degenerate. Hence, the
Cooper pairs that form completely break their rotational
invariance in spin space. This leads to a novel phenomenon,
aptly named Ising superconductivity. One key consequence
of this unique pairing is that the superconducting phase
survives in the presence of in-plane magnetic fields that
considerably exceed the Pauli limit [15,16].
Thus far, theoretical analyses of the superconducting

pairing mechanism in monolayer NbSe2 [26,27] have relied
on model descriptions of superconductivity in materials
that lack inversion symmetry [28–30], loosely based on
the band structure calculated from first principles [27].
However, a quantitative description of superconductivity in
monolayer NbSe2 is lacking. There is also a lack of
consistency between first-principles descriptions of super-
conductivity in bulk NbSe2 and experimental results. State-
of-the-art first-principles calculations that are usually very
accurate for superconductors where the pairing is entirely
due to electron-phonon coupling overestimate Tc in bulk
NbSe2 and isostructural NbS2 [31,32] by a factor of ∼3 and
the zero-temperature gap by a factor of ∼4. Furthermore,
experimental measurements of the spin susceptibility χs in
bulk NbSe2 [33] find a χs ∼ 3 × 10−4 emu=mole, which, as
we show later, considerably exceeds the bare bulk Pauli
susceptibility χ0.
Two plausible mechanisms that can be invoked to

explain this discrepancy between theory and experiment
are the potential role of strong electron-electron interactions
and strong spin fluctuations. In Ref. [32], the authors
suggested the overestimation of Tc in their first-principles
calculations can be corrected by accounting for a reduction
in the effective mass induced by electron-electron inter-
actions, which they described within the GW approxima-
tion. However, reducing the effective mass by a factor of
ðm�=mÞ reduces the density of states (DOS) by a factor
of ðm�=mÞ and increases the magnitude of the electron-
phonon matrix element by a factor of ðm�=mÞ. Indeed, the
DOS is proportional to the one-electron Green’s function
and the electron-phonon matrix element is proportional to
the derivative of the inverse Green’s function. Since the
electron-phonon coupling constant depends linearly on the
DOS and quadratically on the matrix element, reducing
the effective mass increases the strength of the electron-
phonon coupling. Hence, strong electron-electron interac-
tion effects alone do not provide a solution to this
discrepancy.
The latter mechanism, which is the role of strong spin

fluctuations in NbSe2, has thus far remained unaddressed.
Fluctuations in the magnetic moment and magnetic order
have been shown to be a source of pairing, or pair breaking,

of Cooper pairs in a number of other materials [34,35].
Furthermore, strong spin fluctuations can also lead to a
sizable Stoner renormalization of χ0. To our knowledge, all
theoretical studies of bulk and monolayer NbSe2 at their
equilibrium lattice parameters have found the material to be
nonmagnetic. However, calculations of monolayer NbSe2
subject to tensile strain exceeding 2% have predicted a
ferromagnetic ground state [36].
This seeming lack of consistency between the various

theoretical and experimental results on bulk NbSe2 reported
in the literature indicates there is still a need to explore the
fundamental properties of NbSe2. For example, if spin
fluctuations are operative in NbSe2 it is unclear how this
may impact arguably the most interesting aspect of Ising
superconductivity in monolayer NbSe2, which is the
possibility of a singlet-triplet mixed state. Singlet-triplet
mixing of the superconducting order parameter has been
attracting a lot of recent attention for a variety of reasons,
which includes the ability to achieve spin supercurrents
[30,37] and the ability to drive superconducting topological
transitions [30,38]. While Ising superconductivity is well
understood at the phenomenological level, it has never been
described on a quantitative level using first-principles
calculations. This also precludes a quantitative description
of Ising superconductivity, which has been observed in
monolayers of several other transition metal dichalcoge-
nides beyond NbSe2 [16,23,24].
In this paper we demonstrate that, indeed, bulk and

especially monolayer NbSe2 are close to a magnetic
instability. We “translate” the existing model theory that
has been developed to analyze superconductivity in mate-
rials that lack inversion symmetry and bands split by SO
interaction [39], such as monolayer NbSe2, into density-
functional theory (DFT) parlance, which allows us to
develop a quantitative theory of the critical field anisotropy
in this material. We use collinear and noncollinear fixed-
spin moment (FSM) calculations to determine the spin
susceptibility of bulk and monolayer NbSe2. Finally, we
use the insights obtained from our calculations to discuss
possible ramifications on the superconducting order param-
eter in NbSe2, in particular, the factors that control the scale
of the triplet admixture to the order parameter. This
knowledge is the first step toward a comprehensive
quantitative theory of Ising superconductivity in monolayer
NbSe2.

II. ELECTRONIC STRUCTURE

The bulk unit cell of 2H-NbSe2 consists of two mono-
layers of NbSe2 [Fig. 1(a)] where in a single monolayer the
Nb atoms are in a trigonal prismatic coordination with the
Se atoms. The Nb atoms in one of the monolayers are
vertically above the Se atoms of the second monolayer
[cf. Fig. 1(b)], which leads to a center of inversion that is
between the two monolayers of the unit cell. The calculated
bulk lattice constants, a ¼ 3.449 Å and c ¼ 12.550 Å, are
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in agreement with experimental reports of the lattice
constants of bulk NbSe2 [40].
The trigonal crystal field splits the 4d states of Nb4þ into

three different groups: dz2 , [dx2−y2 , dxy], and [dxz,dyz]. The
bulk band structure of NbSe2, which has been studied
extensively [41,42], has three bands that cross the Fermi
level. Two of the bands are derived from Nb d states and the
third band is derived from Se pz states. Spin-orbit inter-
action leads to a mixing of the Se p and Nb d states along
the Γ-K-M path of the Brillouin zone, but does not lead
to SO splitting. The density of states at the Fermi level
NðEFÞ is 2.7 states/(eV cell), which leads to a bulk Pauli
susceptibility, χ0 ¼ 0.87 × 10−4 emu/mole, which is a
factor of ∼3.5 lower than the experimentally reported spin
susceptibility of bulk NbSe2 [33], which suggests that spin
fluctuations are operative in NbSe2.
For the case of the monolayer, there is one band that

crosses the Fermi level several times, leading to three Fermi
contours, one contour around the Γ point and two contours
around K and K0 (these are related by inversion symmetry).
At Γ, the band character is Nb dz2 , with a minor admixture
of Se pz. As the band progresses toward K or K0, this leads
to a larger admixture of Nb dx2−y2 and dxy orbitals in
addition to a minor contribution of Se pxy states. The states
at the K and K0 contours are composed entirely of
Nb [dx2−y2 , dxy] states. In the absence of SO interaction,
this band is spin degenerate. When we allow for SO
interaction, the lack of a center of inversion in the
monolayer leads to SO splitting everywhere except along
the Γ-M line [cf. Fig. 2(a)], consistent with prior calcu-
lations of the band structure of monolayer NbSe2 [43].
To understand why the pseudospin state does not have an

in-plane component and why the splitting is small near Γ, it
is instructive to rationalize this splitting from the band
structure point of view. If we neglect the minor admixture
of Se p states to the bands that cross the Fermi level in
monolayer NbSe2, a state at a given wave vector k can be
defined as follows:

jϕi ¼ ηjdx2−y2i þ βjdxyi þ γjdz2i; ð1Þ

where jηj2 þ jβj2 þ jγj2 ¼ 1. Note that dz2 corresponds
to jl; mi ¼ j2; 0i, dx2−y2 to ðj2; 2i þ j2;−2iÞ ffiffiffi

2
p

, and

dxy to ðj2; 2i − j2;−2iÞ=i ffiffiffi
2

p
. Accounting for spin, the

Hamiltonian at each k point is a (2 × 2) matrix, and, by
virtue of the z= − z mirror symmetry, does not include
contributions from the j2;�1i orbitals. Thus, the non-
diagonal matrix elements L� are zero. However, it is easy
to show that the diagonal element Lz ¼ 2ðηIm β − βIm ηÞ.
One phase can always be selected as real, for instance, η,
then Lz ¼ 2ηIm β.
In the centrosymmetric bulk 2H-NbSe2, β can also be

chosen to be real, and there is no SO-induced spin splitting
(but there is splitting due to doubling of the unit cell). In
the monolayer, β is complex everywhere except the Γ-M
direction, and therefore the diagonal elements of this
(2 × 2) matrix have opposite signs, �ληIm β, where λ
measures the strength of the SO coupling. Consequently,
the splitting is small around the Γ pocket (the maximum
splitting at this Fermi surface is ∼70 meV, which occurs
where it intersects with the Γ-K and Γ-K0 lines), where
jγj2 ≫ jηβj, but sizable (∼150 meV) on the K and K0

contours, where jγj2 ≪ jηβj. Due to the absence of non-
diagonal coupling, the pseudospin-split states are also pure
Sz¼�1

2
spin states and the direction of the pseudospin flips

(a) (b)

FIG. 1. (a) Crystal structure of bulk NbSe2 illustrating the
(a) top view and (b) side view of the structure. The x, y, and z axes
denote the Cartesian axes.

M M

(a)

(c)

(b)

FIG. 2. (a) Band structure of monolayer NbSe2. The color along
each band denotes the relative Nb dz2 , dx2−y2 , and dxy character
along the high-symmetry path, according to the color bar above
the plot. (b) Cross section of the Fermi surface of monolayer
NbSe2. Red denotes bands that have pure mz ¼ 1 character while
blue denotes bands that have puremz ¼ −1 character. (c) Density
of states of monolayer NbSe2. All of the calculations include SO
coupling.
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between the K and K0 valleys as illustrated in Fig. 2(b).
As we discuss later, pseudospin states are no longer pure Sz
states when an external in-plane magnetic field is applied.

III. MAGNETISM WITHOUT SPIN-ORBIT
COUPLING

To quantitatively address the role of spin fluctuations
we calculate the spin susceptibility χ by considering the
effect that a uniform external magnetic field H has on the
magnetic moment m in NbSe2, via the Zeeman interaction,
where χ ¼ ∂m=∂H. In practice, one way to simulate the
effect of a magnetic field within a first-principles calcu-
lation is to apply a constraint on the magnetization and
compute the total energy E as a function of the magnetic
moment m. This “fixed-spin moment” approach allows us
to define χ as χ ¼ ð∂2E=∂m2Þ−1. Similarly, noncollinear
FSM calculations that include SO interaction let us deter-
mine the change in total energy and in turn χ for directions
parallel to the c axis (h001i) and perpendicular to the c axis
(h100i) of NbSe2.
The collinear and noncollinear (along h001i and h100i)

FSM calculations result in the same qualitative trends; the
total energy increases monotonically with respect to the
total energy of the nonmagnetic state as a function of
increasing magnetic moment. As an example, we illustrate
the results of our collinear FSM calculations for bulk and
monolayer NbSe2 in Fig. 3. If we express the expansion of
the DFT total energy as

EðmÞ ¼ a0 þ a1m2 þ a2m4 þ a3m6 þ a4m8 þ � � � ; ð2Þ

we can determine the static spin susceptibility χ for low
values of m by using the coefficient a1 obtained by fitting
the data in Fig. 3 to Eq. (2). The results are summarized in
Table I.

Based on our FSM calculations, we can draw the
following conclusions. First, DFT repoduces the experi-
mentally observed bulk susceptibility reasonably well, only
slightly overestimating it compared to the experimental
value. This overestimation in the calculated value of χ is
known to occur in itinerant metals close to a magnetic
instability, and is due to a fluctuational reduction of the
mean-field DFT moment [44,45]. Applying Moriya’s
theory [44] to NbSe2, we can estimate the average magni-
tude of spin fluctuations as ξ ∼ 0.28μB. To put this into
context, the average magnitude of spin fluctuations in
palladium (Pd), a known superparamagnet (which at some
point was considered a candidate for triplet superconduc-
tivity [35]) was calculated (in local density approximation,
as opposed to our generalized gradient approximation
calculation) to be ξ ∼ 0.15μB [45].
This is also consistent with our disordered local moment

(DLM) calculations, where the energy cost of creating a
local spin fluctuation with an amplitude of ∼0.2μB is nearly
twice higher in Pd than in NbSe2. This does not mean that
NbSe2 is closer to ferromagnetism compared to Pd. The
molar spin susceptibility of NbSe2 is a factor of 2 lower
compared to Pd. However, it does mean spin fluctuations
in NbSe2 are soft over a large part of the Brillouin zone.
Furthermore, it is important to note the susceptibility of the
monolayer structure is ∼50% larger than that of the bulk,
which indicates that spin fluctuations are stronger in a
monolayer. Indeed, this is consistent with monolayer
NbSe2 having a lower superconducting transition temper-
ature compared to bulk NbSe2 [15].
To verify that NbSe2 is indeed close to a ferromagnetic

instability, we also calculated the exchange coupling
between fluctuating moments within the DLM formalism
(the calculation details are similar to methods used in
Ref. [46]) for bulk NbSe2. The exchange coupling is largely
dominated by the nearest-neighbor coupling, which we find
to be ferromagnetic. In order to transform the exchange
interactions into reciprocal space J0ðqÞ, we have defined
χRPAðqÞ ¼ c0=½1 − c0J0ðqÞ�, where c0 is a constant of the

 0
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FIG. 3. Change in total energy per NbSe2 formula unit (f.u.) of
the bulk (square) and monolayer (circle) structures with respect to
the nonmagnetic state as a function of magnetic moment obtained
from collinear fixed-spin moment calculations. The gray solid
lines are a fit to Eq. (2).

TABLE I. Spin susceptibility of the bulk and monolayer
structures obtained from collinear and noncollinear calculations
with the spin quantization axis parallel to the c axis, h001i, and
the spin quantization axis along the x direction, h100i. The
calculated susceptibility along h100i, h010i, and h110i are
equivalent. The experimental value of χ, obtained from Ref. [33],
is for a magnetic field applied parallel to the c axis (h001i). The
experimental value of χ for monolayer NbSe2 to our knowledge
has not been reported yet.

Spin susceptibility
Bulk Monolayer

[10−4 emu/mole]

Collinear 4.28 6.81
h001i 4.20 7.29
h100i 4.23 7.40
Experiment ∼3 � � �
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order of Nð0Þ. In Fig. 4 we plot the renormalization factor
1=½1 − c0JðqÞ�, using c0 ¼ 3.57 eV−1, which was chosen
so as to have the renormalization at q ¼ 0 be approximately
consistent with a renormalization factor of 4.9. The peak
near q ¼ 0 in Fig. 4 indicates that the system is close to a
ferromagnetic instability.
The DLM calculations allow us to determine the q

dependence of χ and offers qualitative insight into the
magnitude of χ. For accurate quantitative values of χ, see
Table I, which are obtained using FSM calculations.

IV. MAGNETISM WITH SPIN-ORBIT COUPLING

Having demonstrated that bulk and monolayer NbSe2 are
indeed close to a ferromagnetic instability, we now focus on
the effect of SO coupling, and specifically on the response
to an external magnetic field applied parallel to the c axis
and perpendicular to the c axis. First, it is evident the values
of χ reported in Table I from our noncollinear calculations
are isotropic along h001i and h100i, within a few percent,
for both the bulk and monolayer structures, as opposed to
the susceptibility in the superconducting state.
To understand this, let us analyze how the bands that

cross the Fermi level evolve as a function of the magnitude
and direction of an applied magnetic field. In the absence of
SO interaction, the states at Γ, K, and K0 are degenerate.
The Zeeman interaction, regardless of the direction of the
field, splits the bands by approximately the same magni-
tude, �H, where H is the Stoner-enhanced external field
(we have absorbed the Bohr magneton in the units of H).
Indeed, in our calculations, the splitting at Γ, K, and K0
increases linearly and by approximately the same amount
as a function of increasing magnetic moment. The magni-
tude of the Fermi surface splitting in reciprocal space is
δkFðkÞ ¼ 2H=vFðkÞ. The area between the spin-split con-
tours will determine the total magnetization for a given
magnitude of the magnetic field, and will be 2N↑H ¼
N↑↓H, where N↑ is the total number of states with
pseudospins along ẑ and N↑↓ is the total number of states
with pseudospins along ẑ and −ẑ.

We now define the following generic Hamiltonian with
SO interaction for a given point on the Fermi surface of
monolayer NbSe2 subject to an external magnetic field Hz
along ẑ (parallel to the c axis), where the spin-quantization
axis is along ẑ∶

HðkÞ ¼
�
εk � λk þHz 0

0 εk ∓ λk −Hz

�
: ð3Þ

Based on Eq. (1), λk ¼ ληkImβk, and the matrix is in the Sz
spin space. Inversion in the momentum space changes the
upper sign to the lower sign for �λ and ∓ λ. The splitting
between the Fermi contours for a given pseudospin along
þẑ will increase by approximately the same magnitude as
the Fermi contours of the majority spin channel in the case
of the collinear calculations. The splitting of the Fermi
contours for pseudospins along −ẑ will decrease by the
same magnitude. For instance, if the Fermi contour splitting
around K increases by 2Hz, the splitting around K0 will
decrease by the same amount. Hence, the total magneti-
zation that is induced in terms of the population of
pseudospins, to lowest order in λ, will be exactly the same
as determined by our collinear calculations.
In the noncollinear DFT calculations, a pseudospin state

is formally a combination of both spins, so we introduce an
effective g factor, which describes the difference between
the pure spin susceptibility and the “pseudospin” suscep-
tibility. For a magnetic field along ẑ, the g factor is exactly
2, so we expect χ along h001i to be very similar to χ
obtained from collinear calculations—which is consistent
with our calculations in Table I. The splitting of the states at
Γ, K, and K0 for magnetic moments along ẑ is illustrated in
Fig. 5(a) and they indeed change linearly with respect to the
magnetic moment.
For an in-plane magnetic field along x̂ (perpendicular

to the c axis), Hx, the Zeeman interaction, SxHx ¼
ðSþ þ S−ÞHx=2, couples to the off-diagonal components
of the spin-orbit Hamiltonian as follows:

HðkÞ ¼
�
εk � λk �Hx=2

∓Hx=2 εk ∓ λk

�
:

To linear order in Hx, the splitting between the Fermi
contours at K and K0 will not change. However, the wave
functions change, and thus the effective g factor will deviate
linearly from 2. For example, applying standard perturba-
tion theory to the pseudospin jþi states gives

jþi ¼ j↑i �Hx=2
2λk

j↓i;
D
þj σþ þ σ−

2

���þE
¼ �Hx=2

λk
: ð4Þ

Pseudospin j−i states will acquire the opposite mag-
netization, and their g factor will be reduced by the same
amount. We now observe that the total pseudomoment

FIG. 4. q-dependent Stoner renormalization factor of bulk
NbSe2, obtained from disordered local moment calculations.
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around the K point will be proportional to the area between
the split concentric Fermi contours, �NKλK , where NK is
the density of states for this contour at K and λK is the
average splitting at this contour. Around the K0 contour,
the area between the split concentric Fermi contours is
∓NKλK , and this total pseudomoment does not depend on
Hx. Multiplying it by the difference in the g factors of
Eq. (4), which deviate from 2 by the same amount, but
in the opposite directions, we get a spin susceptibility of
χh100i ≈ Ntot ¼ χPauli, where Ntot is the total density of
states. Thus, no anisotropy in the spin susceptibility
appears in the lowest order of the SO coupling. DFT
calculations fully conform with this description: the split-
ting of the one-electron energies at K and K0 is quadratic
with respect to magnetic moments oriented along x̂
[cf. Fig. 5(b)].
Within our considerations of the Zeeman interaction,H is

the total magnetic field, which includes the Stoner renorm-
alization. Within DFT, the RPA is exact, since one can write
the total DFTexchange-correlation energyExc in an external
magnetic field as [47,48]

Exc ¼
m2

4

�
1

N↑
− I

�
; ð5Þ

where I ¼ δ2Exc=dm2 is theDFT Stoner factor, which in the
DFT language combines the diagonal (HubbardUÞ and off-
diagonal (Hund’s JÞ interactions. Indeed,

χDFT ¼ χ0=ð1 − χ0IÞ;
H ¼ Hext=ð1 − χ0IÞ; ð6Þ

where χ0 is the bare Pauli susceptibility.

V. MAGNETISM AND SUPERCONDUCTIVITY

Within this framework, it is especially easy to address
the effect of superconductivity on the spin susceptibility.
Indeed, the opening of the superconducting gap Δ only
affects states that are close to the Fermi surface. Since the
spin susceptibility parallel to the c axis, χh001i, is deter-
mined entirely by the shift of the Fermi contours as a
function of an increasing magnetic field [Fig. 5(a)], the spin
susceptibility is suppressed by superconductivity in exactly
the same way as without SO coupling. In contrast, the spin
susceptibility perpendicular to the c axis, χh100i, as we just
saw, is defined by the states removed from the Fermi level
by ∼λk ≫ Δ, and as a result is not affected by Δ. Thus, the
thermodynamic critical field, HC0, which is determined by
the free energies in the normal and superconducting state as

Fn − Fs ∼ Δ2N↑↓ð0Þ=2 ¼ ðχn − χsÞH2
C0=2; ð7Þ

behaves conventionally for magnetic fields parallel to
the c axis, but is essentially infinite for magnetic fields
perpendicular to the c axis.
However, if one examines the SO splitting for the Fermi

contour around the Γ point, we find that it is nodal along the
Γ-M and the Γ-M0 line, which makesHC0 finite, but greatly
enhanced for magnetic fields perpendicular to the c axis.
Figure 2(b) illustrates the calculated splitting due to SO
coupling along the Γ contour is finite and has nodes along
all Γ-M and Γ-M0 directions. The magnitude of this
splitting is low, but, along the antinodal line Γ-K, the
maximum splitting is still larger than the superconducting
gap. In the Appendix C we derive an analytical expression,
which generalizes the considerations presented above onto
a SO-coupled nodal case of the Γ-centered Fermi contour.

VI. SINGLET AND TRIPLET
SUPERCONDUCTIVITY: DFT POINT OF VIEW

We now use the above considerations to determine the
symmetry of possible pairing interactions for monolayer
NbSe2. The fact that NbSe2 lacks inversion symmetry
formally allows for parity mixing, but it has been argued
[18] that the triplet component must be vanishingly small.
As we discuss below, this is not necessarily true. Strong
spin fluctuations, which we have demonstrated to be
operative in NbSe2, and/or a particular structure of the

(a)

(c)

(b)

FIG. 5. Splitting at Γ (circle), K (square), and K0 (triangle)
obtained with noncollinear calculations as a function of the
magnetic moment on Nb for magnetic moments (a) parallel to the
c axis, h001i, and (b) perpendicular to the c axis, h100i, for
monolayer NbSe2. The magnitude of the splitting for magnetic
moments along h010i are similar to the results along h100i
illustrated in (b). The solid line in (a) and (b) for each plot serves
as a guide to the eye. (c) Splitting at K0 for magnetic moments
on Nb parallel to the c axis ([001], dotted line) illustrating the
linear dependence on m and magnetic moments perpendicular to
the c axis ([100], solid line) illustrating the quadratic dependence
on m. The results are the same at K if one considers the
magnitude of the change in ΔE versus m.
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electron-phonon coupling have the ability to generate a
sizable triplet component.
In the spirit of band theory, we consider the one-electron

Hamiltonian to be fully diagonalized before we consider
superconducting pairing. First, we only consider the K
and K0 contours. The Cooper pairs at these contours are
composed of states that reside on either the inner or outer
contours at K and K0. We assume that the outer contour
aroundK has spin-up states, and the inner contour has spin-
down states, which we denote as [jK; o;↑i,jK; i;↓i]. The
contours at K0 are degenerate in energy with the contours at
K (the states at K and K0 are related by time-reversal
symmetry) and are given by [jK0; o;↓i,jK0; i;↑i]. No other
combinations are allowed. Schematically, these four con-
tours can be represented as two pairs of concentric rings as
depicted in Fig. 6. In this basis, the anomalous averages that
appear in the problem are

do;k ¼ jK; o;↑ijK0; o;↓i;
di;k ¼ −jK; i;↓ijK0; i;↑i: ð8Þ

Note that we introduced a minus sign in Eq. (8) for di;k;
this is to ensure that a usual spin-singlet state is given by
di;k ¼ do;k and that the interactions we discuss later reduce
to the usual interactions when no spin-orbit coupling is
included. Indeed, one is free to define the relative phase
between the superconducting order parameters at different
momenta, without changing the superconducting state or
any observables. Usually there is one logical choice and it
is universally used. For the case of NbSe2 it is important to
note that the relative sign between the order parameter at K
and K0 is not uniquely defined. Hence, one needs to be
careful when defining the phase convention for a given

pairing interaction, as it can have an instrumental impact as
has been shown for other materials [49].
Since a singlet pair is defined as ðj↑↓i − j↓↑iÞ= ffiffiffi

2
p

and
the triplet pair is defined as ðj↑↓i þ j↓↑iÞ= ffiffiffi

2
p

, the
order parameter on the outer contour Δo, derived from
the anomalous average do, is Δo ¼ ðΔS þ ΔTÞ=

ffiffiffi
2

p
, while

the order parameter on the inner contour Δi is Δi ¼
ðΔS − ΔTÞ=

ffiffiffi
2

p
. Within this definition, ΔS is the order

parameter for a singlet pair and ΔT is the order parameter
for a triplet pair. Note that the symbols Δi, Δo, ΔS, and ΔT
that are used in this discussion always refer to the super-
conducting order parameter which can be different from the
superconducting excitation gapΔ. This picture implies four
types of pairing interactions, which corresponds to the
following scattering processes of Cooper pairs: do ⇔ do,
di ⇔ di, do ⇔ di, di ⇔ do. If Δo ¼ Δi, then in most (albeit
not necessarily all) experiments the triplet component
cancels out. For example, such a situation can arise
following the considerations of Shaffer et al. [18], where
they take the intraband scattering within the same valley,
do;K ⇔ do;K or di;K ⇔ di;K, to be the same (denoted as g2 in
Ref. [18]), which differs from their consideration of intra-
band scattering between the K and K0 valley, do;K ⇔ di;K0 ,
di;K ⇔ do;K0 (denoted as g3 in Ref. [18]).
If the pairing is due to phonons, then the matrix element

for intraband pairing interactions gpoo (or gpii) between the
momenta k and p is defined as

hdo;kjvjdo;pi ¼ hk; o;↑jh−k; o;↓jvjp; o;↑ij − p; o;↓i
¼ hk; o;↑jgjp; o;↑ih−k; o;↓jgj − p; o;↓i
¼ gpoo; ð9Þ

where the phonon Green’s function is included in g. The
nondiagonal electron-phonon matrix element that couples
the outer and inner contours gpoi is defined as

hdo;kjvjdi;pi ¼ hk; o;↑jh−k; o;↓jvjp; i;↓ij − p; i;↑i
¼ hk; o;↑jgj − p; i;↑ih−k; o;↓jgjp; o;↓i
¼ gpoi: ð10Þ

Since scattering by phonons does not flip spin, electron-
phonon coupling is only relevant for jK; νi ⇔ jK; ν0i
scattering if ν ¼ ν0 or for jK; νi ⇔ jK0; ν0i if ν ≠ ν0. The
indices ν and ν0 can be either o or i to denote a state on an
outer (o) or inner (i) contour.
On the other hand, ferromagnetic spin fluctuations, even

though they can only couple states within the same valley,
can work within both the inter- and intraband channels. To
determine the relative sign and strength of these inter-
actions, we define the amplitude of a spin fluctuation as S,
and to a reasonable approximation their correlators can
be assumed to be spin-rotationally invariant: hSzkSzpi ¼
hSxkSxpi ¼ hSykSypi ¼ hSþkS−pi=2, leading to an isotropic spin

FIG. 6. Schematic illustration of the inner and outer contours of
the Fermi surface around the K and K0 points that cross the Fermi
level [cf. Fig. 2(b)]. Solid circles represent pseudospin j↑i states
and dotted circles represent pseudospin j↓i states. The possible
pairing interactions due to phonons or spin fluctuations between
the pseudospin states are denoted with red dotted arrows. The
relative signs of these interactions are summarized in Table II.
Subscript o refers to the outer contour and the subscript i refers to
the inner contour at a given valley.
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susceptibility χ. Within this definition, we can now describe
the interaction of an electronic state that crosses the Fermi
level with a fluctuating spin moment as σ · S ¼ σzSz þ
ðσþS− þ σ−SþÞ=2. Hence, just as we did for the intraband
electron-phonon interaction [Eq. (9)], we can write down
the following expression for the intraband interaction due
to spin fluctuations gsoo (or gsii):

hdo;kjhS ⊗ Sijdo;pi ¼ hk; o;↑jσzSzjp; o;↑i
× h−k; o;↓jσzSzj − p; o;↓i;

gsoo ¼ −
1

4
hk; ojp; oiχðk − pÞ: ð11Þ

Note that the sign of gsoo is negative, indicating intraband
spin-fluctuation mediated interactions are repulsive, as
would occur in a singlet channel. We also define an
expression for spin-fluctuation mediated interactions that
couple the outer and inner contours gsoi as

hdo;kjhS ⊗ Sijdi;pi ¼ −½hk; o;↑jσþS−jp; i;↓i
× h−k; o;↓jσ−Sþj − p; i;↑i�=4;

gsoi ¼ −
1

2
hk; ojp; iiχðk − pÞ; ð12Þ

where the minus sign in this matrix element appears
because of our phase convention for Δi. Note that the
prefactor gsoi is a factor of 2 larger than gsoo.
Hence, intraband and interband interactions around a

fixed valley (K or K0) have the same sign as expected for
singlet pairs. However, they also have distinct prefactors,
which is as if the standard singlet rotational factor of 3 has
distributed itself in a ratio of 2∶1 between the interband and
intraband contributions within the SO-split bands. This
combination of pairing interactions due to phonons and
spin fluctuations is summarized in Table II. We have

provided an alternative and more complete derivation of
these interactions in Appendix B.
The line of reasoning that leads toΔo ¼ Δi is based on the

fact that the bands in question are two dimensional and
nearly parabolic, so their DOS is essentially the same (which
DFT calculations confirm), while the direction of the spins is
antialigned. If the strength of the pairing interaction is
similar, this hypothesis of Δo ¼ Δi is confirmed, and the
net superconducting order parameter exhibits a singlet
character (see also Appendix B). Note that while the
difference in the DOS of the outer and inner contours is
vanishingly small, the kF splitting is definitely not negligible
in NbSe2. In monolayers of other TMDs, such as TaS2,
where Ising superconductivity has been observed, the kF
splitting is larger than NbSe2 [16]. The implications of this
large splitting of kF on the strength of the pairing interaction
on either contour is currently not known. Thus, in the
following we ask; does the strength of the pairing interaction
have to be similar on the outer and inner contours?
First, we discuss intraband interactions. They have a

pairing component due to phonons that is determined by
the Eliashberg function, α2Fðq;ωÞ, which will have a
characteristic momentum q and energy ω dependence, and
a pair-breaking component due to ferromagnetic spin
fluctuations, which is determined by the q-dependent spin
susceptibility χðq;ωÞ. The q-dependent spin susceptibility
is sharply peaked at q ∼ 0 (Fig. 4). The q dependence of the
electron-phonon coupling likely has a non-negligible q
dependence as well.
If the intraband interaction due to phonons is the same

for states on the outer and inner contours, gpoo ¼ gpii (an
approximation adopted within Ref. [18]), then the ratio of
the superconducting gap values, jΔoj=jΔij, is inversely
proportional to the square root of the ratio of the density of
states [50] of the outer and inner contour,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
No=Ni

p
, which

is, as we know, essentially 1. The phase, however, depends
on the net sign of the interaction: if jgpoij > jgsoij, the phase
is the same, and the net order parameter is essentially
singlet. However, if jgpoij < jgsoij, which is feasible, the
order parameter is net triplet.
Let us now discuss the potential for parity mixing due to

a given structure of the intraband coupling. We assume that
the net intraband interaction due to electron-phonon gpðqÞ
and spin-fluctuation mediated interactions gsðqÞ is peaked
at small q. To be specific, we take this net interaction to
have a Lorentzian dependence on q (it may as well have a
sharp minimum at q ¼ 0, or have some other comparable
structure within momentum space):

gðq ¼ k − k0Þ ∝ ξ2=ðq2 þ ξ2Þ: ð13Þ

The net intraband coupling constants, goo and gii, can be
obtained by averaging Eq. (13) over all k and k0 on a
circular Fermi contour with a radius kF. If we now consider
how gðqÞ changes if kF changes by δkF, where δkF is the

TABLE II. Sign of the pairing interaction that involves either
phonons gp or ferromagnetic spin fluctuations gs between two
states on the outer and/or inner contour at K and K0. The states
involved in pairing are denoted as jk; νi, where k is a state either
atK orK0 and ν can take on an index o or i to denote a state on the
outer (o) or inner (i) contour. The pseudospin (↑ or ↓) associated
with states on each contour is depicted schematically in Fig. 6.
Attractive pairing interactions are positive and repulsive inter-
actions are negative.

Pair gp gs

jK; oi,jK; oi gpoo > 0 gsoo < 0

jK; ii,jK; ii gpii > 0 gsii < 0

jK; oi,jK0; oi 0 ≈0
jK; ii,jK0; ii 0 ≈0
jK; oi,jK; ii 0 gsoi < 0

jK; oi,jK0; ii gpoi > 0 ≈0
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SO-coupling induced splitting of the Fermi contours, we
find

gii − goo
gii þ goo

¼ δkF=kF
1þ ðξ=2kFÞ2

: ð14Þ

Unlike the DOS, which for a parabolic two-dimensional
band does not depend on kF, this expression for the net
pairing interaction due to intraband interactions depends
linearly on δkF and thus on the magnitude of the SO
coupling. If ξ ≫ 2kF, it vanishes, but if ξ ∼ 2kF, it leads
to a non-negligible correction. Note that in NbSe2,
δkF=kF∼1=3, and in TaS2, δkF=kF∼1=2.Whilemomentum-
resolved calculations of the electron-phonon coupling
in monolayer NbSe2 are under way [51], the qualitative
considerations we have presented above challenge the
current notion that the superconducting order parameter
in monolayer NbSe2 is purely singlet, and demonstrate the
order parameter can indeed host a measurable admixture of
triplet character. Furthermore, our consideration of possible
pairing interactions in Table II makes it evident that due to
the strong spin-orbit interaction of NbSe2, equal-spin triplet
state is not possible at zero magnetic field.
Finally, while this is not the main subject of our paper,

we briefly comment on the ramifications and plausible
experimental probes of the singlet-triplet mixing of the
order parameter of monolayer NbSe2. Indeed, a number
of recent studies have alluded to the possibility of singlet-
triplet mixing of the order parameter in monolayer NbSe2
[17,21,26] by invoking extrinsic mechanisms such as
impurities and strain. The discussion we have presented
above suggests this parity mixing of the order para-
meter can have an intrinsic origin depending on the
interplay between momentum-dependent phonon and spin-
fluctuation induced couplings. Experiments that attempt to
elucidate this parity mixing need to access the parity-
dependent coherence factors. One possibility is quasipar-
ticle interference, where the main challenge is to separate
the intraband (o − o and i − i) scattering from the interband
scattering processes. Magneto-optical spectroscopy using
microwaves in the deep infrared region of the spectrum is
another potential experimental probe. Finally, in the spirit
of Ref. [26], one expects that impurities may affect
superconductivity differently, depending on the parity.
All of these probes require quantitative theories that are
beyond the scope of this present paper. Our primary goal
was to demonstrate that mixed parity Ising superconduc-
tivity is possible in the transition metal dichalcogenides,
and we hope this will encourage further theoretical and
experimental research into its manifestation.

VII. CONCLUSIONS

We have developed a formalism that adapts the model
theory for Ising superconductivity into first-principles DFT
calculations. We demonstrated that bulk and monolayer

NbSe2 are close to a magnetic instability, and spin-
fluctuation induced interactions cannot be neglected when
addressing superconductivity in NbSe2. Finally, we out-
lined two parametrically admissible situations where super-
conductivity in monolayer NbSe2 may be partially triplet or
even predominantly triplet without invoking an external
magnetic field or exchange bias, and point to the need to
reexamine the symmetry of the order parameter in mono-
layer NbSe2. This perspective on the role of magnetism
in monolayer NbSe2 will also be crucial to understand
and control the superconducting properties of monolayer
NbSe2 in the presence of an external magnetic field or with
heterostructures between monolayer NbSe2 and magnetic
materials.
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article by another group [52], which also indicates that bulk
and monolayer NbSe2 are close to a magnetic instability.

APPENDIX A: COMPUTATIONAL METHODS

Our calculations are based on density-functional theory
within the projector-augmented wave method [53] as
implemented in the VASP code [54,55] using the generalized
gradient approximation defined by the Perdew-Burke-
Ernzerhof functional [56]. We found that it is essential
that Nb 5s1; 4s2; 4p6; 4d4 electrons and Se 4s2; 4p4 elec-
trons are treated as valence. All calculations use a plane-
wave energy cutoff of 400 eV. We use a (18 × 18 × 1)
Γ-centered k-point grid for the monolayer structure and a
(18 × 18 × 9) k-point grid for the bulk structure when
performing structural optimization and calculating the
electronic structure. The cell shape, volume, and atomic
positions of the bulk structure were optimized with the
Grimme-D3 van der Waals correction [57] using a force
convergence criteria of 5 meV=Å.
To determine the spin susceptibility χ we used collinear

and noncollinear fixed-spin moment calculations (some-
times referred to as the constrained local moments
approach). In our collinear FSM calculations we constrain
the magnitude of the magnetic moment on the Nb atom. To
determine χ along a given crystal axes we use noncollinear
FSM calculations. In these calculations we constrain the
direction (either parallel or perpendicular to the c axis) and
the magnitude of the magnetic moment (varying from 0 to
0.8μB). With these constraints applied we then apply a
Lagrange multiplier to the minimization of the total energy.
Performing these minimizations as a function of increasing
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magnetic moment and along a given direction allows us to
determine the change in energy with respect to the non-
magnetic ground state as a function of the total magneti-
zation m for the bulk and monolayer structures. We then fit
our results to an expansion of the total energy as a function
of m [Eq. (2)] to determine χ.
The spin susceptibility χ obtained from FSM calcula-

tions is sensitive to the choice in k-point grid density, the
energy convergence threshold, occupation method, and
the number of magnetization values used in the fit to the
expansion in the total energy as a function of magnetic
moment. To yield converged values of χ we found it is
essential to use a (28 × 28 × 1) Γ-centered k-point grid for
the monolayer structure and a (28 × 28 × 14) k-point grid
for the bulk structure, an energy convergence threshold of
10−8 eV, and up to 50 energy versus magnetization points
between 0 and 0.8μB for all of the FSM calculations. We
also found that improved convergence was achieved using
the tetrahedron method to determine total energies for both
the bulk and monolayer structure (despite the 2D nature of
the electronic structure).
For the calculation of the exchange constants within the

DLM approximation [58], we used the Korringa-Kohn-
Rostokker method within the atomic sphere approximation
[59] and the Green’s function-based magnetic-force theo-
rem [60]. The implementation of this technique has been
described elsewhere [61]. This technique can be considered
to be a magnetic analog of the disordered alloys theory
based on the coherent potential approximation. Calcula-
tions were performed for thirteen nearest-neighbor coordi-
nation spheres for five values of the fixed Nb moments,
0.05 μB, 0.1 μB, 0.15 μB, 0.25 μB, and 0.35 μB, and
extrapolated toM ¼ 0. The nearest neighbor ferromagnetic
exchange constant is up to ten times larger than any other
exchange constants, while the remaining RKKY interaction
is extremely long range and is responsible for weak
satellites in Fig. 4. Charge self-consistency was achieved
using 147 irreducible k points in the Brillouin zone, and
then an extended set of k points (2565) to compute the
exchange constants.

APPENDIX B: SINGLET AND TRIPLET
PAIRING INTERACTIONS

To provide an additional derivation of the interactions in
Sec. VI, it is useful to consider the contribution of density
(that is, electron-phonon) and spin interactions to pairing
on the K and K0 Fermi surfaces. Here, we write these
interactions as

1

2

X
q

ρðqÞnqn−q þ
1

2

X
i;q

JiðqÞSi;qSi;−q; ðB1Þ

where nq¼
P

k;s c
†
kþq=2;sck−q=2;s and Si;q¼

P
q;s;s0 c

†
kþq=2;s×

σi;s;s0ck−q=2;s, and σi is a Pauli matrix. For clarity, we have

allowed the spin interaction JiðqÞ to depend upon spin
direction i, and will later impose isotropy JiðqÞ ¼ JðqÞ.
Equation (B1) assumes interactions take the same form as
when inversion symmetry is present, implying we only
consider inversion symmetry breaking through single
particle interactions. Noting that for sufficiently large
Ising spin-orbit coupling, pairing will only occur between
states of opposite spin, the contribution of the above
interaction toward superconductivity can be written as

X
k;k0

½ρðk − k0Þ − Jxðkþ k0Þ − Jyðkþ k0Þ − Jzðk − k0Þ�

× c†k;↑c
†
−k;↓c−k0;↓ck0;↑; ðB2Þ

where we have used ρðkÞ ¼ ρð−kÞ and JiðkÞ ¼ Jið−kÞ. We
now examine Cooper pairs formed from Fermions near the
K and K0 points. To this end, we define operators

d†oðkÞ ¼ c†Kþδko;↑
c†K0−δko;↓

; ðB3Þ

d†i ðkÞ ¼ −c†Kþδki;↓
c†K0−δki;↑

; ðB4Þ

where δko (δki) denote a wave vector on the outer (inner)
Fermi pocket at the K point. Here we have introduced the
same sign convention for d†i as in Eq. (8) in the main text.
For these operators, we find intraband, gii and goo, and
interband, goi and gio, interactions due to electron-phonon
interactions and spin can be defined as

X
k;k0

½giiðk; k0Þd†i ðkÞdiðk0Þ þ gooðk; k0Þd†oðkÞdoðk0Þ�; ðB5Þ

X
δk;δk0

½gioðk; k0Þd†i ðkÞdoðk0Þ þ goiðk; k0Þd†oðkÞdiðk0Þ�; ðB6Þ

where

giiðk; k0Þ ¼ ρðδki − δk0iÞ − Jðδki − δk0iÞ
− 2JðQþ δki þ δk0iÞ; ðB7Þ

gooðk; k0Þ ¼ ρðδko − δk0oÞ − Jðδko − δk0oÞ
− 2JðQþ δko þ δk0oÞ; ðB8Þ

gioðk; k0Þ ¼ goiðk; k0Þ ¼ ρðQþ δki þ δk0oÞ
− JðQþ δki þ δk0oÞ − 2Jðδki − δk0oÞ; ðB9Þ

whereQ ¼ 2K and we have imposed spin isotropy JiðkÞ ¼
JðkÞ. From this expression, and taking JðQþ δkÞ ≈ 0,
the coupling constants found in Table II can be readily
deduced.
It is instructive to consider the limit δki ¼ δko → 0, then,

when JðQÞ ≈ 0, gii ¼ goo ¼ −gpð0Þ þ gsð0Þ and gio ¼
goi ¼ −gpðQÞ þ 2gsð0Þ, where the constants gpð0Þ and
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gpðQÞ are defined to be positive, corresponding to attrac-
tive electron-phonon interactions, and gsð0Þ is negative
corresponding to repulsive ferromagnetic interactions. In
this case, a pure singlet state corresponds to the operator
½diðkÞ þ doðkÞ�=

ffiffiffi
2

p
for which the interaction is

vs ¼ −gpð0Þ − gpðQÞ − 3gsð0Þ: ðB10Þ

A pure triplet case corresponds to the operator
½diðkÞ − doðkÞ�=

ffiffiffi
2

p
, for which the interaction is

vt ¼ −gpð0Þ þ gpðQÞ þ gsð0Þ: ðB11Þ

These expressions reveal how spin fluctuations strongly
suppress the spin-singlet state and enhance the spin-triplet
state. Notice that once the spin fluctuations become
sufficiently strong, that is jgpðQÞj < 2jgsð0Þj, the triplet
solution will have a higher Tc than the singlet solution.

APPENDIX C: CRITICAL FIELD ANISOTROPY
FOR A NODAL FERMI SURFACE

As we discuss in Sec. V, the third Fermi pocket, around
Γ, has zero spin-orbit coupling (SOC) splitting along the
Γ-M and Γ-M0 directions. Here, we rederive the expression
for the spin susceptibility for this band topology that
accounts for the nodes along these directions.
Assuming that the SO splitting varies angularly as

λ cosð3φÞ, we derive the susceptibility, dm=dHx, for an
in-plane magnetic field applied along x̂,

m ¼ H
2πλ

Z
2π

0

dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 φþ ζ2

p ; ðC1Þ

where λ is the maximal SOC splitting on this Fermi contour
and ζ ¼ H=λ. This gives the same Pauli expression as
before, but with a logarithmic correction:

dm
dHx

¼ χPauli

�
1þ 3

4
ζ2 log ζ

�
: ðC2Þ

In the superconducting state, λ cosð3φÞ is replaced byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 cos2ð3φÞ þ Δ2

p
, where Δ is the average superconduct-

ing gap along the Γ contour and ζ defined above is replaced
with ζ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þH2

p
=λ. Then in the superconducting state,

m ¼ 1

2π

Z
2π

0

Hdφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2cos2φþ Δ2 þH2

p

¼ m
2πλ

Z
2π

0

dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2φþ ζ2

p : ðC3Þ

Upon integration, we get a logarithmic correction to the
susceptibility in the superconducting state, namely,

dm
dH

¼ χPauli

�
1þ 1

4
ζ20 log ζ0

�
; ðC4Þ

where ζ0 ¼ Δ=λ. That is to say, the anisotropy of the
thermodynamic critical field is not infinite, but, roughly,

���� NΓ þ NK

NΓζ
2
0 log ζ0

����; ðC5Þ

where NΓðKÞ is the DOS around the Γ contour and NK is the
total DOS around the K and K0 pockets. While this factor is
formally finite, it is a very large number of the order of 103.
Instead, other factors, such as a substrate induced Rashba
spin-orbit coupling [27] and impurity scattering [26], are
more important in limiting the anisotropy of the criti-
cal field.
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