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Abstract. The perception of differences between graphs represented as
node-link diagrams is an important issue in many disciplines. This paper
presents results from a study with 40 participants. The goal of the study
was to test whether shape, density, and edge crossings of the graph influ-
ence the perception of differences between graphs and the order in which
they are perceived. The participants worked under time constraints. Our
results indicate that an increase in density lowers the recognition of dif-
ferences while a newly introduced edge crossing helps to spot a change.
Shape did not have a significant influence on the perception of differences.
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1 Introduction

Analysts are frequently exposed to the task of visually comparing two similar
graphs [1]. In many cases, the differences can be explicitly encoded in the graph
structure, e.g., through color-coding of nodes and edges [7]. This, however, is not
always possible as visual variables such as color may already be used for encoding
other information. In such cases, the observer needs to compare the structure of
the graphs visually. Thus, better understanding which factors facilitate or impede
the recognition of differences in node-link diagrams can be of great value, e.g.,
to help create specifically optimized layouts for comparison purposes.

In our previous work [19] we studied which factors influence the perception
of changes in directed acyclic graphs (DAGs) and which strategies people adapt
to compare them by relying on screen capturing and qualitative content analysis
of thinking aloud protocols. As the study was exploratory and relied on people’s
explanations, no time limit was imposed for comparison. However, time may
impact which changes are recognized, which factors contribute to recognition,
and how people approach the comparison. Research in cognitive psychology in-
dicates that time constraints result in a more shallow processing of information,
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more important features are predominantly perceived, and that the accuracy of
judgements decreases [17]. Time constraints also impose a higher workload on
study participants (e.g., [4, 9]). Time constraints also play an important role in
many practical contexts. However, to the best of our knowledge, time constraints
have not been investigated systematically in usability research.

Hence we decided to find out whether time constraints also play a role for de-
tecting differences in DAGs. In this paper, building upon our previous results, we
thus present a follow-up study focusing on the influence of time on the perception
of differences. Our results show that changes to the outer shape (i.e silhouette)
of the graph, lower local density, and the introduction of edge crossings help to
facilitate the recognition of differences also under time constraints.

2 Related Work

In cognitive psychology, the investigation of similarity perception has been an
important topic. The development of categories is based on similarity perception
because similar objects are placed into the same category [8]. There are different
mathematical models (e.g., multidimensional or featural models) to describe
similarity perception. Most models rely on the comparison of distinct features of
objects, but it has been noted that similarity is a more complex phenomenon [15].

There is some research in information visualization addressing comparing
processes in visualization in general. Gleicher [6] describes common challenges
in comparison processes. He assumes that the main challenges are size and com-
plexity of the visualizations being compared. He states that there are different
strategies to tackle comparison processes: scan sequentially, select subsets, and
summarize. Possible design solutions to support comparison processes include
adding statistical/analytical measures or appropriate interaction possibilities.

Investigations concerning the perception of visual features of node-link dia-
grams mainly concentrate on single graphs and do not address the comparison
of such representations. Li et al. [10] investigated which nodes are more salient,
focusing on features such as node degree and attributes of the surroundings of
a node. Marriott et al. [12] studied the influence of different layout features, in-
cluding symmetry and collinearity, on the memorability of graphs. Soni et al. [16]
studied whether properties like graph density influence the perception of graphs.
These studies do not address graph comparison as such, but are still relevant for
consideration in the design of graphs that should facilitate comparison processes.

Processes concerning the comparison of node-link diagrams have been investi-
gated much less than the perception of single node-link diagrams. Some research
addressed the perception of dynamic graphs. Making sense of dynamic graphs
is partly based on comparing a number of time-slices of a node-link diagram.
Archambault et al. [2] studied whether difference maps could assist users in such
processes. They found out that, overall, difference maps did not help, but were
useful to assess the changes in the number of edges. Bridgeman and Tamassia [5]
investigated the perception of differences and similarities of graphs. Their results
show that similarity perception relies more on the borders or the shape of the
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graphs, while detection of differences rather focuses on the interior of graphs. In
cognitive psychology it is discussed whether object perception is more holistic or
analytic. There is some indication that this depends on whether the features of
an object depend very much on the context in which they are shown [13]. There
are still many open issues in this context.

Ballweg et al. [3] investigated which factors influence similarity perception
of small directed acyclic graphs (DAGs). von Landesberger et al. [18] described
methodological challenges to be addressed when conducting studies on graph
comparison and reported preliminary results on factors influencing the percep-
tion of similarity of very small star-shaped node-link diagrams. Wallner et al. [19]
studied which factors influence the perception of changes in DAGs. Especially
shape of the graph, density of links and nodes, and edge crossings were found
to influence the perception of differences. The study presented here is based on
this work. To the best of our knowledge, the issue of time constraints has not
been investigated extensively in Human-Computer Interaction or cognitive psy-
chology, which both concentrate on measuring reaction time but not the effect
of time constraints on the achievement of participants.

3 Study Design

In previous research, Wallner et. al. [19] found that the shape of graphs, their
density, and edge crossings influenced the ease with which users were able to
identify differences between graphs. This research was conducted without time
constraints. For reasons detailed in Section 1 we thus decided to conduct similar
research under time constraints. We formulated the following research questions:

R1: Do the variables shape, edge crossings, and local density influence the recog-
nition of differences under time constraints?
R2: Do the variables shape, edge crossings, and local density affect the sequence
of perceived differences? When several differences between two graphs exist, are
shape changes, for example, detected earlier than other changes?

For comparability with previous studies, we used the same dataset as Wallner
et al. [19]. This dataset consists of in total 16 graph pairs. These were originally
created by deriving four alterations by adding up to four edges and nodes (incl.
an extra edge) to four different base graphs that themselves differed in size
(between about 40 - 100 nodes) and structure. In the study the original (base)
graph was displayed below the altered version. Figure 1 gives some examples
with differences marked in red for representation purposes.4

Procedure: For data collection we administered an online survey using LimeSur-
vey [11] to students at the TU Wien by advertising it in lectures. Informed

4 For a complete overview of all graph pairs please refer to:
https://figshare.com/s/27396e7451506f3e827d
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B1, |N | = 37, |E| = 42 B3, |N | = 97, |E| = 102

B2, |N | = 52, |E| = 57 B4, |N | = 100, |E| = 117

Fig. 1. The four base graphs B1 – B4 (blue) with the changes of one alternative graph
highlighted in red (for representation purposes only). In the study alternative and base
graph were displayed below each other.

consent was obtained on the first page of the survey. This was followed by ba-
sic demographic questions inquiring about the age, gender, and familiarity with
graph visualization. The latter was recorded on a 5-point scale anchored by 1 =
very familiar and 5 = very unfamiliar. The main part of the survey consisted of
showing the 16 graph pairs in, following Wallner et al. [19], semi-random order.
In other words, we counterbalanced the order of graphs while also making sure
that graphs with similar changes are not displayed consecutively. For each graph
pair, participants had to mark the differences in the upper graph by dragging
markers to the respective locations. Once a marker was placed it could not be
moved anymore. To allow subjects to familiarize themselves with this interaction
we included an example before showing the actual graphs. As we were interested
in how salient certain changes are, we imposed a time limit of one minute for
each graph pair. Once the participant indicated to have finished marking all
differences or the time limit was over, the participants were asked to indicate
on 5-point scales how certain they were (1 = very certain, 5 = very uncertain)
to have found all differences and how difficult it was (1 = very easy, 5 = very
difficult) to find them. Afterward, the survey continued with the next graph pair.

Participants: In total, we received 40 complete responses from 29 males and 11
females. Participants were on average 25 years of age (min = 19, max = 50). Five
participants indicated to be very familiar with graph visualization. The majority
(24) rated their familiarity with a 2 or 3, and seven with a 4. Only five stated
to be very unfamiliar. On average participants needed 21 minutes to complete
the survey.
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4 Analysis and Results

As the survey only stored the coordinates of the markers, these were exported
and mapped to the positions on the graph images on a per-user basis. Through
manual inspection of the resulting images these were then compared to the en-
coded differences. We opted to perform this matching of markers to graph differ-
ences manually as sometimes the participants did not exactly place the markers
on, for instance, a newly added node. Markers not matching a difference were
ignored for the analysis. One graph pair was omitted due the tracked coordi-
nates being erroneous. That is, the following results are based on a total of 11
pairs. If people marked both, the added node and corresponding edge, it was
counted only once. We then compiled if and how often a difference was spotted
as well as the sequence in which they were marked. Each difference was catego-
rized based on three ’local’ factors which were revealed to have an influence on
the perception of differences (cf. [19]): 1) shape (yes/no), that is, if the newly
added node or edge changes the outer hull, i.e. silhouette of the graph. If no,
the change was further categorized based on 2) density and 3) edge crossing.
Density encoded how dense the graph is in the area of change. It was classified
qualitatively into low, medium, and high. Medium had approximately twice as
much space surrounding the change and high roughly twice as much as medium.
Edge crossing (yes/no) encoded if the change introduced a new edge crossing.
Responses to the Likert-like scales were treated as ordinal for the analysis.

Averaged certainty and difficult ratings for the four base graphs show a de-
crease in certainty (c) and an increase in perceived difficulty (d) with increasing
graph complexity with B1 (c = 1.44±0.68, d = 1.64±0.76), B2 (c = 1.81±0.87,
d = 2.16± 0.93), B3 (c = 2.11± 0.89, d = 2.38± 0.84), and B4 (c = 2.59± 1.04,
d = 2.99±0.92). Spearman correlations based on the certainty and difficulty rat-
ings of the individual pairs showed significant correlations between certainty and
difficulty (rs = .717, p < .001) and between the percentage of found differences5

and difficulty (rs = −.230, p < .001) and certainty (rs = −.313, p < .001).
A chi-square test to examine if changing the shape influenced the perception

of a difference was not significant (χ2(1) = 2.48, p = .115). To assess if den-
sity and newly introduced edge crossings influenced the perception of differences
we used generalized estimating equations (GEE) with a binary logistic regres-
sion model. The encoded differences were treated as a within-subject variable.
GEE model estimates are summarized in Table 1(a). No statistically significant
interaction effect between density and edge crossing could be observed. The re-
sults indicate that an increase in density lowers the recognition of a difference
significantly, while a newly introduced edge crossing helps to spot a change.

Since places within sequences of different length are not directly comparable,
sequences in which differences were found were analyzed separately for graph
pairs encoding two (6 pairs), three (5), and four differences (4). Influence of shape
was again assessed using chi-square tests showing a significant influence of shape

5 Since different graph pairs had a different number of changes we expressed the num-
ber of detected differences in terms of percentages instead of raw counts.
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Table 1. Results of generalized estimating equations models predicting the effect of
edge crossing and density on (a) if a differences is recognized or not and the order in
which they are found for graphs with (b) two, (c) three, and (d) four changes (OR =
odds ratio, calculated as eB , B = coefficient, CI = confidence interval).

Predictor

edge crossing
no
yes

density
low
medium
high

B OR 95% CI p

— reference —
1.438 4.212 [1.807, 2.820] .001

— reference —
-0.697 0.498 [-1.172, -0.222] .004
-2.079 0.125 [-2.583, -1.576] < .001

(a) recognition

B OR 95% CI p

— reference —
1.421 [0.540, 2.302] .002

— reference —
-0.412 0.662 [-0.628, -0.196] < .001
-1.430 0.239 [-2.237, -0.624] .001

(b) order, two changes

Predictor

edge crossing
no
yes

density
low
medium
high

B OR 95% CI p

— reference —
-0.749 [-1.203, -0.294] .001

— reference —
0.186 1.204 [-0.157, 0.529] .288
1.138 3.120 [0.618, 1.658] < .001

(c) order, three changes

B OR 95% CI p

— reference —
-1.810 0.164 [-2.264, -1.356] < .001

— reference —
1.853 6.380 [1.371, 2.336] < .001
3.708 40.77 [2.445, 4.972] < .001

(d) order, four changes

changes on how early a difference was marked for graphs with two (χ2(1) = 15.41,
p < .001) and four (χ2(3) = 12.86, p = .005) changes but not for graphs with
three changes (χ2(2) = 0.535, p = .765). Influence of density and edge crossings
were assessed using GEE as above but with ordinal logistic regression models.
GEE model estimates for graphs with two, three, and four changes are shown
in Table 1(b-d). Interestingly, results for the three and four changes graphs
are antipodal to those of graphs with two changes. In case of the former two,
increased density is a factor that contributed to changes being recognized later
while for graphs with only two changes, increased density surprisingly helped to
spot differences early. The same applies to changes introducing edge crossings,
in case of three and four changes these helped to recognize a difference before
others, while for graphs with two changes it was the other way round.

5 Discussion

In summary, if graphs were perceived as more difficult, participants were less
certain to have found all differences. If participants found more differences than
they considered the task less difficult. Finding more changes also made partici-
pants feel more confident that they really spotted all differences.

If a change affected the shape, i.e. the hull of the graph, then it helped to
spot the change before other changes in the majority of cases. However, it also
showed not to be a decisive factor if a change is recognized or not. Density and
introducing edge crossings, on the other hand, showed to be important if a change
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is recognized at all when the outer shape is not affected. Our results thus confirm
the findings of our qualitative work [19] that introducing an edge crossing helps
to locate a difference. While edge crossings have been considered detrimental for
graph comprehension (e.g., [14]) it appears that for certain applications such as
difference perception purposefully introducing a crossing can also be beneficial.
Similarly, higher density areas made it more difficult to actually find a difference
and also how early it was recognized, whereas placing changes in low density
areas helped to spot them. However, our results also showed the inverse effect in
case of graphs with only two changes. This may warrant further investigations
but we suspect this to be a result of some of the changes in high density areas
also being located near the boundary of the graph and were thus easier to spot.

When interpreting the results of this study it should thus be kept in mind that
controlling for all kinds of confounding factors while still maintaining a certain
systematic variation across the encoded differences is challenging to achieve in
such a complex setting. Results may also change if the time limit is further
reduced and/or the graph size increases.

In general, however, our results indicate that the influence of these factors
also hold up when comparisons need to be made under time constraints. However,
the importance of the outer shape – while still important – appears not to be as
pronounced compared to our results without enforced time limit. There is some
indication that time constraints generate a less holistic approach of participants,
but there are still many open issues to be investigated in future research. Use
of eye-tracking technology may shine further light on these issues. Lastly, we
should highlight that we relied on a convenience sample and graphs of a certain
size and complexity. As such results may not apply equally to other graphs. In
future work, we will make use of these findings to inform the development of an
algorithm that adjusts the layout specifically for comparison purposes.

6 Conclusions

In the study reported here, we tested how time limits affect the importance
of several graph-related properties for the perception of differences in directed
acyclic graphs. With respect to RQ1 – the influence of shape, edge crossings, and
local density – our results indicate that edge crossings and density significantly
impacted the recognition of differences, while the outer shape of the graph did
not. In response to RQ2, all three factors, in general, did affect the order in which
differences were perceived but the direction (beneficial or detrimental) of their
influence was not entirely consistent across graph pairs with different amount of
changes. Further work is required to gain more holistic insights on this matter.
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