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Operating a vehicle autonomously is a resource-intensive task. Since resources, like computing power, energy, and
bandwidth, are limited in such vehicles, methods for reducing resource consumption are required. In this paper, we
propose D-DEG, a cooperation-based approach for autonomous vehicles that is capable of reducing resource usage.
The basis of our approach is that vehicles that are in close proximity and that use the same sensor and software
set perceive and compute similar data. The idea is to share information, e.g., sensor data and application outputs,
between vehicles using VANET (Vehicular Ad-Hoc Network) technologies. The transferred information is used to
achieve resource preservation, whereby our approach aims to reduce resource consumption by degrading sensors and
applications. To this end, we introduce the so-called dynamic-degradation evaluator. This component analyzes the
information received by other vehicles to determine whether sensors and/or applications can be degraded. Besides
the data received from other vehicles, the dynamic-degradation evaluator also considers the current operational
design domain (ODD) and the system state, which includes, for instance, information about the current resource
utilization and the safety level of the vehicle, to determine whether degradation operations can be performed. Those
degradation operations can range from decreasing the sampling rate of a sensor or the output rate of applications to
shutting down sensors or applications, respectively.
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1. Introduction

Safety and reliability are requirements that many
autonomous machines strive to achieve. Espe-
cially for autonomous vehicles, i.e., SAE level 4
and 5 vehicles (SAE International, 2018), those
requirements are of utmost importance since they
influence customer satisfaction and, in return, the
success of autonomous driving. Therefore, au-
tonomous vehicles have to implement system ar-
chitectures that maintain a safe operation. Mea-
sures that are applied to increase the safety and
reliability of those systems include, for instance,
a redundant design of the sensor set or the redun-
dant execution of software applications. However,
implementing such measures causes an increasing
need for resources such as computing power and
energy.

As the available resources, e.g., computing
power, transmission bandwidth, and power con-

sumption, in autonomous vehicles are limited, due
to, e.g., cost, space, and technical constraints, an
economical use of resources is required. Further-
more, reducing resource consumption can also
benefit, for instance, the range of electrically op-
erated autonomous vehicles or the lifetime of
hardware components. Therefore, methods that
focus on reducing the resource consumption of
autonomous vehicles are important.

In this paper, we introduce D-DEG, a dynamic
cooperation-based degradation approach for au-
tonomous vehicles. The idea of D-DEG is that
vehicles driving in close proximity, which per-
ceive the same environment, exchange data using
VANET (Vehicular Ad-Hoc Network) technolo-
gies. The key component of our method is the so-
called dynamic-degradation evaluator whose task
is to determine whether degradation operations
can be performed based on the received informa-
tion. Furthermore, this component takes also the
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current operational design domain (ODD) as well
as the system state of the vehicle into account.
Depending on the input information, the dynamic-
degradation evaluator can perform degradation
actions. In particular, in our D-DEG approach,
the evaluator may choose to degrade sensors or
applications. We outline the basic ideas in what
follows.

Autonomous vehicles are equipped with mul-
tiple sensors, including, for instance, cameras,
LiDAR, and radar sensors, in order to observe the
surrounding environment. Sensing and processing
this information is a resource-intensive task. As
stated above, the dynamic-degradation evaluator
comprises procedures to degrade sensors. These
can be degraded, e.g., if the perceived information
by the sensor can be compensated by sensor data
received from another vehicle. Based on several
factors, including, for instance, the current safety
level of the vehicle as well as the driving sce-
nario, different sensor degradation means can be
applied. For instance, sensors can be shut down or
degraded in their sampling rate. We will illustrate
the different levels of degradation in a use case
that focuses on the degradation of a radar sensor
in different ODDs.

The information perceived by sensors is pro-
cessed by several software applications that are
executed by autonomous vehicles. Multiple func-
tions, including, for instance, perception, plan-
ning, and vehicle control services, are necessary
to operate a vehicle autonomously. Many of those
functions perform highly resource-intensive op-
erations. Furthermore, most of the functions re-
quired to operate a vehicle autonomously are
safety-critical. Therefore, they are executed re-
dundantly, i.e., the vehicle executes multiple ap-
plications that perform the same functionality. In-
creasing the level of redundancy, in turn, increases
the resource requirements.

Concerning the degradation of applications, the
dynamic-degradation evaluator may, for instance,
degrade an application in case a nearby vehicle
executes the same application whereby the output
of that application can compensate for the output
provided by the degraded application. In general,
in D-DEG, applications can be degraded using
several degradation actions. For instance, applica-
tions can be degraded by reducing their level of
redundancy or their output rate. For implementing
the latter degradation action, we introduce the so-
called active-low operation mode.

We will illustrate the different application-
degradation types by means of two use cases. In
the first scenario, the redundancy level of the given
mission-planning function is degraded, whereas
the second use case illustrates the degradation of
the detection function using the active-low opera-
tion mode.

Note that prior to performing sensor and ap-
plication degradation actions, the impact on the

safety level of the vehicle has to be evaluated.
Degradation actions that cause a drop of the safety
level below an acceptable threshold are not al-
lowed and therefore rejected.

The paper is organized as follows: We start with
a discussion on related work in Section 2. Then,
in Section 3, we present the overall architecture
of our dynamic cooperation-based degradation ap-
proach D-DEG for autonomous vehicles. After-
wards, in Section 4, we discuss the method for dy-
namic sensor degradation in D-DEG, whose aim is
to degrade or shut down sensors to save resources
and extend the hardware lifespan, while Section 5
presents our method for dynamic application-
based degradation for reducing computation and
power costs. Section 6 concludes the paper and
outlines future work.

2. Related Work

To the best of our knowledge, no approach
to dynamically degrade sensors and applications
based on context information and data received
by nearby vehicles exists. However, since devel-
oping energy-efficient vehicles is a well-known
challenge (Yuan et al., 2015), some approaches
based on information received by other vehicles
have been introduced in the past.

For instance, Hexmoor and Yelasani (2018)
study resource-efficient platooning approaches.
They point out that all vehicles, except for the
leading vehicle, can shut down all sensors to save
energy. However, a shutdown of all sensors intro-
duces safety risks.

Vahidi and Sciarretta (2018) discuss energy-
saving potentials when operating a network of
connected vehicles. Their approach aims to de-
crease fuel consumption by sharing data relevant
to the driving condition. The authors predict fur-
ther energy-saving capabilities in operating vehi-
cles in platoons.

Utilizing the information received by other ve-
hicles is not limited to aim for a reduction of
energy consumption. For instance, Kausar et al.
(2012) discuss the possibility of sharing the sensor
data already processed by a particular vehicle in a
way that another vehicle can use this data to pro-
cess and detect collision courses. This approach
causes that vehicles have to process additional
data. Consequently, the resource needs of the ve-
hicles increase.

Saxena et al. (2019) introduce an approach
where vehicles share the obtained surrounding
information with nearby vehicles. The shared in-
formation is utilized to validate the obtained en-
vironment data of the vehicle. Therefore, each
autonomous vehicle represents the perceived en-
vironment in a size-efficient data format, which
is shared with other vehicles. Other vehicles can
fuse the information received by other vehicles
into their environment representation.
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Fig. 1. Overview of D-DEG, the dynamic cooperation-
based degradation approach of sensors and applications.

Jia et al. (2016) present an overview of platoon-
based vehicular cyber-physical systems. Vehicles
with common interests can cooperatively form a
platoon. To build and operate platoons, vehicles
exchange information using VANET technolo-
gies. According to Jia et al., platoons can improve
road capacity, safety, and energy efficiency.

Aoki et al. (2020) present a deep reinforcement
learning approach for cooperative perception to
increase detection accuracy, which aims to reduce
the amount of data transferred between vehicles.
According to Aoki et al., a cooperative perception
can increase road safety as, for instance, vehicles
can eliminate blind spots by using the percep-
tion data received from surrounding vehicles. A
similar approach of a cooperative perception ap-
proach using VANET technologies is discussed by
Giinther (2017).

Note that none of these approaches consider
using the data received by other vehicles as well
as ODD and system-state information to decide
whether sensors and applications can be degraded.

3. Overall Architecture of D-DEG

Autonomous vehicles are equipped with means
to perceive the current context which comprises
the operational design domain (ODD) and the
system state. The ODD includes, e.g., information
about the road, the traffic infrastructure, tempo-
rary manipulations of the road and the infrastruc-
ture, static and dynamic surrounding objects, the
environment, and information about the availabil-
ity of digital services (PEGASUS, 2019). ODD
information can be, for instance, extracted from
sensor data or from data provided by backend
services. On the other hand, information from
inner-vehicle monitors, e.g., function monitors or
computing-node monitors, can be used to infer the
system state, which includes, for instance, infor-
mation about the the current resource utilization,

the safety level of the system, or the redundancy
level of autonomous driving functions.

Furthermore, autonomous vehicles incorporate
VANET (Vehicular Ad-Hoc Network) technolo-
gies, like 5G-NR, Wi-Fi, and UWB (Ahangar
et al., 2021). These communication technologies
enable vehicles to exchange information with
other vehicles, the infrastructure, and backend ser-
vices. For instance, it is conceivable that vehicles
exchange their environment model, sensor data, or
the output of software applications.

The idea of D-DEG, our approach of a dynamic
cooperation-based degradation of sensors and ap-
plications, is to analyze the ODD and the system
state of the vehicle, as well as the data received
by other vehicles, and perform degradation opera-
tions based on the provided information. As illus-
trated in Figure 1, the decision whether a degrada-
tion is feasible is made by the so-called dynamic-
degradation evaluator. Based on the ODD and
the system state, as well as the data received by
other vehicles, the dynamic-degradation evaluator
decides whether a sensor degradation and/or a
degradation of the software applications can be
performed.

The respective degradations are then performed
by the dynamic sensor-degradation component
and the dynamic application-degradation com-
ponent. Before degradation operations are per-
formed, the dynamic sensor-degradation com-
ponent and the dynamic application-degradation
component have to ensure that planned degrada-
tion procedures maintain the safety level of the
system, i.e., do not cause a safety violation.

The following sections explain the dynamic
sensor-degradation and the dynamic application-
degradation in more detail.

4. Dynamic Sensor-Degradation
Approach in D-DEG

The idea of the dynamic sensor-degradation ap-
proach is to determine whether the current ODD
and system state, as well as the data received by
other vehicles, allow a degradation of the sen-
sors. Depending on the input data, the dynamic-
degradation evaluator can determine different sen-
sor degradation levels. For instance, in case the ve-
hicle is stuck in a traffic jam, some sensors can be
conceivably shut down. On the other hand, if the
vehicle is, for instance, driving on a highway and
is surrounded by vehicles, which can provide data
perceived by their sensors, the dynamic sensor-
degradation component can potentially instruct
some sensors to reduce their sampling rate.

In what follows, we apply the dynamic sensor
degradation approach in an experimental setup.
Therefore, we define a scenario comprising three
ODDs to illustrate the different levels of sen-
sor degradation. Furthermore, we estimate the re-
source reduction capabilities in a realistic driving
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Fig. 2. Scenario of two vehicles driving behind one
another.

scenario.

4.1. Use Case: Radar Degradation

For this use case, we use the open-source sim-
ulator CARLA (Dosovitskiy et al., 2017), which
was specifically designed for autonomous driving
research, to set up real-world driving scenarios.
The main features of CARLA are the variety of
open digital assets, the flexible specification of
sensor suites, environmental conditions, and full
control of static and dynamic actors.

To illustrate the proposed concepts for a dy-
namic sensor degradation, we designed the sce-
nario shown in Figure 2. The scenario includes
two vehicles, referred to as V7 and V5. Vehicle
V1 follows for the entire time of the simulation
V5, whereby the distance d between the vehicles
depends on the ODD.

Overall, we consider the following three ODDs
in this scenario: traffic-calmed areas, urban envi-
ronments, and highways. In traffic-calmed areas,
we assume an approximate distance d between
the two vehicles of 15 meters. Furthermore, we
assume that d is approximately 25 meters in urban
environments, and 50 meters on highways, respec-
tively.

Vehicle V; is equipped with a front radar R,
which scans the area in front of V3. Furthermore,
vehicle V5 is equipped with a rear radar Ry, which
scans the back area of the vehicle. The two radar
sensors, i.e., Ry and Ro, are identical in construc-
tion and therefore provide the measured data in the
same output format. For the sake of simplicity, we
do not consider any other sensors of autonomous
vehicles in this use case.

Besides perceiving information using sensors,
CARLA also allows extracting data from the sim-
ulation itself, such as the speed of vehicles or their
location. In a real-world driving scenario, this in-
formation can be shared using V2V (“vehicle-to-
vehicle””) communication. We, therefore, simulate
V2V communication by using the simulation data
provided by CARLA. Note that the simulated V2V
communication does not comprise any latency
times.

The vehicles V; and V5 drive with the context-
dependent distance d in the CARLA simulation.
The rear vehicle V; can determine the distance d
by evaluating the data measured by radar sensor
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Fig. 3. Sample of the radar data in a traffic-calmed

area. R, is operating at maximum sampling rate, i.e.,
Ry is not degraded. Data provided by Ra can be used
for verification purposes.
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Fig. 4. Sample of the radar data in an urban area.

The sampling rate of R is reduced by 50 percent. Data
provided by Ro compensates for the missing data points
and can be used for verification purposes.

Ry or via the V2V communication with vehicle
V5, which shares the sensor information of radar
Ro with V;. Likewise, V; can also share the data
perceived by Ry with V5.

In the defined scenario, the dynamic-degra-
dation evaluator instructs the dynamic sensor-
degradation component to degrade R; based on
the ODD. Radar sensor R, on the other hand,
is not degraded. Note that degrading R, instead
of R; would be conceivable as well. In situations
in which degradation operation can be performed
either by one vehicle or the other, the dynamic-
degradation components of both vehicles have to
negotiate which vehicle shall apply the degrada-
tion measures. Decision criteria that can be con-
sidered are, for instance, the battery level of the
vehicles, the remaining distance to their final des-
tination, or the total operation time of the vehicles
and their sensors. For the sake of simplicity, we
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Fig. 5. Sample of the radar data on a highway. R is

shut down. Data provided by Ry compensates the shut
down of Ry.

statically define that radar R shall be degraded in
this use case.

The degradation of R; in the different ODDs
is illustrated in Figures 3, 4, and 5. For each
ODD, we extracted from the CARLA simulation
the measured distance d of Ry and the received
information of R for a 100ms time frame.

We configured the dynamic-degradation evalu-
ator such that in a traffic-calmed area, the sam-
pling rate of RR; is not degraded as in such an
environment it is likely that objects, e.g., chil-
dren, suddenly appear in front of the vehicles.
Consequently, degrading 1?; would cause a safety
violation.

The data perceived by R, which is received via
the V2V communication, can be used for valida-
tion purposes. For instance, Wesche et al. (2021)
introduced an approach that monitors and vali-
dates system components using information from
homogeneous and heterogeneous components. In
an experimental setup, they illustrate the use of
velocity information received from other vehicles
via V2V communication to verify the information
perceived by a radar sensor heterogeneously.

As can be seen in Figure 3, the distance d be-
tween Vi and V5 is approximately 15 meters in the
considered time frame. The perceived information
of R; and the received radar data of Ry from V5
are in close proximity.

In urban environments, the dynamic-degra-
dation evaluator instructs the dynamic sensor-
degradation component to reduce the sampling
rate of Ry to 50 percent. This degradation is jus-
tified as in urban environments, the probability of
suddenly appearing objects in front of the vehicle
is less than in traffic-calmed areas. As can be seen
in Figure 4, the radar data of R received from V;
compensates for the reduced sampling rate of R;.
The data points perceived by R; can be used to
validate the radar data of Rs received from V5.

If the two vehicles are driving on a highway, the

Table 1. The cumulated covered distance and
traveling time of the vehicles in the different ex-
ternal contexts.

external context distance time
traffic-calmed area 0.5 km 2 min
urban area 4.3 km 10 min
highway 29.2 km 18 min

dynamic sensor-degradation component of V; in-
structs Ry to shut down. In this case, as illustrated
in Figure 5, V; relies on the radar data received
by V5. However, vehicle V; can periodically val-
idate the received radar by using the information
provided by other sensors, e.g., LIDAR.

4.2. Evaluation of the Resource
Reduction

To evaluate the potential resource reduction by
degrading the radar sensor R; as described before,
we analyze the route between the two German
cities Wolfsburg and Brunswick. We use Open-
routeservice (Neis and Zipf, 2008), which is an
extension of OpenStreetMap (Ramm and Topf,
2010), to identify the covered distances, as well
as the traveling time of the vehicles in the three
introduced external contexts. Table 1 lists the dis-
tance as well as the traveling time of V; and V5.

In total, the journey time from Wolfsburg to
Brunswick is 30 minutes. During the entire period,
the vehicles are driving on the highway and R;
is shut down. Furthermore, while driving in an
urban environment, the sampling frequency of R,
is reduced to 50 percent. Consequently, 12 is
operating at the maximum sampling rate only for
2 minutes of the 30 minutes journey, i.e., during
the period the vehicle is driving in a traffic-calmed
area. Therefore, the overall sampling information
of R, is reduced by approximately 77 percent.

Assuming that reducing the sampling rate to 50
percent of R; also reduces the power consumption
of the sensor by 50 percent, the overall power con-
sumption of R; decreases by approximately 77
percent. Besides reducing the amount of sampling
data and power consumption, degrading R; can
also increase the lifetime of the sensor. If we as-
sume that operating R; with a 50 percent reduced
sampling rate doubles the maximum lifetime of
the sensor, the lifetime of R; is reduced only by
seven instead of 30 minutes.

5. Dynamic Degradation of Applications

Besides the dynamic degradation of sensors, our
D-DEG approach also aims to dynamically reduce
the resource requirements of software applications
that are executed by the autonomous vehicle.

2814
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5.1. Basic Approach

The idea of our method of a dynamic application-
degradation in D-DEG is to utilize the data re-
ceived from other vehicles to enable a degradation
of the software applications. Degrading software
applications is desirable since it can reduce re-
source utilization.

Software applications can be degraded on dif-
ferent levels. For instance, a degradation can be
achieved by reducing the number of redundant ap-
plications. The redundant applications can either
be homogeneous, i.e., a specific application is exe-
cuted multiple times, or heterogeneous, i.e., multi-
ple different applications offer the same function-
ality. The redundancy model that we apply defines
that applications can be executed in two different
operation modes (Kain et al., 2020): active and
active-hot.

Multiple applications can execute the same
function, whereby only one application is exe-
cuted in the active operation mode. An application
executed in the active operation mode receives in-
put information from sensors and other functions
and can provide output information to functions
or control actuators. The redundant applications
of a function are executed in the active-hot oper-
ation mode. Those applications receive the same
input information as the ones executed in active
operation mode. However, they do not provide
their output to other functions nor control actua-
tors. The output of active-hot applications is only
used to validate the output of active applications.
Furthermore, active-hot applications can be exe-
cuted in a degraded mode which requires a lower
resource allocation. In case a malfunction of the
active application is detected, the operation mode
of one of the active-hot applications is upgraded
to active.

If the information received by another vehi-
cle can compensate for the output information of
active-hot applications, the dynamic application-
degradation component can reduce the level of
redundancy. Therefore, the dynamic application-
degradation component instructs the respective
computing node, which executes the active-hot
application to terminate that application. Conse-
quently, resources are released.

Besides reducing the level of redundancy, the
dynamic application degradation component can
also degrade active applications if certain cir-
cumstances are met. Therefore, we introduce an
additional operation mode called active-low. An
active-low application has the same characteris-
tics as an application executed in active operation
mode. However, active-low applications process
the input data with a lower allocation of resources,
e.g., a reduced memory or CPU utilization, at the
cost of a reduced output rate.

In what follows, we discuss examples that il-
lustrate the reduction of redundant applications as

mission planning
information
second lane JPPSEET N

first lane

Fig. 6. Scenario of two cars driving behind one an-
other on a highway.

The dynamic application-degradation
component instructs CN, to shut down the
active-hot mission planning applications.

1
mission planning < I mission planning
active o active-hot o

Fig. 7. The configuration of vehicle V7.

well as the active-low operation mode. Further-
more, we analyze the resource utilization using a
realistic software stack.

5.2. Reduction of the Redundancy Level
Use-Case

Assume a scenario, as illustrated in Figure 6, in
which vehicle V; is following vehicle V5 on a
highway. Furthermore, assume that vehicle V; re-
dundantly executes a mission-planning function.
As shown in Figure 7, computing node C'N; runs
the active mission planner and CNy executes an
active-hot mission planner.

As Vj follows Vs, the mission planning of both
vehicles is very similar. Consequently, V5 can
transmit the mission planner output information
to V7 that, in return, uses the received data to
validate the output of the active mission planner.
As long as the data exchange between V) and V5
is uninterrupted and the internal and external con-
text remain unchanged, the dynamic application-
degradation component can shut down the active-
hot mission planner.

To analyze the potential resource reduction that
can be achieved by degrading the mission-plan-
ning application in the presented scenario, we
simulated an autonomous vehicle in CARLA us-
ing Autoware (Kato et al., 2018), an “all-in-one”
open-source framework for autonomous vehicles,
which is built on top of ROS 2 Maruyama et al.
(2016). Figure 8 shows the general architecture of
Autoware.

The mission-planning function is part of the
Autoware planning component and includes sev-
eral ROS 2 nodes. Table 2 lists all the ROS 2 nodes
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Table 2. The CPU and memory reassure con-
sumption of the ROS 2 nodes which are respon-
sible for the mission planning.

nodes CPU memory
op_global_planer 3.7 % 32 MB
lane_select 2 % 16 MB
lane_rule 1.3 % 35 MB
lane_stop 1.3 % 21 MB

and their CPU and memory utilization which are
responsible for the mission planning. Note that
we executed the simulation on a computer run-
ning Ubuntu 20.04, which is equipped with an In-
tel® Core™ i7-8850H CPU, an NVIDIA Quadro
P2000 Mobile GPU, and 16 GB of memory.

In total, the mission planner consumes approx-
imately 8% of the overall CPU power and about
100 MB of memory. Consequently, by shutting
down the active-hot mission planner those re-
sources are released.

5.3. Degradation of an Active Application
Use-Case

Another scenario we consider is that of three ve-
hicles driving beside one another, as illustrated in
Figure 9.

We assume that all three vehicles redundantly
execute a detection function. As vehicle V5 is sur-
rounded by vehicle V; and V3, V5 will only detect
objects that are also detected by V; and V3. There-
fore, V5 can use the detection information received

detection
active

CN;

detection
active-hot a

CN,

third lane

y
'
'
'
'
'
I
.

;

detection detection detection
active-low || active-hot information from
CN; CN, <. ~V1 and V3

second lane \

detection
active-hot o

CN,
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detection
active "'

oN,  H

first lane

Fig. 9. Scenario of three vehicles driving next to each
other.

Table 3. The CPU and memory reassure con-
sumption of the ROS 2 nodes which are respon-
sible for the detection.

nodes CPU memory
naive_motion_predict 23% 32MB
costmap_generator 92% 64 MB
object_roi_filter_clustering 0.7% 16 MB
lidar_euclidean_cluster_detect 28.8 % 192 MB

by Vi and V3 to incorporate that information in
the environment model. Consequently, the active
detection application of V5 can be downgraded to
active-low. For instance, this application can lower
the frequency at which objects are detected. The
output of the active-low application can be used to
validate the information received by 1 and V.

Table 3 illustrates the CPU and memory uti-
lization of the ROS 2 nodes, which are part of
the detection function. Overall they consume more
than 40% of the CPU resources and about 300 MB
of memory. Due to this high resource utilization,
the detection function offers a high potential to
implement means that allow reducing the resource
usage.

6. Conclusion

In this paper, we introduced the cooperation-based
approach D-DEG for autonomous vehicles for re-
ducing resource usage. The idea of D-DEG is that
vehicles that are in close proximity share informa-
tion that can be used to degrade sensors and appli-
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cations, whereby we distinguish between different
levels of degradations. Sensors, for instance, can
be shut down or degraded in their sampling rate.
Applications, on the other hand, can be degraded
by reducing their level of redundancy or their
output rate.

Concerning future work, we plan to integrate
D-DEG into our framework of a context-based
system architecture (Kain et al., 2020). This
framework defines three interconnected layers,
which are differentiated by their level of aware-
ness. Furthermore, we plan to test the impacts of
our approach on the safety, reliability, and avail-
ability of an autonomous vehicle using a simu-
lation environment (Horeis et al., 2020). Besides
evaluating the impact of D-DEG on parameters
like safety, reliability, and availability, we plan to
analyze the concrete resources-saving potential of
D-DEG in a case study. One aim of this case study
is, for instance, to measure the impact of reducing
a sensor’s sampling rate on its lifetime.
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