
AUTOSAR-compliant Clock Synchronization over
CAN using Software Timestamping

Florian Luckinger
Elektrobit Austria
Vienna, Austria

florian.luckinger@elektrobit.com

Thilo Sauter
Institute of Computer Technology, TU Wien, Vienna, Austria

Dep. of Integrated Sensor Systems, Danube Univ. Krems
Wiener Neustadt, Austria

sauter@tuwien.ac.at

Abstract—Despite its age and even though Ethernet is becom-
ing popular, CAN is still widely used in distributed automotive
systems. In such applications, a network-wide notion of time is
often a prerequisite. However, precision clock synchronization
over CAN is difficult to attain, and current approaches use ded-
icated hardware or proprietary software solutions. On the other
hand, there is a standardized synchronization method which
was defined by the AUTOSAR development alliance. This paper
investigates the achievable precision using a purely software-
based implementation of the AUTOSAR method using standard
CAN controllers in a typical automotive real-time operating
system. Preliminary results show that a precision of around 400
microseconds can be achieved with a fully AUTOSAR-compliant
software implementation, and that there are options for further
improvement.

I. INTRODUCTION AND BACKGROUND

Even though Ethernet is gaining importance in the auto-
motive sector [1], CAN is still the predominant networking
solution to connect electronic control units (ECUs), sensors,
and actuators for classical applications with real-time require-
ments such as ABS, braking systems, or traction control. Like
in all distributed systems, processes must be aligned properly
in automotive applications, too, which requires the synchro-
nization of the local clocks at the individual network nodes.
In Ethernet-based systems, clock synchronization typically is
done via the Precision Time Protocol (PTP) specified in IEEE
1588v2, which relies on round-trip delay measurements to
achieve high accuracy. For CAN, the AUTOSAR (AUTomo-
tive Open System ARchitecture) alliance defined a simpler
approach for a standardized solution which uses a conventional
reference broadcast scheme [2].

No matter which synchronization protocol is used, and
independent of the underlying communication network it
is well known that the accuracy of the synchronization is
essentially determined by the accuracy of the timestamps.
Hardware timestamps generally yield better performance than
software timestamps [3], but require far higher implementation
complexity. In particular, they demand specialized hardware
components and cannot build on standard microcontrollers.
Such approaches have been explored for CAN with varying
complexity [4] [5] [6].

The performance of software solutions, on the other hand,
depends strongly on where in the software stack timestamps

978-1-6654-2478-3/21/$31.00 ©2021 IEEE

are drawn and how tasks are organized. Non-preemptive tasks
have a high impact on the timestamping behavior [7]. Im-
plementing timestamping and thus also the reception of CAN
messages via interrupts seems possible a way out, and there are
several research works using this strategy [8] [9]. In practical
automotive real-time systems, however, interrupts are often
undesirable because they make timing predictions difficult. For
this reason, polling-based IOs are used in many systems, which
brings new challenges for timestamp generation.

The goal of this paper is to explore software-only precision
clock synchronization over CAN following the AUTOSAR
standard in a typical automotive real-time operating sys-
tem using strictly timed round-robin task scheduling with-
out interrupts. Sec. II introduces the basic AUTOSAR clock
synchronization principle, and Sec. III presents the system
model identifying the relevant delay mechanisms. Secs. IV and
V describe the timestamping and the clock synchronization
concepts, respectively, while Sec. VI presents the experimental
setup and discusses preliminary results. Sec. VII gives an
outlook on future work.

II. AUTOSAR CLOCK SYNCHRONIZATION OVER CAN
In this paper, we consider only local synchronization, i.e.,

the internal synchronization of a group of nodes, irrespective
of the global time (which could be given, e.g., by GPS).
We consider a distributed system with N participants, each
with its own clock Ci. In the ideal synchronized case, all
N clocks show the same value at any time. In real systems,
however, deviations occur. A measure for the synchronization
quality of distributed systems is the precision Π. It indicates
the maximum deviation between the clocks in the system and
can be defined as

Π = max
i,j∈1,2,...,N

|Ci(t)− Cj(t)| . (1)

The clocks used in this work are adder-based. A signal is
generated by an oscillator with a fixed frequency. This signal is
used as a basis for the local clock, and with each oscillator tick
a preset value is added to the current clock value. By changing
the clock increment, the speed of the clock can be adjusted.
This allows for compensating rate differences between clocks,
in addition to setting the clock state to a given value.

AUTOSAR clock synchronization over CAN [2] is used to
synchronize different control units in a car. The definition of

49

20
21

 1
7t

h
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 F
ac

to
ry

 C
om

m
un

ic
at

io
n

Sy
st

em
s (

W
FC

S)
 |

97
8-

1-
66

54
-2

47
8-

3/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
W

FC
S4

68
89

.2
02

1.
94

83
58

8

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 14,2022 at 10:13:22 UTC from IEEE Xplore. Restrictions apply.

the standard is based on the AUTOSAR architecture for au-
tomotive embedded systems. It uses an unidirectional master-
slave protocol with statically defined roles. Compared to PTP,
it is a simple protocol that is tailored to the characteristics of
the CAN bus. It supports both CAN and CAN FD, which limits
the maximum size of the user data to 8 bytes per message. The
standard defines timestamping of messages by sending and
receiving acknowledgements, which are done only in software.
The time is originally corrected purely by state correction.

Fig. 1. Clock synchronization message exchange over CAN in AUTOSAR.

Fig. 1 shows the (simplified) message exchange. The mas-
ter sends a SYNC message to the slave. This message is
timestamped when sent by the master at tMaster,i and when
received by the slave at tSlave,i. The master timestamp is
subsequently transmitted using the FUP (follow-up) message.
The two timestamps can now be used for synchronization.

III. SYSTEM MODEL

Fig. 2 shows a three-layer model of the system. The
software layer comprises the processes that are executed
on the CPU, which includes the application program for
synchronization as well as the scheduler and the software
drivers for reading out the CAN controller. The second layer
includes the hardware components, such as the CAN controller
itself. It provides buffers to the software layer for sending
and receiving CAN frames. The third layer is the physical
domain, comprising the transceiver and the bus line between
the nodes. Following this model, the individual delays in
message processing can be identified. The reference point t
marks the point at which a message is completely sent. The
delay until the message is finally available in the application
process is constituted by different parts of the system:

• ∆sched is the delay caused by the real-time scheduler. It
describes the time span between receipt of the message
in the message memory of the CAN controller and the
callback in the software. Under ideal conditions, the
maximum value of this delay is equal to the period of
the receive task plus the software delays that occur when
the callback is called. However, under real conditions this

delay is larger, because the receive task can be delayed
by other tasks.

• ∆read is the delay in reading the clock value. It is the
time span between calling the read function and the actual
reading of the timestamp. This value cannot be assumed
constant because it depends on the execution time of the
software.

• ∆ctr, ∆trans rx, and ∆trans tx are hardware-related de-
lays associated with the sending and receiving of CAN
frames until they are available in the message memory.
They can be assumed as nearly constant because the CAN
controller is completely implemented in hardware.

• ∆prop is the propagation delay of the signal over the CAN
bus. It depends on the bus length and is constant for fixed
network configurations.

These delay components also affect the software timestamp-
ing process. As will become clear in the next section, however,
only the receive path is relevant for AUTOSAR-compliant
implementation.

IV. SOFTWARE TIMESTAMPING APPROACH

The synchronization as well as the send/receive tasks run
on the CPU and are invoked cyclically by the scheduler. When
the send function is called, the data to be sent are placed in
the send buffer and sent when the bus allows it. As soon as the
message is in the send buffer, the send function returns. This
time does not correspond to the time at which the message
was actually sent, so it is not a suitable way to draw an
accurate timestamp. When a message arrives over the bus,
the CAN controller makes it available via the receive buffer if
the processing was successful and no errors occurred during
transmission. The software first notices a new message when
the scheduler calls the CAN receive task. This task reads all
messages from the receive buffer and notifies the applications.

The AUTOSAR clock synchronization over CAN standard
requires that the timestamps are generated at the end of the
frame. Frames that have been sent successfully appear the
same for all bus nodes, including the sender. As soon as
a sent message is received again, the sender knows that it
was sent successfully. The send and receive timestamps can
therefore be generated with the same mechanism. In both cases
a message is received and as soon as the application is notified,
the current clock value is read. The timestamps are given by

tMaster,i = t + ∆Master =

t + ∆sched + ∆read + ∆ctr + ∆trans rx (2)

for the master side and

tSlave,i = t + ∆Slave =

t + ∆sched + ∆read + ∆ctr + ∆trans rx + ∆prop (3)

for the slave. Apparently they differ only by the network
propagation delay (which nevertheless cannot be determined
in a reference broadcast scheme), however there is a significant
influence by the stochastic components introduced by the
software on both sides of the communication channel.

50

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 14,2022 at 10:13:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. System model indicating essential delay components. Only the receive path is relevant for clock synchronization.

V. CLOCK SYNCHRONIZATION

With the timestamps the slave receives through the message
exchange, the time can now be synchronized to that of the
master. In the simplest case this happens by state correction,
where the slave clock is set directly to the received value.
This method has the disadvantage that time jumps can occur.
Therefore in this work rate correction is used, where clock
deviations are compensated by adjusting the rate of the clock.
The mechanism employed here distinguishes between two
rates. The nominal rate is syntonized to the rate of the master.

Fig. 3. Clock rate adjustment algorithm.

Fig.3 shows an overview of the basic model of the rate
correction mechanism. The last synchronization interval is
used to compute the momentary period for the slave, PSlave,i =
tSlave,i − tSlave,i−1 − coffs, and for the master, PMaster,i =
tMaster,i − tMaster,i−1, where coffs accounts for a possible
offset correction. The ratio Ri = PMaster,i/PSlave,i of the
interval length at the master and slave is calculated and
used to correct the current rate by adjusting the tick length,
TLi = TLi−1 × Ri, i.e., the increment that is used for the
added-based clock. For correcting the offset between master
and slave a temporary rate is used. This is faster or slower
than the nominal rate depending on the sign of the offset and

is applied for a limited time. The duration is determined by
the size of the offset.

VI. PRELIMINARY EXPERIMENTAL RESULTS

The experimental setup shown in Fig. 4 uses the EBX200
hardware platform from Elektrobit consisting of a PowerPC
processor and an Altera Cyclone V FPGA. The communication
controller for the CAN bus is implemented in the FPGA
and uses the Bosch MCAN IP core. Two such devices are
synchronized with each other via CAN. One bit of each
internal adder-based clock is routed to a general purpose I/O
(GPIO) pin of the FPGA and connected to the oscilloscope.
Therefore, the phase difference between the two signals is
measured, which can be directly evaluated as offset of the two
clocks. Apart from the synchronization messages exchanged
every 3 s according to the AUTOSAR standard, not further bus
load was considered, however the configuration of operating
systems on the nodes was representative for real applications,
and basic OS tasks like communication, memory management,
or other system relevant functions were not optimized.

The evaluation is based on the assumption that ideally, the
internal clocks of both devices should run synchronously and
that the edges of the two signals occur at exactly at the same
time. The maximum deviation of the edge timing can then
be interpreted as the precision of the system. Fig.4 shows a
screenshot of the measurements. The green line represents the
clock signal of the master, the yellow line (this trigger signal)
the one of the slave. Data were collected for about an hour. The
results show a significant variability of the phase difference
with a minimum of -360 µs and a maximum of 78 µs, with a
mean value of -147 µs. This means that the slave clock lags
behind the master as expected, and there remains an offset that
cannot be detected by the AUTOSAR mechanism.

In the experiment, the precision Π of the clock synchro-
nization is 438 µs. This is better than other pure software-

51

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 14,2022 at 10:13:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Evaluation setup observing the local clocks at the master and slave node. The phase difference between the two signals is evaluated.

based approaches which reported precisions in the millisecond
range [10] [8], but it obviously reflects the large uncertainty
in the software timestamping which directly influences the
clock rate adjustment. Notably, the precision is in the order
of the scheduler period of 500 µs, which seems logical as the
schedulers on both sides are not synchronized and message
transfer is thus uncorrelated.

Fig. 5. Precision of pure software-based synchronization.

VII. CONCLUSIONS

Clock synchronization using only software timestamping
has the benefit of not requiring special hardware, but is
necessarily affected by scheduling uncertainties in the ex-
ecution of relevant tasks as well as by the granularity of
the scheduling period. The preliminary results reported in
this paper clearly evidenced these limitations. However, there
is room for improvement. One possibility is to reduce the
scheduler period in order to reduce the quantization error
that is expected to have a linear influence on the observed
precision.

The second, probably more promising option is to use
filtering to level out the strong delay variations involved in

the timestamping process. In the current implementation, the
clock rate adjustment is calculated only from the previous
synchronization period. The mechanism in Fig. 3 could be
amended by a filter applied to the calculated clock tick
length. This would reduce the dynamics of the rate correction,
which however would not be a disadvantage because the
system setup is static. Such rate filtering might improve the
synchronization precision by an order of magnitude. Future
work will investigate these possibilities.

REFERENCES

[1] L. L. Bello, “Novel trends in automotive networks: A perspective on
ethernet and the ieee audio video bridging,” in Proceedings of the 2014
IEEE Emerging Technology and Factory Automation (ETFA), 2014, pp.
1–8.

[2] AUTOSAR, “Specification of time synchronization over can,” Tech. Rep.
674 CP Release 4.3.1, 12 2017.

[3] A. Mahmood, R. Exel, and T. Sauter, “Impact of hard-and software
timestamping on clock synchronization performance over ieee 802.11,”
in 2014 10th IEEE Workshop on Factory Communication Systems
(WFCS 2014), 2014, pp. 1–8.

[4] G. Rodriguez-Navas, S. Roca, and J. Proenza, “Orthogonal, fault-
tolerant, and high-precision clock synchronization for the controller area
network,” Industrial Informatics, IEEE Transactions on, vol. 4, pp. 92
– 101, 06 2008.

[5] G. Breaban, S. Stuijk, and K. Goossens, “Time synchronization for an
asynchronous embedded can network on a multi-processor system on
chip,” in 2017 IEEE International Symposium on Precision Clock Syn-
chronization for Measurement, Control, and Communication (ISPCS),
2017, pp. 1–6.

[6] F. Hartwich, “Can frame time-stamping - supporting autosar time base
synchronization,” in 16th international CAN Conference (iCC 2017),
2017.

[7] J. Mitaroff-Szécsényi, P. Priller, and T. Sauter, “Compensating software
timestamping interference from periodic non-interruptable tasks,” in
2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), Sep. 2017, pp. 1–4.

[8] P. Marti, M. Velasco, C. Lozoya, and J. Fuertes, “Clock synchronization
for networked control systems using low-cost microcontrollers,” Auto-
matic Control Department, Technical University of Catalonia, Tech. Rep.
ESAII-RR-08-02, 08 2008.

[9] J. Allan and D. Lee, “Fault-tolerant clock synchronization with
microsecond-precision for can networked systems,” in 9th international
CAN Conference (iCC 2003), 03 2003, pp. 07–1 – 07–9.

[10] H. Daigmorte, M. Boyer, and J. Migge, “Reducing can latencies by use
of weak synchronization between stations,” in 16th international CAN
Conference (iCC 2017), 2017.

52

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 14,2022 at 10:13:22 UTC from IEEE Xplore. Restrictions apply.

