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Abstract— With technological revolutions like the Internet
of Things and Industry 4.0 on the doorstep, localization of
network nodes is more important than ever. Indoor localization
systems mostly work with omnidirectional antennas for simplicity
reasons. Using directional antennas has advantages, though, and
devices with such antennas will be included in IoT systems
someday. In this paper, the focus is on dynamic changes in the
configuration of localization systems. Adding an antenna must
be handled fast and efficiently. Frequent recalculations of the
configuration could be necessary, and limited resources make a
reduction of the computational effort desirable. In this work we
look at possible methods to cut the computational effort while
minimizing the penalty on accuracy. Since accuracy is of utmost
importance for indoor localization, there is a fine line which is
important to find.

Index Terms—RSS fingerprint, position estimation, directional
antenna, clustering,up-scaling

I. INTRODUCTION AND PREVIOUS WORK

The increasing deployment of mobile, interconnected de-
vices also calls for fast and efficient localization approaches.
While outdoor localization is fairly solved today, indoor lo-
calization is still a topic for research with many challenges
which have to be overcome. There are different methods to
design a indoor localization system, but usually omnidirec-
tional antennas are used for this purpose. Using directional
antennas in the anchor nodes is less common, but can have
advantages such as reduced multipath interference [1]. The
trade-off between localization accuracy and computational
efficiency is an important topic for indoor localization systems
and therefore the focus in this paper.

Our previous work simulates directional antenna patterns to
create a radio map with received signal strength (RSS) values
[1]. In a two-dimensional localization scenario, a minimum of
three anchor antennas is needed. A fingerprinting method [2],
[3] then uses the best three reception values. The fingerprint is
abstracted into integer values from zero to 20, where the value
20 represents the best reception and zero a loss of connection.
A two-dimensional model was preferred for usability and
easier development, but the system was planned such that an
extension to three dimensions is possible with minimum effort.

The core idea of making localization efficient is to use
clustering. To that end, the list of RSS sample points is clus-
tered. This divides the plane into areas of the same RSS value,

which are then used for the actual localization. Clustering is
done with centroid-based algorithms. This results in an circular
area in two dimensions or a sphere in three dimensions. The
center of the area is used as starting point and the basis
for the localization algorithm. It is therefore important that
the clustering is of high quality. This can be evaluated by
different scoring methods [4]. K-Means [5] was so far found
to be useful, mainly because of the low computation time.
The number of clusters per RSS value depends mainly on
the geometry of the sample-points, but also on the type of
cluster algorithms used. This makes the choice of the algorithm
important.

The number of sample points naturally varies for each RSS
value. It is known, however, that for good results, a minimum
amount of sample points involved in a clustering process is
necessary [6]. Therefore an upsampling strategy is reasonable
to provide additional, extrapolated data points, if the number of
sample points was too low to guarantee a seamless clustering.
In our case, a minimum of 50 data points were chosen. If
only fewer points of that particular RSS value were measured,
every sample point was surrounded by nine additional sample
points.

If a target antenna enters the plane, its RSS value is
measured and compared to the radio map. The clusters of
that RSS value are then used by the localization algorithm
to pinpoint the target. A drawback of this numerical approach
is that a lot of data accumulate. It must therefore be carefully
decided, if certain recalculation effort is worth it. In this work
we present the upscaling process. It deals with the changes in
configuration when an anchor antenna is added to the scenario.
Big sets of data take a long time to cluster which created
demand for an alternative. The idea was to regroup sample
points which, after changes in the RSS map due to an added
antenna occurred, are assigned to wrong clusters.

II. UPSCALING A SCENARIO

In an indoor scenario, anchor antennas are fitted to a room
and target antennas enter and leave the plane of localization.
Moving antennas could help with the localization of the
targets. A previously pinpointed target antenna could also
be used as moving anchor. Since a moving anchor would
mean that the antenna location in the scenario is continu-
ously changed, it should be possible to add anchor antennas978-1-7281-2989-1/21/$31.00 ©2021 IEEE
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with minimal computational effort. The idea of the upscaling
module was to reduce the amount of data with reasonable
losses in cluster quality. Recalculation of the whole radio
map and a re-clustering of the sample points might, given
a complex scenario, be a time consuming task. Therefore,
ideas to recalculate only parts of the radio map, and doing
only simplified changes to the clustering are necessary. In
this paper, we focus on adding an antenna to a scenario,
however keeping in mind that the underlying principles can be
extended to different kinds of changes in the future with low
additional effort. Three different methods with different level
of processing effort are considered. In the order of decreasing
computational effort, they are:

• full recalculation
• cluster change method
• area assessment method

A full recalculation of the scenario is a very complex
solution and should be avoided. Per RSS value, one clustering
is done, which in our case means that a maximum of 21
clustering processes per scenario is possible. The time for a
clustering process to finish fluctuates heavily. Nevertheless,
this method was implemented as baseline for the comparison
with other methods. It provides an idea of how the RSS
map and the clustering should look after adding an anchor
antenna. The recalculation consists of two steps: the RSS map
is recalculated and the clustering re-done with the new data.
The process of recalculating the radio map is a simple iteration
in the simulation, and the computational effort is therefore
low. The most time consuming and complex process is the
clustering, and the most savings can be done here.

The cluster change method recalculates the RSS map in the
same way, but instead of re-clustering the new data, the sample
points are sorted manually into either an existing cluster of the
new RSS value, or an additional clustering is done with only
the remaining unclustered sample points. The area assessment
method works in the same way, but considers only the area
with high reception values of the added antenna, which further
decreases complexity, as will be shown in sec. IV.

III. VALIDATION METHODS

By changing the cluster data manually, the quality of the
clusters changes. To measure the quality of the clustering after
these changes, we apply the same cluster scoring methods as
in [4]:

• Silhouette analysis
• Calinski-Harabasz score
• Davies-Bouldin score

These three algorithms are popular methods to evaluate
cluster quality and are described in more detail in [4]. For
the purpose of rating the cluster quality, the most important
aspect is how the metrics work: The silhouette score lies
between [-1, 1]. This score and the Calinski-Harabasz score
use a higher value to indicate better cluster quality, while the
Davies-Bouldin score assigns a lower value to a better quality.

IV. IMPLEMENTATION

In Fig. 1, a plane is shown with four anchor antennas, one
in each corner directed towards the middle of the plane. This
scenario depicts a typical localization scenario. A large plane
was chosen and therefore the RSS values max out at the value
eleven, in the corners, right in front of every anchor antenna.
If the reception in to room should be increased, another anchor

Fig. 1. Reception with four antennas

antenna can be placed on the plane. Here, we add an antenna
in the middle of the plane via the upscaling process. In Fig. 2
the changes in the RSS map can be seen. In the lobe of the
newly added antenna the RSS values rise and the maximum
value increases to 13.

Fig. 2. Reception after adding another antenna
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A. Full recalculation

In a full recalculation the RSS map is recalculated and the
clustering done again. This method provides most accuracy,
since it calculates for every sample point the exact value and
re-clusters the whole RSS map. This recalculation has a high
computational effort and serves mostly to provide comparison
values for the other recalculation methods.

B. Cluster change

For the cluster change method the RSS map recalculation
is done the same way as before. After that, the sample points
that are affected by the lobe of the additional antenna might
have a different measured RSS value. The problem is that
these sample points are now assigned to wrong clusters, since
their RSS value is not the same as the RSS values of the
other sample points in the cluster. This is solved in the full
recalculation method by re-clustering every sample point. This
behaviour is very inefficient, since many sample points are
not affected by the new antenna. The cluster change method
assigns these sample points to clusters of their new RSS value
manually if possible. If there is no available cluster, they are
saved for a separate clustering process. If a sample-point with
a different RSS value is found in a cluster, it is deleted from
that cluster and we search for available clusters of that new
RSS value. The following rules ensure that every sample point
gets assigned to a new cluster:

• If no clusters of the new RSS value exist, the sample-
point is saved.

• If another cluster is found which already inherits the
sample point (which is possible because the clusters can
overlap), the sample point is added to the new cluster.

• If no such cluster is found, the next option is a cluster
which size would increase only by a small value if the
sample point was added. The sample point is added to
the new cluster.

• If no such cluster is found, the sample point is saved.
The sample point is then deleted from its old cluster and all

changes in cluster size considered. After this process is done
for all sample points, the saved sample points get clustered
separately and added to the scenario. This strategy has two
benefits:

• Unnecessary clustering runs are avoided. If a sample
point is near a valid cluster, it is just added instead of
re-clustering the whole cluster.

• Only the sample points which are affected by the addi-
tional antenna are re-clustered, if it was not possible to
assign a cluster to them manually.

C. Area assessment

The area assessment method works similar to the cluster
change method, but instead of considering all RSS changes in
the map, changes are only considered in a certain area. This
area inherits the best reception values of the new antenna. The
RSS fingerprint method used takes the best three reception
values of the anchor antennas in the scenario. Therefore the

loss of information is reduced, if lower reception values are
neglected. The area is defined as rectangular and inherits the
most significant parts of the antennas front and back lobe.
Outside of a simulation, this area has to be measured for every
antenna beforehand. This saves further recalculation effort and
respects the most significant changes in RSS. In Fig. 3 the
result of changes in RSS value based on the area assessment
can be seen.

Fig. 3. Area assessment method

If an antenna is added to increase reception, the antenna
should be added where the reception is low. In the case that
area assessment is used, only the RSS value changes where
the antenna is located, are considered.

V. PRELIMINARY RESULTS

Like in previous work, a scenario generator was used
to generate 50 different scenarios. The parameters of these
scenarios were randomly chosen. The size of the plane could
vary from two meters to 20 meters, with a number of anchors
from three to 10. All anchor antennas were directional and
their direction was chosen randomly in 15◦ steps. An antenna
with randomized parameters was added to the map. The three
different methods were used on all 50 scenarios, processing
times and the cluster scores were measured. In Tab. I the
results are listed and the respective best values are underlined.
The full recalculation method provides benchmark values.

TABLE I
UPSCALING - RESULTS

Method Time[s] SC CH DB
Full 26.0 0.658 5755 0.475
Change 23.7 0.591 5581 0.554
Area 8.0 0.607 5674 0.542

All measurements in Tab. I are mean values across all sce-
narios. The measured processing time shows that recalculating
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the scenarios took a long time in general, which supports
the suspected need for less complex calculations. The cluster
change method took 91.2% the time of the full recalculation,
while the area assessment method needed only 30.8%. Cluster
change therefore provides not enough reduction of the data to
be processed, and area assessment is preferable. The process-
ing times are in general too high to consider a continuous flow
of changes in a scenario. From these times, the share needed
for clustering varies:

• full recalculation: Average clustering time was 19.77
seconds (76.0% of the complete run time)

• cluster change: Average clustering time was 1.94 seconds
(8.2%)

• area assessment: Average clustering time was 1.20 sec-
onds (15.0%)

In a full recalculation, clustering takes most of the time. This
shrinks dramatically if cluster change is used. Area assessment
saves further time in re-clustering and in calculating RSS
changes.

As the scores show, the full recalculation provides the best
results as suspected. Interestingly, the scores of cluster change
are worse than those of the area assessment method. In contrast
to area assessment, the cluster change method considers all
changes in RSS. Therefore more clusters are exposed to bigger
changes and the cluster scores get worse. Nevertheless, the
loss of cluster quality in the example is over all not drastic.
This supports the idea that further simplifications are possible,
without sacrificing much cluster quality.

Another important metric is the change in RSS value for the
area assessment method. Since not every sample point changes
to the correct RSS value, the mean RSS value was compared
with the same value of the full recalculation. The mean value
of RSS for the full recalculations was calculated to be 3.178,
while the mean value of RSS measured in a area assessment
upscaling was 3.057. This loss of accuracy can be very well
neglected for smaller and simpler scenarios. The difference
will most likely increase, especially if a third dimension is
added, which is the case in real IoT applications.

VI. SUITABILITY OF METHODS

From the results, it can be seen that further streamlining
is necessary. The area assessment method is a good way to
trade-off wrongly calculated RSS values to gain better cluster
quality. The loss in RSS accuracy of the area assessment
method is small enough to be neglected in these simple
scenarios. These results make future changes to the system,
with reduction of complexity in mind, feasible. The limitations
of computing resources in simple IoT devices mean that the
whole process must be redesigned to further save complexity.
The best way seems to further decrease the impact of an added
antenna. The lobe could be further limited to areas were bigger
changes occur.

In previous work Meanshift and Affinity Propagation were
the cluster algorithms that were predominantly used. These
algorithms provided a simple way to cluster data, but a
higher computational complexity as they are more complicate

algorithms. In the course of this work, k-Means was used.
K-Means needs additional calculations to define the best
number of clusters. This was done with silhouette analysis.
This change of the preferred algorithm was done because in
preliminary tests, k-Means was more than three times faster
than the other algorithms. The change to k-Means was crucial
to save time in these tests. The low computational complexity
is its main advantage and the most important argument for
k-Means. This means that k-Means will have a bigger role
in the future research. In an upscaling run, many clustering
processes are done. Most clustering processes are done in a
few milliseconds, while sometimes such a process can take
seconds. This opens a significant possibility to further speed
the process up.

VII. CONCLUSION AND OUTLOOK

The recalculations of the RSS map are very complex and
take a lot of time. A serious effort must be taken to reduce
complexity of the system if the system should support dynamic
reconfigurations. This is even more important with future
restrictions of real hardware. In the future, the focus will
be shifted on methods with low computational effort like k-
Means. This will ensure that the system is as efficient as
possible. Analyzing the defining parameters for increased re-
clustering times will be the next effort in the project. Further
steps include tests with data from real antennas. Testing the
software on this kind of data will bring more information about
the actual requirements. Especially the increase of data sets
will show which algorithms will provide enough processing
power to bring good results. The simulation will be expanded
to use transmission and reflection models.
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