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Abstract We present CQELS 2.0, the second version of Continuous Query Evaluation
over Linked Streams. CQELS 2.0 is a platform-agnostic federated execution frame-
work towards semantic stream fusion. In this version, we introduce a novel neural-
symbolic stream reasoning component that enables specifying deep neural network
(DNN) based data fusion pipelines via logic rules with learnable probabilistic de-
grees as weights. As a platform-agnostic framework, CQELS 2.0 can be implemented
for devices with different hardware architectures (from embedded devices to cloud
infrastructures). Moreover, this version also includes an adaptive federator that al-
lows CQELS instances on different nodes in a network to coordinate their resources
to distribute processing pipelines by delegating partial workloads to their peers via
sub-scribing continuous queries.

1 Introduction and Motivation

CQELS was proposed as one of the first RDF stream processing engines to solve the
data integration problem for sensor data, Internet of Things, and the Web of data [14].
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The key feature of this data integration approach is the semantic interoperabiliy
enabled by RDF data models. The framework has been used in various industry and
research applications both as open source and commercial software.

The recent advances in machine learning (ML) with deep neural network (DNN)
leads to the enormous amount of data in various formats, and in many cases from
multimodal stream data with high accuracy. Therefore, the existing framework is no
longer suitable for the new application scenarios and requires significant extensions.
Towards this goal, in CQELS 2.0, we integrate a number of new stream data types
such as video streams, LiDARs, and support more hardwares such as ARM and
mobiles [17,20]. Moreover, we provide data fusion operations in our engines [15, 21].
For example, the operation for object detection DNNs [22, 24] returns a set of
bounding boxes and object classes given an image or video frames. Thus, CQELS 2.0
is designed as a DNN-based data stream fusion framework. Along with the new
feature for different data sources, the CQELS-QL query language has evolved from
supporting event query patterns [6, 8] to probabilistic reasoning in [15, 21].

To implement such complex features and also to support for future demand
in research, we bring the existing CQELS framework to the next level with new
architecture and design. The new design is driven by requirements from use cases
and research problems from various research projects (e.g. DFG COSMO! and
BMBF BIFOLD?) and industry partners. For example, application scenarios in edge
intelligence [26, 9] and industry 4.0 from DellEMC, Siemens and Bossh motivate us
to build autonomous processing kernels powered by CQELS [20, 21]. Such systems
deal with city-scale camera deployments which have become ubiquitous in smart
cities and traffic monitoring with a continuously increasing in size and utilization of
their deployments. For instance, the British Security Industry Association estimates
that there are between 4 to 5.9 millions CCTV cameras in the UK [19]. To this end,
the new design of CQELS framework has to deal with not only the new level of
complexity of data sources, processing operations and deployment settings, but also
with significantly larger processing scale in terms of throughput and volume.

2 CQELS 2.0 Framework for Semantic Stream Fusion

Semantic stream reasoning (SSR) [15] enables the data fusion of multimodal stream
data such as camera and LiDARs via declarative rules. Such rules can be written
in SPARQL-based or Answer Set Programming (ASP) syntax. And the stream data
flow between data fusion operations can be represented as standardized data for-
mats, e.g, RDF Star. SSR generalizes the data model and processing operations of
the previous CQELS engines, hence, CQELS 2.0 framework uses SSR formalisation
and abstractions to facilitate the architecture design and implementation. Figure 1
illustrates the conceptual design of CQELS 2.0 framework that comprises several

1 https://gepris.dfg.de/gepris/projekt/453130567 Nanguage=en
2 https://bifold.berlin/



CQELS 2.0: Towards A Unified Framework for Semantic Stream Fusion 3

components. The Feature Extractor component extracts the features of interest
from the incoming information streams and maps them to the symbolic representa-
tion. The feature data is described with a neuro-symbolic stream model [15] and its
semantic is enriched via linked knowledge graphs.

The Reasoning Programs Producer component takes responsibility to gener-
ate semantic stream reasoning programs [15] which specify the fusion pipeline and
the decision logic to choose the most likely state of the world at each evaluation. The
reasoning program is evaluated by the Reasoner component, which employs an ASP
solver. There are two types of reasoning rules: hard rules and soft rules. The hard
rule is used for background knowledge given by (non-monotonic) common-sense
and domain knowledge that is regarded as "always true". The soft rules expresses
association hypotheses with weights corresponding to probability degrees of these
rules. The weights of the rules are determined by the Learning Agent component
in the starting phase.
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Fig. 1 The overview of conceptual design of CQELS 2.0

The workflow of the framework is as follows. For the setup, the symbolic training
samples are constructed from the labeled data and are fed to the Learning Agent
component. The Learning Agent component computes a vector of weights
for the soft rules which are stored as rule templates and passes them to the
Reasoning Programs Producer component. For each training iteration, a feed-
back stream returns the reasoning results back to Learning Agent component. The
Learning Agent component adjusts the weights of the soft rules until the answer
sets (returned as feedback streams) describe the most likely ground truth.
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3 Provisional Features

In this section, we present details of a provisional feature of CQELS 2.0 in the
multiple object tracking (MOT) scenario [2] which is normally programmed in
C/C++ or Python. We will show that with CQELS 2.0, the MOT can be implemented
in a declarative fashion with rules and queries.

Particularly, we focus on the tracking-by-detection approach [5], which is widely
used for the MOT problem in computer vision. The key operations in such approach
are as following: 1) detection of objects (using DDN-based detector), 2) propagating
object states (e.g., location and velocity) into future frames, 3) associating current
detection with existing objects, and 4) managing the lifespan of the tracked objects.
For example, Figure 2 illustrates the SORT algorithm [3] which is a simple object
tracking algorithm based on DNN detectors such as SSD [18] or YOLO [23]. To
associate resultant detections with existing targets, SORT uses a Kalman filter [4]
to predict the new locations of targets in the current frame. At time point 2, the red
boxes b1 and b3 are detected by a detector. The yellow boxes b, and b4 are predicted
by a Kalman filter based on the boxes of tracklets from the previous frame. Then,
the SORT algorithm computes an associative cost matrix between detections and
targets based on the intersection-over-union (IOU) distance between each detection
and all predicted bounding boxes from the existing tracklets. In case some detection
is associated with a target, the detected bounding box is used to update the target
state via the Kalman filter. As in frame 2, the tracklets trk; and trk, are set to the two
new bounding boxex b and b, which are associated with predicted boxes b3 and b4
respectively. Otherwise, the target state is simply predicted without correction using
the linear velocity model. For example, at time point 3, the detector misses detecting
the white car due to an occlusion, however, the tracklet 2 is till assigned to box b7
which contains part of the white car.

<<idet5 :det :bB>> a scar; iscore 0.8; sosa:resultTime 3.
<<:trk] ttrk :b6>> sosazresultTime 3.
<<:trk2 :trk :b7>> sosa:resultTime 3.

visual match

Fig. 2 A Semantic Visual Stream Snapshot. The red boxes are detected bounding boxes and the
yellow boxes are tracked bounding boxes.

To emulate these MOT algorithms, CQELS 2.0 represents these association hy-
potheses by hard rules and soft rules that are translated into an optimization problem
solved by an ASP Solver. For data abstraction, we use the neural-symbolic stream
modelling practice in [15], which extends the standardised Semantic Sensor Network
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Ontology (SSN) [11] to model video streams and intermediate processing states.The
extension includes various vocabularies to specify the semantics of camera sensors,
video frames, and tensors as shown in Figure 3.
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Fig. 3 Data abstraction of Neural-Symbolic stream with Semantic Sensor Network Ontology

A video stream fusion data pipeline can consume the data that is observed by a
Sensor (i.e. a camera) as a stream of observations (represented as an Observation,
e.g. a video frame). These video frames are represented as instances of the subclass
2DImage of the class Tensor that inherits from the generic Result class of SSN.
These observations can then be fed into a probabilistic inference process such as
a DNN model or a CV algorithm (represented as a Procedure) to provide derived
stream elements which then represent Sampling instances. For example, after being
processed by the Feature Extractor (see Figure 1), the symbolically represented in
RDF* format3 of the frame 2 in the stream snapshot in Figure 2 is illustrated in
Listing 1. Line 5 denotes that the detection model generates an output consisting of
a bounding box b1, object type car and confidence score 0.8. Line 10 presents that
the box b, is predicted by a Kalman filter and is tracked by tracklet 1.

// time point/frame 2

:0bs2 sosa:madeBySensor :cam; sosa:resultTime 2.

:image2 a :2DImage; :image2 sosa:isResultOf :obs2.

<<:detl :det :bl>> a :car; :score 0.8; sosa:resultTime 2;
sosa:usedProcedure :YOLO.

<<:det3 :det :b3>> a :car; :score 0.7; sosa:resultTime 2;
sosa:usedProcedure :YOLO.

<<:trkl :trk :b2>> sosa:usedProcedure :Kalman; sosa:resultTime 2.

<<:trk2 :trk :b4>> sosa:usedProcedure :Kalman; sosa:resultTime 2.

Listing 1 Semantic Stream Serialization with RDF*

To formalise the reasoning process with a semantic representation of stream
data, we need a temporal model that allows us to reason about the properties and
features of objects. This model must account for the laws of the physical world and

3 https://w3c.github.io/rdf-star/cg-spec/editors_draft.html
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commonsense, which allow the system to handle incomplete information (e.g., if we
do not see objects appearing in observations, or camera reads are missing).

Using the above RDF representations, we allow RDF&SPARQL developers to
write soft rules with SHACL rule language* along with the extension of CQEL-QL.
The extension we made here is replacing SPARQL CONSTRUCT with the corre-
sponding CONSTRUCT of CQELS-QL which extends SPARQL with the window
operators over RDF Stream. Moreover, extending SHACL for expressing ASP-like
rules is aligned with the recent proposal for assigning SHACL to negation stable se-
mantics [1]. Note that we extend CQESL-QL syntax in [14] with the keyword "NAF"
to express the default negation of ASP. For example, the soft rule 1 in Listing 2 is
used to trigger the event a car enters the "Field of View" of a camera and the car
starts being tracked.

ssr:rule_w_1 a sh:NodeShape;
sh:rule [
a sh:CQELSRule ;
sh:prefixes ssr: ;
sh:construct """
CONSTRUCT {<<?0 :enters <ssr:FoV>> @ ?T.}
WHERE {
STREAM <:ssr> {
<<?Dt :det ?B >> @ ?T; :score ?7S.
?B sosa:isSampleOf ?0 ; a :car.
FILTER (?S > 0.8)
3
NAF STREAM <:ssr> window[5 sec] {
?0 :inFOV ssr:FoV.
}
}

1
Listing 2 Soft rule 1 - detect vehicles entering Field of View

To associate a detected bounding box B with an object O, we use soft rules that assert
the triple «B sosa:isSampleOf O» based on explained spatial, temporal, and visual
appearance evidences. Such rules can be used to represent hypotheses on temporal
relations among detected objects in video frames following a tracking trajectory.
When the object’s movement is consistent with the constant velocity model, e.g., the
Kalman filter used in SORT [3], and there is a detection associated with its trajectory,
the fact «B sosa:isSampleOf O» is generated by rule 3. Here, iou(B1, B,) states the
IOU (intersection over union) condition of the bounding boxes B; and B; satisfy.
Furthermore, we can also emulate DeepSORT [25] via the soft rule 4 that can
search for supporting evidences to link a newly detected bounding box from an oc-
cluded tracklet using visual appearance associations, e.g. frames 2 and 4 of Figure 2.
For this, we search for pairs of bounding boxes from recently occluded tracklets w.r.t.
visual appearance. As the search space of possible matches is large, we limit it by
filtering the candidates based on their temporal and spatial properties. To this end,

4 SHACL Advanced Features



0NN B W~

O S Sy
AN W= OO

O N N WN—

O Sy Uy VGV U UG
SOOI NP W~ OO

CQELS 2.0: Towards A Unified Framework for Semantic Stream Fusion 7

we use rules with windows to reason about disconnected tracklets that have bounding
boxes visually matched within a window of time points that are aligned with Deep-
SORT’s gallery of associated appearance descriptors for each tracklet. Based on this
gallery of previously tracked boxes, the appearance-based discriminative metrics are
computed to recover the identities after long-term occlusion, where the motion is
less discriminative. Hence, to connect a newly detected bounding box B that has a
visual appearance match with another bounding box B; (represented by the fact «B
:vMatch B,.» in line 13) of a discontinued tracklet 75 (represented by «T'rk, :ends
T,» in line 15) that ended 3 time points before.

ssr:rule_w_2 a sh:NodeShape ;
sh:rule [
a sh:CQELSRule ;
sh:prefixes ssr: ;
sh:construct """
CONSTRUCT { ?Bl sosa:isSampleOf ?0. }
WHERE {
STREAM <:ssr>{
<<?Dt :det ?B2 >> @ ?T; :score ?S.
<<?Trk :trk ?B1 >> @ ?T.
?Trk :trklet ?0.
FILTER (?S>0.8 && iou (?B1,7B2))
}
}
1 5
Listing 3 Soft rule 2 - emulation of SORT algorithm [3].

ssr:rule_w_3 a sh:NodeShape ;
sh:rule [
a sh:CQELSRule ;
sh:prefixes ssr: ;
sh:construct """
CONSTRUCT { ?B1 sosa:isSampleOf ?0. }
WHERE {
STREAM <:ssr> @?Te window[5 sec] {
?Trk2 :trk ?B2
}
STREAM <:ssr>{
<<?Trkl :trk ?B1 >> @ ?T.
?B1 :vMatch ?B2.
?B2 sosa:isSampleOf ?0.
?Trk2 :ends ?Te.
FILTER {?T<?Te+3}
}
}

won
’

15
Listing 4 Soft rule 3 - emulation of DEEPSORT algorithm [25].
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4 System Architecture Overview

In this section, we present a specific architecture of CQELS 2.0 for the conceptual
design in Figure 1. CQELS famework provides a platform-independent infrastructure
to implement RDF-Stream Processing (RSP) engines for computing continuous
queries expressed in CQELS-QL. The first version of CQELS accepts RDF streams
as input and returns RDF streams or relational streams in the SPARQL format as
output. CQELS 2.0 allows creating RDF streams by annotating extracted features
from other data streams. The output RDF streams can be fed into any RSP engine,
and the relational stream can be used by other relational stream processing systems.

CQELS Queries
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Fig. 4 System architecture of CQELS 2.0.

Figure 4 illustrates the overview architecture of CQELS 2.0. In general, CQELS 2.0
consists of three subsystems. Subsystem (1), the RDF stream processing processor,
extends the stream processing primitives of its previous version [14] to accelerate
the grounding phase of stream reasoning. For example, multiway joins are used to
accelerate the incremental ground techniques [12]. The second subsystem @ is the
semantic stream reasoning component as presented in Section 2. Finally, subsys-
tem @ is a stream adaptive federator, which is described as follows.

Thanks to the platform-agnostic design of its execution framework [13], the core
components are abstract enough to be seamlessly integrated with different RDF
libraries in order to port the resulting system to different hardware platforms. For
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scalability, CQELS employs Storm> and HBase® as underlying software stacks for
coordinating parallel execution processes to build an RSP engine on the cloud
computing infrastructure, called CQELS Cloud [16]. To tailor the RDF-based data
processing operations on edge devices (e.g, ARM CPU, Flash-storage), CQLES
can be integrated in RDF4Led [17], a RISC style RDF engine for lightweight edge
devices, to build Fed4Edge [20]. The whole Fed4Edge is smaller than 10MB and
needs only 4-6 MB of RAM to process millions of triples on various small devices
such as BeagleBone,” Raspberry PI.8 Therefore, CQELS 2.0 includes an adaptive
federation mechanism to enable the coordination of different hardware resources to
process query processing pipelines by cooperatively delegating partial workloads to
their peer agents.

The Adaptive Federator acts as the query rewriter, which adaptively divides the
input query into sub queries. The rewriter then pushes down the operators as close
to the streaming nodes as possible by following the predicate pushdown practice
in common logical optimisation algorithms. The metadata subscribed by the other
CQELS instances is stored locally. Similar to [7], such metadata allows the endpoint
services of a CQELS engine to be discovered via the Adaptive Federator. When the
Adaptive Federator sends out a subquery, it notifies the Stream Input Handler to
subscribe and listens to the results returning from the subquery. On the other hand,
the Stream Output Handler sends out the subqueries to other nodes or sends back
the results to the requester.

Similar to cloud integration with CQELS Cloud [16], this federation design also
covers elastic-scale delopment by using the new development of Apache Flink under
BIFOLD project. In particular, we use the EMMA compiling and parallelizing for
data flow systems in [10] to scale and optimize our processing pipelines in the cloud
infrastructure. This will lay the foundation for integration the adaptive optimizer
with the cloud-based stream scheduler and operation allocations.

With the support of the above subscription and discovery operations, a stream
processing pipeline written in CQELS-QL can be deployed across several sites dis-
tributed in different locations: e.g., weather stations provide environmental sensory
streams in various locations on earth. Each autonomous CQELS node gives access
to data streams fed from the streaming nodes connecting to it. Such stream nodes can
ingest a range of sensors, such as air temperature, humidity and carbon monoxide.
When the stream data arrives, this CQELS node can partially process the data at its
processing site and then forward the results as mapping or RDF stream elements to
its parent node.

5 Storm. https://storm.apache.org/
¢ Hbase. http://hbase.apache.org/.
7 https://beagleboard.org/bone
8 https://www.raspberrypi.org/
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