
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Automated Induction by
Reflection

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Johannes Schoisswohl, BSc

Matrikelnummer 132784

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof.Dr. Laura Ildikó Kovács

Wien, 24. November 2020

Johannes Schoisswohl Laura Ildikó Kovács

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Automated Induction by
Reflection

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Johannes Schoisswohl, BSc

Registration Number 132784

to the Faculty of Informatics

at the TU Wien

Advisor: Prof.Dr. Laura Ildikó Kovács

Vienna, 24th November, 2020

Johannes Schoisswohl Laura Ildikó Kovács

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der

Arbeit

Johannes Schoisswohl, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. November 2020

Johannes Schoisswohl

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

Partial results of this thesis have been supported by the ERC starting grant 2014
SYMCAR 639270, the EPSRC grant EP/P03408X/1, and the ERC proof of concept
grant 2018 SYMELS 842066.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

Despite the advances in automated theorem proving in the last decades, making it
practically feasible to reason about full first-order logic with interpreted equality and
more, inductive reasoning still poses a serious challenge to state-of-the-art theorem
provers. The reason for that is that in first-order logic induction requires an infinite
number of axioms, which is not feasible as an input for a theorem prover that is a
computer program, requiring a finite input. Mathematical practice is to specify these
infinite sets of axioms as axiom schemes. Unfortunately these schematic definitions are
not part of the syntax of first-order logic, and therefore not supported as an input for
modern theorem provers.

In this thesis we introduce a new method, inspired by the field of axiomatic theories of
truth, that allows to the express schematic definitions needed for first-order induction, in
the standard syntax of multi-sorted first-order logic. Further the practical feasibility of
this method is tested with state-of-the-art theorem provers, by comparing it to solvers
native techniques for handling induction.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Abstract ix

Contents xi

1 Introduction 1

1.1 Motivation . 1
1.2 Goals . 2

2 Preliminaries 5

2.1 Mathematical Logic . 5
2.2 Induction . 7

3 State of the Art 17

4 Induction by Reflection 21

4.1 Axiomatic theories of truth . 21
4.2 Reflection in an arbitrary theory . 23
4.3 Finitely axiomatizing induction . 35
4.4 Other applications . 38

5 Experimental evaluation 41

5.1 Problems . 41
5.2 Solvers . 43
5.3 Implementation . 44
5.4 Results . 45
5.5 Discussion . 48

6 Conclusion 49

Bibliography 53

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

1.1 Motivation

Automated reasoning has advanced tremendously in the last decades, pushing the limits
of what machines can prove. Recent progress in this area features techniques such as
first-order reasoning with term algebras [KRV17a], embedding programming control struc-
tures in first-order logic [KKRV16], the Avatar architecture[Vor14], combining theory
instantiation and unification with abstraction in saturation-based proof search [RSV18],
automating proof search for higher-order logic [BR20a, BBCW20], and first-order logic
with rank-1 polymorphism [BR20b]. As expressive power of logics that can be handled
practically, has dramatically increased, from propositional, and quantifier free first-order
logic, to full first-order logic with equality, and beyond, the range of applications of
automated theorem proving has progressed, from model checking of finite state transition
systems using Binary Decision Diagrams, and SAT solving [DKW08], to verification of soft-
ware with an unbounded state space by translating programs to first-order logic [GKR18],
and assisting mathematicians in finding formal proofs using so-called hammers to close
gaps in formal proofs in higher-order logic[HUW14].

Despite the fact that first-order logic with equality can be handled very well in many
practical cases, there is one fundamental mathematical concept most first-order theorem
provers lack; namely inductive reasoning. Not only is induction a very interesting
theoretical concept, it is also of high practical importance, since it is required to reason
about many concepts that are needed for verifying software. Theses concepts include
natural number arithmetic, recursion, unbounded loop iterations, or recursive data
structures like lists, and trees.

As we will examine in more detail in section 2.2 inductive reasoning can be understood as
an uninterpreted reasoning problem in first-order, or second-order logic with equality. As
Gödel’s incompleteness[Bar82] theorem teaches us that there is no sound, complete and

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

effective proof system for second-order logic, the hardness of the latter is not surprising.
In contrast the first-order induction problem is “only” an ordinary first-order theory with
a recursively enumerable number of axioms. Therefore the first-order problem can be in
theory solved by enumerating all possible proofs in any sound, complete and effective
proof system of first-order logic.

This theoretical observation, does of course not help in practice, since we do not want to
enumerate all proofs until we find the right one “by chance”. Instead we want to find a
proof by systematically deducing facts from the goal formula and our axioms.

Therefore we usually want our proof-system to be analytic, in order to perform automated
proofs effectively. In the context of sequent-style calculi [Tak13] an analytic proof is a
proof that does not involve the cut rule. In a more general sense we can think of an
analytic proof as one where all formulas, occurring in the proof are (substitution instances
of) subformulas of the goal or an axiom[Pfe84]. This means that no arbitrary lemmata,
or auxiliary definitions are required to prove the goal. One of the most prominent of
these proof systems is the resolution calculus[dN98].

In fact there are many analytic proof systems for arbitrary first-order theories. But
analyticity does not help a lot in case of first-order induction. The problem is that the
set of axioms of a first-order inductive theory contains an induction axiom I[φ] for every
formula φ in the language of the theory, which means every formula is a subformula of
some axiom, hence every proof is trivially an analytic one.

This non-analyticity is a theoretical insight explaining why modern theorem provers
struggle with the problem of induction, but there is also a rather practical problem
that theorem provers have with induction as a first-order theory: First-order induction
requires an infinite number of axioms, while first-order theorem provers are programs
on computers finite memory and therefore require a finite set of input formulas. It is
mathematical practice to give a finite representation of the infinite collection of axioms,
by specifying them as an axiom scheme, which is unfortunately not supported by state
of the art theorem provers. In this thesis, we want to address the problem of handling
schematic definitions, and therefore automating induction in first-order theorem provers.

1.2 Goals

The goal of this thesis is firstly to investigate different approaches to induction, from
both a theoretical (chapter 1), and a practical perspective (chapter 3). Based on this
investigation a new approach to induction will be introduced in section 4.3. By replacing
the infinite number of axioms used in first-order inductive theories, like Peano Arithmetic
(PA), for a finite number of axioms that yield a conservative extension of that theory.
By showing that our extension is indeed a conservative one we will show that the method
is complete in some sense in subsection 4.3.1. Further in chapter 5 the feasibility of this
technique is to be tested by running benchmarks on the state-of-the-art theorem provers.

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. Goals

In addition further potential applications of this approach to finitely axiomatizing a
theory based on schematic definitions will be discussed in section 4.4.

The contributions of this thesis can be summarized as follows:

• a method for conservatively extending an arbitrary theory to have a truth predicate
(which allows quantification over formulas) (section 4.2)

• showing how this method can be used to replace the induction scheme of PA, and
other theories involving inductive datatypes (section 4.3)

• listing other applications of these kind of conservative extension (section 4.4)

• contributing a new set of benchmarks to the automated theorem proving community
(section 5.1)

• conducting experiments on this set of benchmarks with state of the art theorem
provers (section 5.4)

• comparing state of the art theorem provers on simple inductive problems (sec-
tion 5.4)

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Preliminaries

2.1 Mathematical Logic

We assume basic knowledge of multi-sorted first-order logic, automated reasoning, proof
theory and mathematical logic in general.

Within this thesis we will reason on three levels: the object, the meta, and the reflective
level. Therefore we will use different symbols for logic on all of these levels. Meta and
object level notation will be defined in this section, while reflective level logic will be
defined in chapter 4, where axiomatic theories of truth are introduced.

We use the symbols ¬, ∧, ∨, →, and ↔ for logical negation, conjunction, disjunction,
implication and equivalence respectively, and write Qx : σ.φ with Q ∈ {∃,∀} for existential
and universal quantification over the sort σ on the object level. If it is deducible from the
context of a formula we will drop the sort declarations for quantifier variables. Further
we will write ∀∀

x1,...,xn

φ for the formula ∀x1. . . .∀xn.φ, and ∀∀φ to denote the universal

closure of φ. Object level equality is denoted by ≈.

On the meta-level we will use !, &, ‖, =⇒ , and ⇐⇒ for negation, conjunction,
disjunction, implication and equivalence and

A

, and

E

for quantification. For meta-level
equality = is used. Meta-level logical formulas will only be used where they help to
improve readability and precision, and otherwise natural language will be used.

By TermΣ
σ , VarΣ

σ , and FormΣ, we denote the sets of variables of sort σ, terms of sort
σ and object-level formulas over a signature Σ respectively. Overloading notation we
will sometimes use theories as superscripts, meaning the same thing as if the theories
signature would have been used. Further we will drop the superscript if it is not necessary.
As Varσ is a countably infinite set, we will sometimes assume without loss of generality
that it is composed of the variables {xσ

i | i ∈ N}, and leave away the sort superscript σ,
if it is deducible from the context.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

We will use the symbols x, y, and z for variables, σ, and τ for sorts, P , Q, and R for
predicates, f , g, and h for functions, and a, b and c for constants symbols. For unary
functions in terms (like s(s(n))) we will sometimes drop the brackets (to obtain ssn) for
the sake of readability.

For a function symbol f of a signature Σ, we write s :: σ1×. . .×σn σ ∈ Σ, to denote
that dom(f) = σ1 × . . .× σn, is the domain and codom(f) = σ is the codomain, and
arity(f) = n is the arity of f . We consider constants being functions of arity 0, and we
write c :: σ for c :: σ. Further we write P : Pred(σn×. . .×σn) to denote that P is an
predicate with domain dom(P) = σ1 × . . .× σn and arity arity(P) = n. Further we will
write dom(s, i) for the ith component of the domain of s.

If φ is a formula, or a term, x is a variable and t or a term, we write φ[x 7→ t] to denote
the formula, or term respectively resulting from replacing all occurences of x by t in φ.
Similarly if x is a variable, and φ[x] is a formula (or a term), we denote the formula (or
term) resulting from replacing all occurences of x for t by φ[t].

If Γ is a set of formulas, we write Γ ⊢X φ to denote that φ is derivable from the axioms Γ
in a proof system X, and we will drop the subscript X if it is not necessary. For I being
a first-order interpretation we write I � φ to denote that I is a model of φ. We write
Γ � φ to denote that φ is a semantic consequence of Γ.

A formula is open if it contains free variables, and closed otherwise. We consider a theory
to be a set of closed formulas.

The semantics of formulas, and terms over a signature Σ is defined in terms of multi-sorted
first-order interpretations M, consisting of 〈〈∆σ1

, . . . ,∆σn〉, I〉 consisting of a domain
∆σi

for each sort σ ∈ sortsΣ, and an interpretation function I, that freely interprets
variables, function symbols, and predicate symbols, respecting the sorts, and is extended
to terms in the usual manner. By ∆ we denote 〈∆σ1

, . . . ,∆σn〉. We write M � φ for
the structure M satisfying the formula φ. For that we also say M is a model of φ.
We sometimes use I � φ, instead of 〈〈∆σ1

〉, . . . ,∆σn , I〉 � φ if the domains are clear in
the context. By InterpretΣ we denote the class of all interpretation functions over a
signature Σ.

Further we will P(S) to denote the power set of S, and lfp(f) for the least fixed point of
a function, that maps sets to sets.

For specifying different versions of induction we will come across the concept of axiom
schemes. We define an axiom scheme S to be a formula over the signature Σ extended
with a special unary predicate P. We can instantiate the scheme S with an formula σ
to get a formula over the original signature Σ by replacing all occurences of an atom
P(t) by φ[x0 7→ t]. We write S[φ] for the instantiation of S with φ, and call the set
{S[φ] | φ is a first order formula over Σ} “all first order instances of S”.

When defining our method for reflective reasoning we will need the concept of a conser-
vative extension. A conservative extension of a theory T is a theory T ′, such that for all
for

A

φ ∈ FormT .(T � φ ⇐⇒ T ′ � φ)

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Induction

2.2 Induction

The principle of induction is one of the most fundamental principles in mathematics. It
often permits very simple, and elegant proofs once the right invariant has been found
and it seems so inexplicably fundamental, that the parts of proofs where inductive
strengthening is needed are often skipped as “obvious” by mathematicians. Induction is a
very general principle, that comes in many different flavours, and can be generalized, and
reformulated in many different ways. In this section we will investigate what different
kinds of induction are out there and how they relate.

2.2.1 Peano Arithmetic vs. True Arithmetic

Almost every student gets in touch with the principle of mathematical induction, proving
fundamental results in number theory. What is often not pointed out is that there are
two variants of number theory, that are of different strength. Firstly there is a theory
we will call True Arithmetic (TA), which is the kind of arithmetic we normally have in
mind when we think about arithmetic, and secondly there is PA, which is usually used
to formalized arithmetic as a first-order theory[Sha91]. Both PA and TA, feature only
one sort, nat, and share a common core of axioms, which we will refer to as Q, namely
the universal closure of the following formulas:

s(x) ≈ s(y) → x ≈ y (Inj)

0 6≈ s(x) (Disj)

x+ 0 ≈ x (Add1)

x+ s(y) ≈ s(x+ y) (Add2)

x× 0 ≈ 0 (Mul1)

x× s(y) ≈ x+ (x× y) (Mul2)

The difference between the two theories is how induction is axiomatised. In the case of
TA, induction is defined as a second-order axiom.

∀P.
(

P0 ∧ ∀n.
(

Pn → P sn
)

→ ∀n.Pn
)

(Ind)

while in the case of PA induction is defined as a scheme of first-order formulas. In exact
induction is defined by all first-order instances of the scheme (Inat).

P(0) ∧ ∀x.
(

P(x) → P(sx)
)

→ ∀x.P(x) (Inat)

Although the two theories look very similar, at the first sight, the differ dramatically in
reality. While TA captures our intuition of mathematical induction – namely defining the
model N = 〈ω, I〉, with ω = {0, 1, 2, ...}, uniquely up to isomorphism – it is a theory in
second-order logic, and therefore does not permit a sound, complete, and effective proof

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

system. In contrast PA is a first-order theory, for which sound, complete and effective
proof systems exists. However PA does not define the structure N, but a class of models,
that includes N. Since N is the intended semantics of PA we call it the “standard model”
the theory. The existence of non-standard models for PA follows directly from the
Theorem of Löwenheim-Skolem, as well as from a combination of Gödel’s completeness
theorem, and his first incompleteness theorem [Bar82].

2.2.2 Induction and Least Fixed Points

As mentioned in the previous section, the intended meaning of mathematical induction
is to define the set of natural numbers ω (together and some operations on them). This
aim can also be achieved with the more general concept of an inductive definition:

Definition 1 (Natural numbers). Let ω be the least set such that

• 0 ∈ ω

• x ∈ ω =⇒ s(x) ∈ ω

More formally we can define a monotonous operation Xω, and define ω as the least fixed
point of this operator.

Xω : P(T) 7→ P(T)

Xω(ts) = ts ∪ {0} ∪ {s(t) | t ∈ ts}

ω : P(T)

ω = lfp(Xω)

As we see ω is “constructed” from the function symbols {s, 0}. Therefore we call
these functions the constructors ctors(nat) of the sort nat. This notion of designated
constructor functions will help us to generalize the notion of a standard-model to arbitrary
datatypes, in subsection 2.2.3.

It is worth to note mentioning that the core of Isabelle proof assistant [BW99] is built
upon such such inductive definitions, and that an in-depth investigation of the relation
between least fixed points and induction can be found in [BS11].

Furthermore least fixed points play an important role in model checking, where a program
is seen as an initial set of states I : P(S), and a transition relation T : P(S × S), on
the set of states S in which the system (i.e. the computer) can be. The set of states
reachable when executing the program can then be defined as the least fixed point of the
operator YI,T .

YI,T : P(S) 7→ P(S)

YI,T (s) = s ∪ I ∪ {x′ | x′ ∈ s, sTs′}

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Induction

Therefore we can view the transition relation T and the set of initial states I as the
constructors of the set or reachable program states, and we can view proving properties
about our program, as inductive theorem proving on state spaces of programs. This is
why in model checking inductive invariants are used, despite the fact that there are no
induction axioms or inductive datatypes present, at the first sight.

2.2.3 Structural Induction

As we saw in the previous section, the unique model of TA, which is the standard-model
of PA, can be generated from the set of constructor symbols ctorsnat = {s, 0}. We now
want to generalize this idea to other datastructures, like lists or binary trees. In order to
define the new generalized notion of induction we will need the notion of an inductive
datatype.

Definition 2. An inductive datatype D with respect to a signature Σ is a pair 〈τ, ctorsτ 〉
such that

A

c ∈ ctorsτ .codomΣ(c) = τ

.

As inductive datatypes are well-known for anyone using functional programming, we will
borrow Haskell syntax for specifying inductive datatypes. Therefore we will informally
write

data τ =c1(α1,1, α1,2, ..., α1,m1
)

|c2(α2,1, α2,2, ..., α2,m2
)

...

|cn(αn,1, αn,2, ..., αn,mn)

for the inductive datatype Dτ over a signature Σ.

Dτ = 〈τ, {c1, ...cn}〉

Σ ⊇ {ci :: (αi,1, ...αi,mi
) τ | i ∈ {1..n}}

In this syntax we can define the natural numbers, lists, and binary trees.

data nat = 0 | s(nat)
data lstα = nil | cons(α, lstα)
data treeα = leaf | internal(treeα, α, treeα)

Now that we made the notion of an inductive datatype precise, we can generalize
mathematical induction, to structural induction. The basic idea of structural induction
is to show a property of a datatype, by verify the property for every case how an element

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

could have been constructed. We will now make this generalized notion of induction
formal, and as we had two ways of defining induction for natural numbers – First-order
induction, as in PA, and second-order induction, as in TA– we will generalize both of
them.

Definition 3 (First-order Induction). Let Dτ = 〈τ, ctors〉 be an inductive datatype.
The first-order structural induction scheme of τ is defined by

∧

c∈ctors

casec → ∀xP(x) (Iτ)

where

casec = ∀∀
x1,...,xn

(

∧

i∈recursivec

P(xi) → P(c(x1, ..., xn))
)

recursivec = {i | domΣ(c, i) = τ}

For a (first-order) instance Iτ [θ] of the scheme Iτ , we call θ, the induction invariant,
∧

c∈ctors casec the induction premise, and ∀xφ[x] the induction conclusion of Iτ [θ].

Analogous to TA we can define the second order formula induction formula that entails
all instances of the first-order induction scheme as follows:

Definition 4 (Second-order Induction). Let Dτ = 〈τ, ctors〉 be an inductive datatype.
Then we define the formula I2

τ , called the second-order induction axiom of τ , as follows:

∀P.
(

∧

c∈ctors

caseP,c → ∀x.Px
)

(I2
τ)

where

caseP,c = ∀∀
x1...xn

(

∧

i∈recursivec

Pxi → P (c(x1, ..., xn))
)

recursivec = {i | domΣ(c, i) = τ}

It is easy to verify that indeed these notions of induction for the datatype Dnat are
equivalent to mathematical induction, as defined in section 2.2.1.

As the theories of arithmetic, PA and TA contained some additional axioms besides
induction, we need some additional axioms general case as well. For every inductive
datatype Dτ need to have the axioms of disjointness, and injectivity of the constructor
functions:

∀∀
∧

c,d∈ctorsτ ,c 6=d

c(xc,1, ..., xc,arityc) 6≈ d(xd,1, ..., xd,arityd) (Disjτ)

∀∀
∧

c∈ctorsτ

(

c(x1, ..., xarityc) ≈ c(y1, ..., yarityc) →
∧

i∈{1,...,arityc}

xi ≈ yi

)

(Injτ)

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Induction

As in the case of natural numbers Iτ is a weaker approximation I2
τ . In order to refine

this approximation it is common to add axioms or rules for finite term algebras, like
acyclicity, to the proof system as it was done in [Cru17].

As in the case of natural number arithmetic there is a specific intended semantics of
inductive datatypes. As in the case of ω as intended domain of PA and TA, the semantics
of inductive datatypes can be defined in terms of least fixed point operators defined by
the constructor symbols [BS11, BW99].

2.2.4 Induction schemes

It is well-known that one can formalize induction different using alternative schemes to
mathematical induction, while retaining a theory with the same deductive closure. In
this section we will give an overview about some of the most well-known examples of
induction schemes.

Strong induction

The probably most well-known alternative to mathematical induction (Inat) is the principle
of strong induction (I<) [HW17], that can be used in order to define PA.

∀x.
(

∀y.(y < x → P(y)) → P(x)
)

→ ∀x.P(x) (I<)

Unlike the name suggests, strong induction is not really stronger than ordinary induction.
If we restrict the inductive theories to specific classes of instances to the scheme (e.g. we
only allow quantifier-free formulas for induction), I< may yield a stronger theory than
Inat, but in the presence of all first-order instances of the induction scheme, the entailed
theories are equal [HW17].

The careful reader may have already noticed that < is not part of the signature of PA

as we defined it in this thesis. This can be fixed in two ways. The straight forward way
would be to add the symbol < to the signature, and axiomatise it appropriately:

∀x.¬x < 0

∀x.0 < s(x)

∀x, y.
(

s(x) < s(y) ↔ x < y
)

The second way is to not introduce any new symbols to the signature, but to define

x < y = ∃z.x+ s(z) ≈ y (where z is a variable different from x and y)

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

The latter definition is very elegant since it does not need for a change in the signature,
and shows the expressive power of pure PA. Another advantage is that it does not involve
transitivity, which is known to be bad for saturation based theorem provers. Nevertheless
we will stick with the former definition of < since it can be generalized more nicely to
arbitrary datatypes.

The < relation can be thought of as a special case of the (proper) subterm relation ⊳

as presented in [KRV17b] and [RV19]. Given a proper axiomatisation of the subterm
relation we can define the generalized strong induction principle for a inductive datatype
Dτ as

∀x.
(

∀y.(y ⊳ x → P(y)) → P(x)
)

→ ∀x.P(x) (I⊳)

Well-founded Induction

All kinds of induction we have seen so far (and in fact all we will encounter in this thesis)
can be seen as a special form of one induction principle: Well-founded induction, or also
sometimes called Noetherian induction [Str12]. The principle is based on an arbitrary
well-founded relation ≺.

∀x.
(

∀y.(y ≺ x → P(y)) → P(x)
)

→ ∀x.P(x) (I≺)

Syntactically well-founded induction I≺ looks very similar to strong induction I⊳, but
semantically it is a much more general principle. The major difference is that in the case
of I≺ there is no need for any inductive datatypes. I≺ can be used for any well-founded
relation, which does not even need to be an ordering [RV19].

Intuitively the well-founded induction principle can be understood as follows: For every x
we can proof that φ[x] is the case, by assuming that for all predecessors y of x, φ[y] holds.
This is sound since the relation is well-founded, hence there will be a “starting point” for
the inductive reasoning chain, namely an x0, that does not have any predecessors, an has
therefore to be proved without any assumption about other elements.

It is obvious that strong induction I⊳, as well as I< are instances of I≺. Maybe not
as obvious is that structural induction Iτ can be seen an instance of I≺ as well. The
corresponding relation is the immediate (or one-step) subterm relation ⊳1, as described
in [KRV17b] and [RV19], which is indeed a non-transitive relation hence not an ordering.

An induction principle that is also often mentioned in the literature is the “least coun-
terexample principle”:

∃x.¬P(x) → ∃x.
(

∀y.(y ≺ x → P(y)) ∧ ¬P(x)
)

The least counterexample principle is actually just the contrapositive of the well-founded
induction principle, hence there is no essential difference between the two axiom schemes.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Induction

Other induction schemes

In [HW17] multiple different induction schemes for PA are presented, and logical relations
among those schemes are investigated. In addition to the Inat, and I< the following
induction schemes for PA are being considered in [HW17]:

n-step induction
∧

k<n

P(k) ∧ ∀x.
(

P(x) → P(sx+ n)
)

→ ∀x.P(x) (In-step)

n induction
∧

k<n

P(k) ∧ ∀x.
(

∧

k<n

P(x+ k) → P(sx+ n)
)

→ ∀x.P(x) (In)

Polynomial induction

P(0) ∧ ∀x.
(

P(x) →
∧

k<n

P((n× x) + k)
)

→ ∀x.P(x) (In-poly)

As these many different induction schemes are pretty hard to grasp, presented as formally,
(instances of) all the induction schemes defined for natural numbers are visualized in
table 2.1.

Relations between schemes

It is natural to ask whether the set of induction axioms I needed to prove a theorem
ψ can be restricted, in order to bound the search space for proofs. We could restrict I

Scheme Name Visualization

Inat Mathematical Induction
...

I< Strong Induction
...

I3 n-Induction
... ...

I2-step n-Step Induction
... ...

I2-poly Polynomial Induction
...

Table 2.1: A visualization of different induction schemes on the natural numbers. The orange
circles represent the numbers for which the property φ has to be proven, in order to prove φ for
all numbers. The orange arrow represent for which numbers φ may be assumed when proving φ
for the node on the end of the arrow. The blue arrows represent the s function.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

in different ways: either by bounding the number, or by restricting shape of induction
formulas. Both of these ideas are investigated in [HW17]. The first – probably surprising
– result is that for a given provable formula ψ one induction axiom is sufficient to proof ψ.
Still this one induction axiom can be a very complex formula, containing many other
induction formulas. In fact the second result shows how complex this formula has to
be: Given an arbitrary provable purely universal formula ψ, we cannot give a bound on
the number of quantifier-alternations that is needed in the induction formula required
to proof ψ. In fact both of these facts hold for any of the induction schemes for PA

presented in this thesis.

2.2.5 Induction as an inference rule

So far we have considered induction in two ways. First semantically, as theories in
which the domains for the inductive sorts are interpreted as terms built from designated
constructor symbols, and then syntactically, as theories which axioms that contain
induction formulas. Next we will take a look at another syntactic approach: considering
induction as additional rule of inference in a proof system.

Sequent calculus

One example for a replacement of induction by a new rule is given in [HW17]: in Genzen’s
sequent calculus the first-order mathematical induction axiom scheme Inat can be elided
if the following induction rule is added to the calculus:

Γ, ⊢ ∆, φ[0] Γ, φ[x] ⊢ ∆, φ[sx]

Γ ⊢ ∆,∀x.φ[x]

(where φ is arbitrary and x

does not occur in ∆, or Γ)

The resulting system can proof the same formulas, but from a finite set of axioms. This
nice property of finite axiomatisations comes at a cost: The cut-rule cannot be eliminated
in this calculus, which is an undesirable property for automated proof search.

The ω-rule

An alternative approach, that permits cut-elimination is the ω-rule[BIS92], which can be
added to Hilbert-style calculi.

φ[0] φ[s(0)] φ[s(s(0))] ...

∀x.φ[x]

The ω-rule is as strong as second order induction I2
nat, and does not require to reason in

second order logic. The obvious problem of this rule is that it requires a infinite number
of hypotheses to be proven. Nevertheless methods for utilizing (weaker forms of) the
ω-rule for automated reasoning have been proposed [BIS92].

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Induction

2.2.6 Implicit induction

The syntactic approaches to induction we considered so far were adding induction axioms,
or induction rules to a base axiom, or proof system. Both approaches can be classified as
“explicit induction” for induction being present as an explicit, and identifiable component
of our system. In contrast to theses explicit approaches one can also modify the base
system to implicitly yield the same consequences as if one would have added induction
explicitly.

Infinite descent

The first approach to implicit induction is “Infinite descent”. This method dates back to
Fermat [BGP12], and drops an explicit induction rule or axiom in favour of “unrolling”
inductive definitions by case splits. In the paper [BS11] this idea is explored in-depth:
a sequent style calculus in which features proofs with branches of infinite depth, as
long as these infinite branches obey some global soundness conditions, is defined and
cut-free soundness, and completeness of this calculus with respect to standard models
is proven. Unsurprisingly the theorems of this powerful calculus are not recursively
enumerable. Nevertheless based on this theoretical tool a recursively enumerable subset
of that calculus, which is known as cyclic proofs, is presented in the same paper, which
was later shown to be more powerful than explicit first-order induction [BT19].

Proof by consistency

Another implicit induction method is so-called induction-less induction, also known as
proof by consistency [Com94]. This method targets at proving validity in standard
models, and does it by reducing the proof of validity of E ⊢ φ a consistency check of
the set of formulas {φ} ∪ A ∪ E , where A is a first-order axiomatisation of the standard
model for some induction constructors. Finding such an A is not possible in general,
which is the major caveat of this method.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
State of the Art

As induction can be understood in many different ways from a theoretical perspective,
it also has been tackled with a variety of approaches practically. Approaches include
provers verifying equational properties of functional programs [PCI+20, SDE12, CJRS12],
systems that improve automation for inductive proofs in interactive theorem provers
[DJ07], equipping SMT-solvers with inductive reasoning capabilities [RK15, Lei12], and
solvers supporting full first-order logic with equality, and induction[Cru17, RV19].

In this chapter we will have a closer look at some of the techniques that have been
developed.

3.0.1 Induction and saturation

As the best state of the art theorem provers featuring first-order logic are using saturation
algorithms, there have been various attempts on integrating induction into saturation
algorithms. The superposition based theorem prover Vampire, considers induction as an
additional inference rule, that introduces the induction axiom and immediately resolves
it with another clause if the clause matches certain heuristics, that keep the search space
from blowing up [RV19].

Zipperposition [Cru17] integrates induction with superposition and rewrite rules, relying
on the Avatar architecture [Vor14] for handling case splits on variables of inductive
datatypes efficiently.

3.0.2 Cyclic proofs

A different approach is taken in [EP20, KP13], where the ideas of cyclic reasoning
described in section 2.2.6 are lifted from the goal-oriented sequent-style calculus to
saturation algorithms. Although experiments are mentioned in [KP13], to the authors
knowledge there is no implementation of either of the two calculi publicly available.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art

An implementation of the goal oriented cyclic reasoning described in [BGP12] is Cyclist,
a generic theorem prover that supports cyclic reasoning, not only for inductive definitions,
but also for entailments in pure separation logic, and Hoare style termination proofs.

3.0.3 Rippling

A famous heuristic used for automating induction is rippling, a strategy for transforming
one formula into another, using a set of rewrite rules. In the context of inductive theorem
proving it is used for proving the inductive step, after fixing the induction invariant and
scheme [DJ07]. IsaPlanner [DJ07] is a practical framework supporting this heuristic.
It provides a domain specific language for writing so-called proof plans to automate
reasoning in the proof assistant Isabelle.

3.0.4 Theory exploration

As mentioned in Section 1.1, inductive proofs are not analytic in some proof systems,
which means that it may be required to introduce arbitrary lemmas, or induction formulas
during proof search. There are different techniques for finding potentially useful formulas,
often summarized under the name theory exploration. One system implementing theory
exploration, is HipSpec [CJRS12]. HipSpec aims at proving properties about Haskell

programs inductively. In order to find potential lemmas randomly generated equational
formulas are evaluated on random inputs. If those formulas hold for a reasonably number
of inputs, HipSpec makes a proof attempt with a certain timeout, and adds the formula
as an axiom on success.

Another method for theory exploration is implemented in Cvc4 [RK15]. There potential
lemmas are found by enumerating formulas that match certain heuristics, ensuring the
generated lemmas can be used efficiently, and are probable to hold due to the current
state of the solver. A potential lemma φ is then added to the search space as an instance
of the law of the excluded middle axiom φ ∨ ¬φ.

Zipperposition uses an approach that is a combination of the two previous ones. When
one of its heuristics proposes an induction lemma, the solver will try to evaluate it on
some inputs. If the evaluations confirm the lemma proposed by the heuristic, it adds a
version of the law of the excluded middle for this formula to the search space.

3.0.5 Recursion analysis

The heuristics used in the theorem provers Acl2 [Moo19], and Imandra [PCI+20],
in their basic form, go back to ideas from the 70ies [BM75]. The technique aims at
proving universal properties of functional programs in Lisp. The basic idea is that the
solver evaluates the goal by unfolding inductive definitions, until it fails due to some
uninterpreted symbols (corresponding to universally quantified variables) occur. If those
symbols are used for case splits in recursive definitions, induction on this symbol is applied

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

to the goal. For proving the induction step evaluation as well as so-called “fertilization”
is used, meaning that the induction hypothesis is used to rewrite the goal.

3.0.6 Generalization

As described in [HHK+20] applying induction to all occurrences of a variable in a formula
at once is not always sufficient; in many cases a step of generalization is needed before
selecting the induction variable. Aubin’s work [Aub79] builds upon the heuristics of
Boyer and Moore by introducing a generalization heuristic. Boyer and Moores heuristic
evaluates terms and only applies induction to uninterpreted symbols where evaluation
fails. In addition to that Aubin suggests to apply induction to terms who’s evaluation
would eventually lead to such a symbol. Furthermore Aubin gives generalization heuristics
depending on how an argument is used in recursive function definitions. A modern solver
implementing these heuristics is Zipperposition [Cru17].

Vampire features heuristics for generalizing induction as well [HHK+20]. Its approach is
to apply induction not only to all positions of one variable at once, but also to apply
induction on an arbitrary subset of these positions. This generalization technique can
not only be used in the context of functional programs with fully specified function
definitions, but also in pure first-order logic.

3.0.7 SMT solvers

Due to the huge progress in SMT solving, SMT-solvers have been used for inductive
reasoning as well. The approaches taken by Dafny [Lei12] and Cvc4 [RK15] both rely
on inductive strengthening, which means universal formulas are replaced by the induction
premise of the corresponding induction axiom. Cvc4 takes this approach during proof
search, while Dafny employs inductive strengthening as a step of preprocessing.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Induction by Reflection

In this chapter we will introduce a different approach to induction, which is based on the
idea of Gödel encodings. The major difference to most other approaches we saw so far
is that is does not require any adjustments of the proof system, and can therefore be
combined with any state of the art theorem prover that supports sorted first-logic. Since
second-order induction is not even semi-decidable, our aim is to only handle first-order
induction, but to do this in a complete manner.

Given a theory T and a set of inductive data types D, the idea of our approach is to
build a finite conservative extension Ṫ of the first-order inductive theory of T over the
datatypes D. Formally this means we want to find a finite set of formulas Ṫ such that

A

φ ∈ FormT .
(

Ṫ ⊢ φ ⇐⇒ T ∪ {Iτ [ψ] | Dτ ∈ D, ψ ∈ FormT } ⊢ φ
)

As a means to this end we introduce some basic ideas from the field of axiomatic theories
of truth, in order enable us to extend a base theory with the vocabulary to talk about
formulas, this extension will be called the reflective extension of a theory. In another step
we can add induction a single formula that contains quantifier over formulas in order to
express the induction schema in a single formula.

4.1 Axiomatic theories of truth

Axiomatic theories of truth is a field of mathematical logic that originates from the
undefinability theorem discovered by Tarski [Hor11]. This theorem is based on Gödel’s
encoding used for his famous incompleteness theorems. Therefore Gödel encodes formulas
as numbers, and shows that PA is powerful enough to express and proof certain facts
about these encodings. Tarski’s discovery about PA was that there is no formula T[x],
that expresses truth in PA.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Induction by Reflection

Theorem 1 (Tarski’s undefinability theorm).
Let p·q : FormPA 7→ TermPA be any Gödel encoding of the language of PA.

Then there is no formula T[x] ∈ FormPA such that

A

φ ∈ FormPA.PA ⊢ T[pφq] ↔ φ

Based on this theorem there were different approaches of extending PA with new
predicates and axioms, in order to be able to express the truth predicate of PA, and even
other theories [Hor11, Bek05]. In order to build our finite axiomatisation of induction, we
build on the idea of a compositional theory of truth, as defined in [Hor11] chapter 6. There
Peano arithmetic is extended to TC by an additional predicate symbol T :: Pred(nat)
which is axiomatised as follows:

∀ atomic φ ∈ LPA.T(φ) ↔ val+(φ) (4.1)

∀φ ∈ LPA.T(¬φ) ↔ ¬T(φ) (4.2)

∀φ, ψ ∈ LPA.T(φ ∧ ψ) ↔ T(φ) ∧ T(ψ) (4.3)

∀φ(x) ∈ LPA.T(∀x.φ) ↔ ∀x.T(φ(x)) (4.4)

where val+(x) is some formula defining the truth of the atomic formula. Note that this
axiomatisation is not pure first order logic but contains a lot of notation conventions
defined in chapter 3 of the book. Dropping these conventions the axiomatisation looks
something like this:

∀x.(Atom(x) ∧ Form(x) → T(x) ↔ val+(x))

∀x.(Form(x) → ∃y.(Negation(y, x) ∧ (T(z) ↔ ¬T(x))))

∀x, y.(Form(x) ∧ Form(y) → ∃z.Conj(z, x, y) ∧ T(z) ↔ T(x) ∧ T(y))

∀p, v.(Form(p)∧V ar(v) → (∃z.For(z, p, v)∧(T(z) ↔ ∀v′.(V ar(v′) → ∃p′.Subs(p′, p, v, v′)∧T(p′)))))

where Form(x), V ar(x), Atom(x) are formulas in PA that express that x is the
Gödel-encoding of a formula, variable, or atom respectively. Negation(y, x) is a formula
that encodes y is the negation of the formula encoded by x. Analogously Conj(...),
For(...), and Subs(...) express logical conjunction, universal quantification, and syntactic
substitution.

Basically TC fits for our purpose, since it has the nice property that it has a truth
predicate T for PA, and it allows us to quantify over formulas, which allows us to express
the induction scheme in a single formula. But this approach still has some problems:
Firstly it still requires to reason in PA which includes the infinite induction scheme, and
secondly would only extend PA with finite induction. The first problem would probably
be resolvable by just dropping the induction scheme from TC in favor of an induction
formula quantifying over formula codes, but we will take another approach resolving both
problems at once.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Reflection in an arbitrary theory

4.2 Reflection in an arbitrary theory

In order to finitely axiomatise induction we will have to extend our base theory, with
the vocabulary to talk about formulas. Instead of the classical approach from axiomatic
theories of truth we will not rely on numbers to encode formulas, but we will directly
introduce a new sort of formulas to our theory.

Firstly we need extend our signature Σ with the sorts needed to talk about first-order
formulas. The basic idea is that each meta-level construction that is needed in order to
define the syntax and the semantics of first-order logic, needs a “reflective” counter part
on the object level.

4.2.1 Signature

Definition 5 (Reflective signature). Let Σ be an arbitrary signature. We define Σ̇ to be
the reflective extension of Σ.

Σ̇ = Σ ∪ {vσ
0 :: varσ | σ ∈ sortsΣ}

∪ {nextσ :: varσ varσ | σ ∈ sortsΣ}

∪ {injσ :: varσ termσ | σ ∈ sortsΣ}

∪ {ḟ :: termσ1
×...×termσn termσ | f :: σ1×...×σn σ ∈ Σ}

∪ {Ṗ :: termσ1
×...×termσn form | P :: Pred(σ1×...×σn) ∈ Σ}

∪ {≈̇σ:: termσ×termσ form | σ ∈ sortsΣ}

∪ {⊥̇}

∪ {∨̇:: form×form form}

∪ {¬̇:: form form}

∪ {∀̇σ :: varσ×form form | σ ∈ sortsΣ}

∪ {empty :: env | σ ∈ sortsΣ}

∪ {pushσ :: env×varσ×σ env | σ ∈ sortsΣ}

∪ {evalvσ :: env×varσ σ | σ ∈ sortsΣ}

∪ {evalσ :: env×termσ σ | σ ∈ sortsΣ}

∪ {�̇:: Pred(env×form)}

where all newly introduced symbols are disjoint from the ones in Σ.

4.2.2 Intended semantics

As this definition is rather lengthy we will break down the intended semantics of all
newly introduced symbols. We can split the definitions into two parts: one formalizing
the syntax and one formalizing the semantics of our reflective first-order logic.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Induction by Reflection

Reflective syntax

Variables The first thing that is needed to formalize the semantics of first order logic is
a countably infinite set of variables Varσ for each sort σ. Therefore we introduce a
new sort varσ that is intended to by interpreted as Varσ. The two functions vσ

0 ,
and nextσ that are added to the signature can be thought of as the constructors
for this infinite set of variables. This means vσ

0 is intended to be interpreted as
the variable x0, nextσ(vσ

0) is meant to be interpreted as x1, and so on. As it will
become handy later we will introduce the following syntactic sugar for variables:

vσ
i+1 = nextσ(vσ

i) for i ≥ 0

Terms The next step in the meta-level definition of the syntax of first-order logic is the
set of terms Termσ of sort σ. Therefore we introduce the sort termσ for each sort
σ in the signature Σ. Terms are defined inductively:

The base case is a variable. Since variables and terms are of different sorts, we
need the function injσ to turn variables into terms. This function is intended to be
interpreted as the identity function.

The step case of the inductive definition is building terms out of function symbols
and other terms. Therefore we need to introduce a reflective function symbol ḟ
for every function f in the signature. The ḟ is intended to be interpreted as the
function symbol f , while f itself is interpreted as an actual function.

Formulas As for terms, formulas Form are defined inductively on the meta level.
Therefore form id defined by functions that represent the different cases of the
definition of formulas:

Atomic formulas are either equalities of predicate symbols “applied” to terms.
Therefore we introduce a reflective equality symbol ≈̇σ for each sort σ and a
reflective version Ṗ for every predicate symbol P . ≈̇σ is intended to be interpreted
as ≈, which itself is interpreted as the actual equality relation =. Analogously Ṗ is
intended to be interpreted as the predicate symbol P .

Even though it’s not strictly necessary to have the nullary connective ⊥ in order to
get the expressive power of full first-order logic, we nevertheless introduce it to our
language. The reflective symbol ⊥̇ is intended to be interpreted as the formula ⊥.
Complex formulas are built from atomic formulas and connectives, or quantifiers.
Therefore we introduce a functionally complete set of reflective connectives, namely
∨̇, and ¬̇ that are to be interpreted as ∨, and ¬ respectively. As it will help in
terms of readability, we will use infix notation for ∨̇, and drop the parenthesis for
¬̇ if there is no ambiguity.

In order to formalize quantification we introduce a function ∀̇σ for each sort. As
expected this function is intended to be interpreted as universal quantification
over a variable. In order to visually tie our terms more closely to their intended
interpretations we will write ∀̇x:σ.p for the term ∀̇σ(x, p).

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Reflection in an arbitrary theory

Reflective semantics

In order to be able to axiomatise the meaning of formulas correctly, we will need syntactic
representations of the semantic structures needed to define the semantics of first-order
logic.

Environment In order to define the meaning of a quantifier, we need to be able to
redefine the meaning of a variable within the scope of the quantifier. Therefore we
will use a stack of variable interpretations, we will call an environment. The idea is
that a variable vσ

i is freely interpreted in an empty environment empty, while it is
interpreted as x if the tuple 〈vσ

i , t〉 was pushed on the stack using pushσ(e, vσ
i , t).

The idea will become clearer in sections 4.2.3, and 4.2.4, where we will axiomatise
the meaning and define a model of the reflective theory. Roughly one could also
see the environment also as a partial definition of the variable interpretation of an
interpretation of the theory.

Evaluation In order to make use of the environment we will need a reflective evaluation
function for terms evalσ and evalvσ that corresponds to interpreting terms and
variables in some model I of the reflective theory.

Satisfaction Finally we have our reflective satisfaction relation �̇. We will write (e �̇ p)
for �̇ (e, p), which can roughly be interpreted as “the interpretation I partially
defined by e satisfies p (I � p)”. Our truth T predicate in the Tarskian sense, will
finally be T(x) = (empty �̇ x).

4.2.3 Axiomatisation

In this section we will formally define the intended semantics described in the previous
section, relating reflective with non-reflective function and predicate symbols, by defining
the meaning of the reflective satisfaction relation �̇, the meaning of the reflective evaluation
functions evalσ and evalvσ. All axioms we list will be implicitly universally quantified and
be present for every sort σ, τ ∈ sortsΣ. Finally the reflective extension Ṫ of our base
theory T will the union of all these axioms together with the T itself.

Reflective variable interpretation

As described in the previous section, the interpretation of variables in an empty environ-
ment empty is undefined. In contrast an environment to which a variable v, and a value
x is pushed, evaluates the variable v to x.

evalvσ(pushσ(e, v, x), v) = x (Axeval
v
0
)

v 6≈ v′ → evalvσ(pushσ(e, v′, x), v) = evalvσ(e, v) (Axeval
v
1
)

evalvσ(pushτ (e, w, x), v) = evalvσ(e, v) for σ 6= τ (Axeval
v
2
)

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Induction by Reflection

Reflective evaluation

The function symbol evalσ defines the value of a reflective term t and thereby maps the
reflective functions ḟ to their non-reflective counter parts f . For variables evalσ, just
forwards the evaluation to evalvσ.

evalσ(e, injσ(v)) = evalvσ(e, v) (Axevalvar
)

evalσ(e, ḟ(t1, ..., tn)) = f(evalσ1
(e, t1), ..., evalσn(e, tn)) (Axevalf

)

for f : σ1×...×σn σ ∈ Σ

Reflective satisfaction

The predicate symbol �̇ σ defines the truth of a formula with respect to some variable
interpretation, by defining the meaning of the reflective connectives and the quantifier in
terms of their object-level counter parts:

(e �̇ x ≈̇σ y) ↔ evalσ(e, x) ≈ evalσ(e, y) (Ax≈̇)

(e �̇ Ṗ (t1, ..., tn)) ↔ P (evalσ1
(e, t1), ..., evalσn(e, tn)) for P : Pred(σ1×...×σn) (AxP)

(e �̇ ⊥̇) ↔ ⊥ (Ax⊥̇)

(e �̇¬̇ φ) ↔ ¬(e �̇ φ) (Ax¬̇)

(e �̇ φ ∨̇ ψ) ↔ (e �̇ φ) ∨ (e �̇ ψ) (Ax∨̇)

(e �̇ ∀̇v:σ.φ) ↔ ∀x : σ.(pushσ(e, v, x) �̇ φ) (Ax∀̇)

4.2.4 Consistency and Conservativeness

Now that we have specified our theory we need to ensure that it indeed models what we
intended to. Therefore we have to ensure that Ṫ is a conservative extension of T , and
secondly that Ṫ is consistent. In general we cannot ensure that Ṫ is consistent, since
already the base theory T could have been inconsistent. Hence we will show that Ṫ is
consistent if T is consistent.

In order to proof both, conservativeness and consistency, we introduce the notion of
an reflective interpretation Ṁ, that is based on M. The idea is that Ṁ interprets
every symbol in the base theory T as it would be interpreted in M, hence all for every
formula in FormT is true in Ṁ iff it is true in M. Due to soundness and completeness
of first-order logic we get that Ṫ is indeed a conservative extension of T . Further due
to the fact that for every model of M of T we have model Ṁ of Ṫ , we also have that
the theory is consistent if T is consistent. In order to ensure this reasoning is correct
we need to ensure that Ṁ also satisfies the axioms we introduced for reflective theories.
This will be done by interpreting the new reflective sort form as the set of first order
formulas Form, and interpreting the sort termσ as terms of sort Termσ.

Formally the reflective model can be defined as follows:

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Reflection in an arbitrary theory

Let M = 〈〈∆σ1
, ...,∆σn〉, I〉 be a first-order interpretation over the signature Σ. We

define the reflective model Ṁ to be

Ṁ = 〈〈∆σ1
, ...,∆σn ,Termσ1

, ...Termσn ,Form〉, İ〉

İ(f) : ∆σ1
× ...× ∆σn 7→ ∆σ for f :: σ1×...×σn σ ∈ Σ

İ(f) = I(f)

İ(P) : P(∆σ1
× ...× ∆σn) for P :: Pred(σ1×...×σn) ∈ Σ

İ(P) = I(P)

İ(vσ
0) : Varσ for σ ∈ sortsΣ

İ(vσ
0) = x0

İ(nextσ) : Varσ 7→ Varσ for σ ∈ sortsΣ

İ(nextσ)(xi) = xi+1

İ(injσ) : Varσ 7→ Termσ for σ ∈ sortsΣ

İ(injσ)(x) = x

İ(ḟ) : Termσ1
× ...× Termσn 7→ Termσ for f :: σ1×...×σn σ ∈ Σ

İ(ḟ)(t1, ..., tn) = f(İ(t1), ..., İ(tn))

İ(Ṗ) : Termσ1
× ...× Termσn 7→ Form for P :: Pred(σ1×...×σn) ∈ Σ

İ(Ṗ)(t1, ..., tn) = P (İ(t1), ..., İ(tn))

İ(≈̇σ) : Termσ × Termσ 7→ Form for σ ∈ sortsΣ

İ(≈̇σ)(s, t) = İ(s) ≈ İ(t)

İ(⊥̇) : Form

İ(⊥̇) = ⊥

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Induction by Reflection

İ(∨̇) : Form × Form 7→ Form

İ(∨̇)(φ, ψ) = φ ∨ ψ

İ(¬̇) : Form 7→ Form

İ(¬̇)(φ) = ¬φ

İ(∀̇σ) : Varσ × Form 7→ Form for σ ∈ sortsΣ

İ(∀̇σ)(xi, φ) = ∀xi : σ.φ

İ(empty) : InterpretΣ

İ(empty) = I

İ(pushσ) : InterpretΣ × Varσ × σ 7→ InterpretΣ for σ ∈ sortsΣ

İ(pushσ)(J , xi, v)(x) =

{

v if x = xi

J (x) otherwise

İ(evalvσ) : InterpretΣ × Varσ 7→ ∆σ for σ ∈ sortsΣ

İ(evalvσ)(J , xi) = J (xi)

İ(evalσ) : InterpretΣ × Termσ 7→ ∆σ for σ ∈ sortsΣ

İ(evalσ)(J , t) = J (t)

İ(�̇) : P(InterpretΣ × Form)

İ(�̇) = {〈J , φ〉 ∈ InterpretΣ × Form | J � φ}

In order to ensure that Ṁ is indeed a model of Ṫ we actually would need to ensure that
Ṁ satisfies all axioms we introduced for the reflective theory. This would only involve
repeating the axioms in natural language, defining the semantics of first-order logic on
the meta level. Since this is not very insightful, and does not give any more confidence
in the correctness of the axiomatisation, we will skip this part.

Truth predicate

Now that we ensured that Ṫ is a conservative extension of T , we need to ensure that the
theory really is a theory of truth. This means we need to ensure that the theory has a
truth predicate. In the definition we gave before we needed a Gödel encoding in order to
define our truth predicate. This Gödel encoding maps variables, terms, and formulas

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Reflection in an arbitrary theory

to numerals. Since our theory Ṫ does not necessarily contain any number symbols, we
need to use a generalized definition of a Gödel encoding, namely that it maps variables,
terms, and formulas in our base language FormT to terms in our extended language

FormṪ . In exact we map formulas Form to terms of sort form, variables Varσ to varσ

and Termσ to termσ. Formally we define our Gödel encoding as follows:

pφ ∨ ψq = pφq ∨̇ pψq (Gdl∨)

p¬φq =¬̇ pφq (Gdl¬)

p⊥q = ⊥̇ (Gdl⊥)

p∀xi : σ.φq = ∀̇vσ
i :σ.pφq (Gdl∀)

pxnq = injσ(vσ
n) where xn ∈ Varσ (Gdlx)

ps ≈ tq = psq ≈̇σ ptq where s, t ∈ Termσ (Gdl≈)

pf(t1, ..., tn)q = ḟ(pt1q, ..., ptnq) (Gdlf)

pP (t1, ..., tn)q = Ṗ (pt1q, ..., ptnq) (GdlP)

Now that we have defined our Gödel encoding we can show that Ṫ contains a truth
predicate T[φ] for T , namely the formula empty �̇ pφq. Therefore we need to show that
the following theorem holds.

Theorem 2 (Truth Predicate).

A
φ ∈ FormT .

(

Ṫ ⊢ φ ↔ (empty �̇ pφq)
)

Proof. In order to proof this theorem inductively we will need to strengthen our goal to:

A

e ∈ stack.Ṫ ⊢ φ ↔ (e �̇ pφq)

where we define the set stack inductively as the least set such that

• empty ∈ stack

• e ∈ stack & σ ∈ sorts & i ∈ N =⇒ pushσ(e, vσ
i , xi) ∈ stack

Next we will rewrite our goal to to:

A

e ∈ stack.Ṫ ⊢ φ ⇐⇒ Ṫ ⊢ (e �̇ pφq)

We will now prove the theorem by induction on the structure of φ. Most cases can be
proven by simply unfolding of definitions of the Gödel encoding, applying the axioms of
Ṫ , and applying the induction hypothesis.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Induction by Reflection

case α ∨ β.

Ṫ ⊢ (e �̇ pα ∨ βq) ⇐⇒ Ṫ ⊢ (e �̇ (pαq ∨̇ pβq)) by (Gdl∨)

⇐⇒ Ṫ ⊢ (e �̇ pαq) ∨ (e �̇ pβq) by (Ax∨̇)

⇐⇒ Ṫ ⊢ α ∨ (e �̇ pβq) by I.H.

⇐⇒ Ṫ ⊢ α ∨ β by I.H.

�

case ¬ψ.

Ṫ ⊢ (e �̇ p¬ψq) ⇐⇒ Ṫ ⊢ (e �̇¬̇ pψq) by (Gdl¬)

⇐⇒ Ṫ ⊢ ¬(e �̇ pψq) by (Ax¬̇)

⇐⇒ Ṫ ⊢ ¬ψ by I.H.

�

case ⊥.

Ṫ ⊢ (e �̇ p⊥q) ⇐⇒ Ṫ ⊢ (e �̇ ⊥̇) by (Gdl⊥)

⇐⇒ Ṫ ⊢ ⊥ by (Ax⊥̇)

�

case ∀xi : σ.φ.

Ṫ ⊢ (e �̇ p∀xi : σ.φq) ⇐⇒ Ṫ ⊢ (e �̇ ∀̇vσ
i :σ.pφq) by (Gdl∀)

⇐⇒ Ṫ ⊢ ∀xi.(pushσ(e, vσ
i , xi) �̇ pφq) by (Ax∀̇)

⇐⇒ Ṫ ⊢ ∀xi.φ by I.H.

�

The more involved cases are the ones dealing with atomic formulas. The reason why this
cannot be dealt with by simple unfolding of definitions, is that we cannot ensure that
every object level variable vσ

i is interpreted as the variable xi of sort σ, since this would
have required adding an infinite number of axioms to our base theory T .

case P (t1, ..., tn). By the existence of a sound and complete proof system for first-order
logic, we can rewrite our induction hypothesis as

Ṫ � P (t1, ..., tn) ⇐⇒ Ṫ � (e �̇ pP (t1...tn)q)

which is equivalent to the statement

A

M � Ṫ .
(

M � P (t1, ..., tn)
)

⇐⇒

A

M � Ṫ .
(

M � (e �̇ pP (t1...tn)q)
)

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Reflection in an arbitrary theory

which can again be rewritten to

E

M � Ṫ .
(

M 6� P (t1, ..., tn)
)

⇐⇒

E

M � Ṫ .
(

M 6� (e �̇ pP (t1...tn)q)
)

We will proof both directions of the biconditional separately:

case “⇐=” In order to show that this implication holds we will show, that if there
is a model 〈D, I〉 such that 〈D, I〉 6� (e �̇ pP (t1, ..., tn)q), then there is another
model 〈D, Î〉 such that 〈D, Î〉 6� P (t1, ..., tn).

The idea is that Î differs from I only in the interpretation of the variables. In
exact the variables in Î are interpreted in the same way as reflective variables
vσ

i are interpreted in I. Therefore the interpretation of the evaluation of a
term ptq in Î will be the same as the interpretation of t in I, hence 〈D, Î〉 will
satisfy (e �̇ pφq) iff 〈D, I〉 satisfies φ, which implies what we want to show.

More formally:

Let 〈D, I〉 be a model of Ṫ . We define Î as follows.

Î(x) =

{

I(evalvσ(empty, vσ
i)) if x = xi & xi ∈ Varσ

I(x) otherwise

Proposition 1.

I(evalσ(e, ptq)) = Î(t)

Proof. We apply induction on t.

case f(t1, ..., tn).

Î(f(t1, ..., tn))

= Î(f)(Î(t1), ..., Î(tn))

= I(f)(Î(t1), ..., Î(tn)) by definition of Î

= I(f)(I(evalσ(e, pt1q)), ..., I(evalσ(e, ptnq))) by I.H.

= I(evalσ(e, pf(t1, ..., tn)q)) by (Gdlf) and (Axevalf
)

�

case xi ∈ Varσ.

Î(xi)

= I(evalvσ(e, vσ
i)) by definition of Î

= I(evalσ(e, injσ(vσ
i))) by (Axevalvar

)

= I(evalσ(e, pxiq)) by (Gdlx)

�

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Induction by Reflection

Now that we have showed that Proposition 1 holds we can reason as follows:

Î � P (t1, ..., tn)

⇐⇒ Î(P) ∋ 〈Î(t1), ..., Î(tn)〉

⇐⇒ Î(P) ∋ 〈I(evalσ(e, pt1q)), ..., I(evalσ(e, ptnq))〉 by Proposition 1

⇐⇒ I(P) ∋ 〈I(evalσ(e, pt1q)), ..., I(evalσ(e, ptnq))〉 by definition of Î

⇐⇒ I � P (evalσ(e, pt1q), ..., evalσ(e, ptnq))

⇐⇒ I � (e �̇ Ṗ (pt1q, ..., ptnq)) by (AxP)

⇐⇒ I � (e �̇ pP (t1, ..., tn)q) by (GdlP)

From this we can conclude that if there is a model 〈D, I〉 such that 〈D, I〉 6�
(e �̇ pP (t1, ..., tn)q), then the model 〈D, Î〉 6� P (t1, ..., tn). �

case “ =⇒ ′′ The idea for this case similar to the idea for the case before: We
assume there is a model 〈D, I〉 that makes P (t1, ..., tn) false, and from that
build another model 〈D, Î〉 that makes the (e �̇ pP (t1, ..., tn)q) false. In this
case our new model will differ from the old one not in the interpretation of
the variables xi, but in the interpretation of the evaluation of the reflective
variables vσ

i , in such a way that the evaluation of vσ
i in Î will always be

interpreted as the same value as the interpretation of xi in I.

Let 〈D, I〉 be a model of Ṫ . We define the interpretation Î as follows.

Î(x) = I(x) for x 6= evalvσ

Î(evalvσ)(e, v) =



























I(xi) if e = empty & v = vσ
i

Î(t) if e = pushσ(e′, v, t)

Î(evalvσ)(e′, v) if e = pushσ(e′, v′, t) & v 6= v′

Î(evalvσ)(e′, v) if e = pushτ (e′, v′, t) & τ 6= σ

Note that the definition of Î(evalvσ), is not a partial definition, since we defined
e ∈ stack inductively.

Proposition 2.

I(t) = Î(evalσ(e, ptq)) (4.5)

Proof. We apply induction on t:

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Reflection in an arbitrary theory

case f(t1, ..., tn).

I(f(t1, ..., tn)) = I(f)(I(t1), ..., I(tn))

= Î(f)(I(t1), ..., I(tn)) by definition of Î

= Î(f)(I(evalσ(e, pt1q)), ..., I(evalσ(e, ptnq))) by I.H.

= Î(f(evalσ(e, pt1q), ..., evalσ(e, ptnq)))

= Î(evalσ(e, ḟ(pt1q, ..., ptnq))) by (Axevalf
)

= Î(evalσ(e, pf(t1, ..., tn)q)) by (Gdlf)

�

case xi ∈ Varσ. Induction on e:

case empty

I(xi) = Î(evalvσ)(empty, vσ
i) by definition of Î

= Î(evalvσ)(empty, pxiq) by (Gdlx)

= Î(evalvσ(empty, pxiq))

�

case pushτ (e′, vτ
j , xj)

case τ 6= σ

Î(evalvσ(pushτ (e′, vτ
j , xj), pxiq))

= Î(evalvσ)(pushτ (e′, vτ
j , xj), pxiq)

= Î(evalvσ)(e′, pxiq) by definition of Î

= Î(evalvσ(e′, pxiq))

= I(xi) by I.H.

�

case τ = σ & i 6= j

Î(evalvσ(pushτ (e′, vτ
j , xj), pxiq))

= Î(evalvσ(pushσ(e′, vσ
j , xj), pxiq))

= Î(evalvσ)(pushσ(e′, vσ
j , xj), pxiq)

= Î(evalvσ)(e′, pxiq) by definition of Î

= Î(evalvσ(e′, pxiq))

= I(xi) by I.H.

�

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Induction by Reflection

case τ = σ & i = j

Î(evalvσ(pushτ (e′, vτ
j , xj), pxiq))

= Î(evalvσ(pushσ(e′, vσ
i , xi), pxiq))

= Î(evalvσ)(pushσ(e′, vσ
i , xi), pxiq)

= Î(xi) by definition of Î

= I(xi) by definition of Î

�

This concludes the end of the proof of Proposition 2.

Therefore we can reason analogous to before.

I 6� P (t1, ..., tn)

⇐⇒ I(P) 6∋ P (t1, ..., tn)

⇐⇒ I(P) 6∋ 〈Î(evalσ(e, pt1q)), ..., Î(evalσ(e, ptnq))〉 by Proposition 2

⇐⇒ Î(P) 6∋ 〈Î(evalσ(e, pt1q)), ..., Î(evalσ(e, ptnq))〉 by definition of Î

⇐⇒ Î 6� P (evalσ(e, pt1q), ..., evalσ(e, ptnq))

⇐⇒ Î 6� (e �̇ Ṗ (pt1q, ..., ptnq)) by (AxP)

⇐⇒ Î 6� (e �̇ pP (t1, ..., tn)q) by (GdlP)

Now that we have established this know that if there is a model 〈∆, I〉
such that 〈∆, I〉 6� P (t1, ..., tn), then there is a model 〈∆, Î〉 such that Î 6�
(e �̇ pP (t1, ..., tn)q). This concludes our proof of the case “ =⇒ ” of the
biconditional, and therefore as well the induction case for φ = P (t1, ..., tn) in
the proof of our main Theorem 2. �

case s ≈ t. This case is exactly the same as for uninterpreted predicates, since equality
can be thought of as a binary predicate.

We have therefore established that Theorem 2 indeed holds.

Let us summarize the contents of this rather formal section: Given an arbitrary finitely
axiomatizable theory T , we defined its reflective extension Ṫ , obtained by adding a
finite number of sorts, and symbols, and axioms to the theory. We showed that every
model M of T can be extended to a model Ṁ of Ṫ , and which implies conservativeness
and consistency of Ṫ (given T itself is consistent). Further we showed that Ṫ has a
truth predicate for T , namely λx.(empty �̇ x) which will be vital for our applications of
extending theories.

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Finitely axiomatizing induction

4.3 Finitely axiomatizing induction

Based on the observations of the last section we will now show how to build a finite
theory that entails the first order induction scheme. The key idea here is the following:
When defining PA, mathematicians do not write down the infinite number of induction
axioms, as their amount of time and paper is finite. Instead they quantify over formulas
on the meta-level. This is what we will do as well. Given a theory T , one can think of
the reflective extension Ṫ as the meta-level language mathematicians use, which allows
them to quantify over formulas.

4.3.1 Natural Numbers

In order to finitely axiomatise PA, we need a finite fragment of PA to start with. The
obvious choice is Q, which we defined as PA without the induction formulas. In the
next step we build the reflective extension Q̇. This theory has two essential properties.
Firstly it has a sort of formulas form, hence we can quantify over this sort. Secondly we
have a truth predicate for Q in Q̇, which means we can represent an arbitrary formula of
Q in a single term in Q̇.

Now we can define PA′, a theory that is a conservative extension of PA. Therefore we
will add one axiom to Q̇, called the reflective induction axiom:

∀φ : form.
(

True[φ, 0]∧ (˙Inat)

∀n : nat.(True[φ, n] → True[φ, sn])

→ ∀n : nat.True[φ, n]
)

where

True[φ, n] := (pushnat(empty, vnat

0 , n) �̇ φ)

PA′ = Q̇ ∪ {İτ }

We now need to establish the fact that PA′ is indeed a conservative extension of PA.
Therefore we will need the following auxiliary lemma:

Ṫ � (pushσ(e, pxiq, t) �̇ pφ[xi]q) ↔ (e �̇ pφ[t]q) (4.6)

This lemma can be proven rather straight forward by induction on the formula φ, and
since it will only involve a lot of technical details, and no real insights, we will skip
proving it.

Proving that PA′is a conservative extension of PA means need to show that every formula
in FormPA is provable in PA′ iff it is provable in PA. We will prove both directions of
this biconditional separately:

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Induction by Reflection

∀φ ∈ FormPA.(PA � φ =⇒ PA′ � φ) We will show this by showing that all
axioms of PA are derivable in PA′. Since Q is a subset of both PA, and PA′we
only need to deal with the induction axioms. This is rather straight forward. Let
φ[0] ∧ ∀n.(φ[n] → φ[n + 1]) → ∀n.φ[n] be an arbitrary instance of the first order
mathematical induction scheme. So let us instantiate the reflective induction axiom (˙Inat)
with pφ[x0]q. Hence we get

PA′ ⊢True[pφ[x0]q, 0]∧

∀n : nat.(True[pφ[x0]q, n] → True[pφ[x0]q, sn])

→ ∀n : nat.True[pφ[x0]q, n]

which we can expand to

PA′ ⊢(pushnat(empty, vnat

0 , 0) �̇ pφ[x0]q)∧

∀n : nat.((pushnat(empty, vnat

0 , n) �̇ pφ[x0]q) → (pushnat(empty, vnat

0 , sn) �̇ pφ[x0]q))

→∀n : nat.(pushnat(empty, vnat

0 , n) �̇ pφ[x0]q)

By lemma (4.6) we can derive

PA′ ⊢(empty �̇ pφ[0]q)∧

∀n : nat.((empty �̇ pφ[n]q) → (empty �̇ pφ[sn]q))

→∀n : nat.(empty �̇ pφ[n]q)

Applying Theorem 2, the fact that λx.(empty �̇ x) is our truth predicate, we get

PA′ ⊢ φ[0] ∧ ∀n : nat.(φ[n] → φ[sn]) → ∀n : nat.φ[n]

Which concludes the first part of the proof. �

∀φ.(PA′ � φ =⇒ PA � φ) We will show this show this contrapositive. Suppose we
have some formula φ such that PA 6� φ. Hence there is a counter-model M, such that
M � PA but M 6� φ. Since Q ⊂ PA, it holds that M � Q. As we established in
Section 4.2.4 we can extend the model M to the reflective model Ṁ such that Ṁ � Q̇,
and that Ṁ 6� φ. We now just need to establish that Ṁ is a model of PA′, in order to
show our goal.

In Ṁ the sort form is interpreted as the actual set of formulas Form. Therefore let φ[x0]
be an arbitrary of these formulas. Since M � PA, we have that Ṁ � PA, which implies
that

Ṁ � φ[0] ∧ ∀n : nat.(φ[n] → φ[sn]) → ∀n : nat.φ[n]

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Finitely axiomatizing induction

By Theorem 2 we can establish that

Ṁ �(empty �̇ pφ[0]q)∧

∀n : nat.((empty �̇ pφ[n]q) → (empty �̇ pφ[sn]q))

→∀n : nat.(empty �̇ pφ[n]q)

which can according to Lemma 4.6 be rewritten to

Ṁ �True[φ[x0], 0]∧

∀n : nat.(True[φ[x0], n] → True[φ[x0], sn])

→∀n : nat.True[φ[x0], n]

Since Ṁ interprets form formulas exactly as the set Form, and φ[x0] was an arbitrary
formula, this means that reflective induction axiom İτ holds for Ṁ. Therefore Ṁ models
PA′ but not φ, which concludes the second part of the proof. �

4.3.2 Arbitrary datatypes

The technique from the previous section can be lifted to arbitrary datatypes. Therefore,
again we translate the meta-level definition of the induction schemes Iτ for all our
datatypes Dτ to an equivalent reflective version. This means for a theory T , we build T ′,
by adding the axiom İτ to Ṫ for every datatype Dτ in the theory.

∀φ : form.
(

∧

c∈ctors

caseφ,c → ∀x : τ.True[φ, x]
)

(İτ)

where

caseφ,c := ∀∀
x1,...,xn

(

∧

i∈recursivec

True[φ, xi] → True[φ, c(x1, ..., xn)]
)

recursivec := {i | domΣ(c, i) = τ}

True[φ, n] := (pushτ (empty, vτ
0 , n) �̇ φ)

The proof of the equivalence of PA and PA′can be generalized straight forward for this
kind of theories. Therefore we will omit formalizing it.

In the case of extending Q to a conservative extension of PA, the axioms of constructor
disjointness (Disjτ), and injectivity (Injτ) were already present in Q. Thus for an
arbitrary inductive theory T with inductive datatypes DT we define the reflective
inductive extension T̈ as follows:

T̈ = T ∪ {(İτ), (Disjτ), (Injτ) | Dτ ∈ DT }

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Induction by Reflection

4.4 Other applications

As we saw our reflective extension can be nicely used to formalize the induction schemata
within pure first order logic. In the same way this approach can be taken further, in
order to finitely axiomatise other theories using axiom schemes.

One example for such a theory is Zermelo-Fraenkel set theory (ZFC). It contains the
axiom schema of replacement and the restricted comprehension schema, which can both
be formalised in the same way as in PA. Another theoretical use case for reflective
reasoning is finitely formalising modal logics, in which the class of Kripke frames for
which the logic is defined, is defined as axiom scheme. Since the languages of modal logics
are different from first-order languages, a translation to first-order logic, as presented in
[vB06], must be applied before formalising the axiom schemata in a reflective extension
of the translated theory.

Another interesting application we will briefly sketch out here, is using reflective reasoning
in order to finitely axiomatise the Hoare caluculus in first order logic. The base first
order language we need for that will need the following sorts:

• prog A sort of programs, since we want to reason about program correctness.

• expr A sort of integer expressions, since our programming language will only deal
with integers.

• form A sort of formulas, over integers we need in order to express pre and post
conditions for programs.

Therefore we first use a base theory of integers I, and build it’s reflective extension İ.
To the signature of this theory we add functions that can be thought of as constructors
of programs:

while :: expr×prog prog

if :: expr×prog×prog prog

seq :: prog×prog prog

asign :: varint×expr prog

Further we add a predicate that represents the Hoare triplet relation to our signature:

Hoare :: Pred(form×prog×form)

In order to axiomatise all rules of the Hoare calculus, we need another function symbol
subsint :: form×varint×termint form. This function can, if the reflective signature is
extended by some more helper functions, easily be axiomatised in order to behave like

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Other applications

the substitution of variables by terms within a formula. However, since this function is
not needed for implementing induction via reflection, we will omit the axiomatisation of
this function.

Finally we can add the universal closure of the following formulas as axioms to our theory
in order to define the Hoare calculus for partial correctness:

Hoare(φ ∧̇ b 6≈̇ 0̇, π1, ψ) ∧ Hoare(φ ∧̇ b ≈̇ 0̇, π2, ψ) → Hoare(φ, if(b, π1, π2), ψ)

Hoare(φ, π1, ξ) ∧ Hoare(ξ, π2, ψ) → Hoare(φ, seq(π1, π2), ψ)

Hoare(subsint(φ, v, e), π, ψ)

(empty �̇ φ →̇ φ′) ∧ Hoare(φ′, π, ψ′) ∧ (empty �̇ ψ′ →̇ ψ) → Hoare(φ, π, ψ)

Hoare(I ∧̇ b 6≈̇ 0̇, π, I) → Hoare(I,while(b, π), I)

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Experimental evaluation

Now that we have fixed our technique that allows us to approach induction in an arbitrary
theory T via translation to a finitely axiomatised conservative extension T̈ , we will see
how this approach compares to state-of-the-art solutions to inductive theorem proving.
Since our way of axiomatising induction heavily relies on reasoning in the reflective
extension Ṫ of a theory, we will first assess how well different solvers perform in reasoning
in the reflective setup, without the reflective induction axiom being present.

5.1 Problems

As mentioned previously we will consider two classes of problems, which we will call
Refl and Ind. Refl does contain simple problems that require reasoning in the reflective
extension of some base theory. Ind is a set of problems that requires reasoning about
inductive datatypes, without any need for reflective reasoning per se. Since many of the
benchmarks have the same axioms, but different conclusions a list of all the base theories
is given in table 5.1.

5.1.1 Reflective

This problem set aims at testing how well different state-of-the-art theorem provers
perform reasoning in the reflective extension of theories. The problem set is split into
two parts: Refl0, and Refl1.

The group Refl0 is the simplest one. For every theory T ∈ {N + Leq + Add + Mul,N +
L+Pref +App}, and any axiom α ∈ T we try to proof the validity of Ṫ ⊢ (empty �̇ pαq).
Since we established that λx.(empty �̇ x) is the truth predicate of T , and the fact that α
is an axiom, we know that these consequence assertions indeed hold.

Refl1, the second part of the benchmark set Refl, involves reasoning in the reflective
extension Ṫ of some theory as well. But in this case not the reflective version of the

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Experimental evaluation

Name Theory

N
data nat = zero | s(nat)

Leq

≤:: Pred(nat×nat)
∀x.(x ≤ x) (1)

∀x, y.((x ≤ y) → (x ≤ s(y))) (2)

Add

+ :: nat×nat nat

∀y.(zero + y) ≈ y (1)
∀x, y.(s(x) + y) ≈ s((x+ y)) (2)

Mul

∗ :: nat×nat nat

∀y.(zero ∗ y) ≈ zero (1)
∀x, y.(s(x) ∗ y) ≈ (y + (x ∗ y)) (2)

L
data lst = nil | cons(nat, lst)

Pref

pref :: Pred(lst×lst)
∀x.pref(nil, x) (1)

∀a, x.¬pref(cons(a, x), nil) (2)
∀a, b, x, y.(pref(cons(a, x), cons(b, y)) ↔ (a ≈ b ∧ pref(x, y))) (3)

App

++ :: lst×lst lst

∀r.(nil ++r) ≈ r (1)
∀a, l, r.(cons(a, l) ++r) ≈ cons(a, (l ++r)) (2)

E

a :: α b :: α
c :: α p :: Pred(α)

q :: Pred(α) r :: Pred(α)

Id
id :: nat nat

∀x.id(x) ≈ x (1)

Eq

equal :: Pred(nat×nat×nat)
equal(zero, zero, zero) ↔ ⊤ (1)

∀y, z.(equal(zero, s(y), z) ↔ ⊥) (2)
∀y, z.(equal(zero, y, s(z)) ↔ ⊥) (3)
∀x, z.(equal(s(x), zero, z) ↔ ⊥) (4)
∀x, y.(equal(s(x), y, zero) ↔ ⊥) (5)

∀x, y, z.(equal(s(x), s(y), s(z)) ↔ equal(x, y, z)) (6)

Rev

rev :: lst lst

rev(nil) ≈ nil (1)
∀x, xs.rev(cons(x, xs)) ≈ (rev(xs) ++cons(x, nil)) (2)

Rev′

rev′ :: lst lst revAcc :: lst×lst lst

∀x.rev′(x) ≈ revAcc(x, nil) (1)
∀acc.revAcc(nil, acc) ≈ acc (2)

∀acc, x, xs.revAcc(cons(x, xs), acc) ≈ revAcc(xs, cons(x, acc)) (3)

Table 5.1: Theories used for the experiments.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Solvers

Theory Conjecture id

E p∀x : α.x ≈ xq eqRefl

E p∀x, y, z : α.((x ≈ y ∧ y ≈ z) → x ≈ z)q eqTrans

E pp(a) ∨ ¬p(a)q excludedMiddle-0

E p∀x.(p(x) ∨ ¬p(x))q excludedMiddle-1

E p∀x.p(x) → p(a)q universalInstance

E p(p(a) → q(b)) ↔ (¬q(b) → ¬p(a))q contraposition-0

E p∀x, y.((p(x) → q(y)) ↔ (¬q(y) → ¬p(x)))q contraposition-1

E p((p(a) ∧ q(b)) → r(c)) ↔ (p(a) → (q(b) → r(c)))q currying-0

E p∀x, y, z.(((p(x) ∧ q(y)) → r(z)) ↔ (p(x) → (q(y) → r(z))))q currying-1

N + Add p(1 + 2) ≈ 3q addGround-0

N + Add p(8 + 5) ≈ 13q addGround-1

N + Add p∃x.(8 + x) ≈ 13q addExists

N + Add p∃z.∀x.(z + x) ≈ xq existsZeroAdd

N + Add + Mul p(3 ∗ 4) ≈ 12q mulGround

N + Add + Mul p∃x.(3 ∗ x) ≈ 12q mulExists

N + Add + Mul p∃z.∀x.(z ∗ x) ≈ zq existsZeroMul

N + L + App p(nil ++cons(7, nil)) ≈ cons(7, nil)q appendGround-0

N + L + App p(cons(3, nil) ++cons(7, nil)) ≈ cons(3, cons(7, nil))q appendGround-1

N + L + App p∃x.(cons(3, nil) ++x) ≈ cons(3, cons(7, nil))q appendExists

N + L + App p∃n.(n++cons(7, nil)) ≈ cons(7, nil)q existsNil

Table 5.2: Conjectures and theories used for the benchmark set Refl1. The number
symbols used are abbreviations for the corresponding numerals.

axioms, but the reflective versions of some simple consequence of T are to be proven.
Table 5.2, lists all conjectures and the related theories, that are to be proven in this set
of benchmarks.

5.1.2 Inductive

Ind contains a set of simple properties, that require reasoning about inductive datatypes.
Every problem T � φ in this set of benchmarks will be approached in two way. Firstly
proving it directly for the solvers that support induction natively, and secondly translating
the problem to T̈ � φ. Table 5.3 lists the set of conjectures used for this experiment.

5.2 Solvers

For the experimental evaluation two (non-disjoint) sets of solvers were considered. Firstly
solvers that support induction natively, and secondly various general-purpose theorem
provers that are able to deal with many-sorted quantified first-order formulas. The solvers
considered where the SMT-solvers Cvc4 and Z3, the superposition-based first-order
theorem prover Vampire, the higher-order theorem prover Zipperposition that uses a
combination of superposition and term rewriting, and the inductive theorem prover Zeno,
that is designed to proof inductive properties of a Haskell-like programming language.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Experimental evaluation

Theory Conjecture id

N + Add ∀x, y.(x+ y) ≈ (y + x) addCommut

N + Add + Mul ∀x, y.(x ∗ y) ≈ (y ∗ x) mulCommut

N + Add ∀x, y, z.(x+ (y + z)) ≈ ((x+ y) + z) addAssoc

N + Add + Mul ∀x, y, z.(x ∗ (y ∗ z)) ≈ ((x ∗ y) ∗ z) mulAssoc

N + Add ∀x.(x+ zero) ≈ x addNeutral

N + Add + Mul ∀x.(x ∗ 1) ≈ x addNeutral-0

N + Add + Mul ∀x.(1 ∗ x) ≈ x addNeutral-1

N + Add + Mul ∀x.(x ∗ zero) ≈ zero mulZero

N + Add + Mul ∀x, y, z.(x ∗ (y + z)) ≈ ((x ∗ y) + (x ∗ z)) distr-0

N + Add + Mul ∀x, y, z.((y + z) ∗ x) ≈ ((y ∗ x) + (z ∗ x)) distr-1

N + Leq ∀x, y, z.(((x ≤ y) ∧ (y ≤ z)) → (x ≤ z)) leqTrans

N + Leq ∀x.(zero ≤ x) zeroMin

N + Leq + Add ∀x, y.(x ≤ (x+ y)) addMonoton-0

N + Leq + Add ∀x.(x ≤ (x+ x)) addMonoton-1

N + Add + Id ∀x, y.(id(x) + y) ≈ (y + x) addCommutId

N + L + App ∀x, y, z.(x++(y ++z)) ≈ ((x++y) ++z) appendAssoc

N + L + Pref + App ∀x, y.pref(x, (x++y)) appendMonoton

N + Eq ∀x.equal(x, x, x) allEqRefl

N + Eq ∀x, y, z.(equal(x, y, z) ↔ (x ≈ y ∧ y ≈ z)) allEqDefsEquality

N + L + App + Rev ∀x.rev(rev(x)) ≈ x revSelfInvers

N + L + App + Rev ∀x.(x++(rev(x) ++x)) ≈ ((x++rev(x)) ++x) revAppend-0

N + L + App + Rev ∀x.rev((x++(x++x))) ≈ rev(((x++x) ++x)) revAppend-1

N + L + App + Rev + Rev′ ∀x.rev(x) ≈ rev′(x) revsEqual

Table 5.3: Conjectures and theories used for the benchmark set Ind

Since Vampire in many cases uses incomplete heuristics, per default it was run with a
complete strategy forced as well. This configuration if referred to as VampireComplete.
Zipperposition supports replacing equalities by dedicated rewrite rules, which comes
at the cost of the theoretical loss of some provable problems, but yields a significant
gain of performance in practice. Zipperposition with these rewrite rules enabled will
be referred to as ZipRewrite. As mentioned in Section 3.0.4, Cvc4 allows for theory
exploration. Cvc4 with this heuristic enabled is referred to as Cvc4Gen. Table 5.4
gives an overview of all solvers used, and lists their input format and the command line
options enabled for running them.

All solvers were run with a timeout of 10 seconds per problem.

5.3 Implementation

As there is no well-established standardized input format for inductive theorem provers,
the translations to the input formats listed in Table 5.4, needed to be applied. Therefore
the problems are written in an domain-specific language, that is syntactically very close
to the mathematical notation of first-order formulas. This language is parsed by a
Haskell9 program, which performs the translation λx.pxq (translating to the reflective
version of a formula) , λx.ẋ (translating to the reflective extension of a theory), and
λx.ẍ (translating to reflective inductive extension of a theory), as well as serialization

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Results

Solver Induction Input format Commandline Options

Cvc4 X Smtlib2 -quant-ind

Cvc4Gen X Smtlib2 -conjecture-gen -quant-ind

Z3 – Smtlib2 default mode

Vampire X Smtlib2 -schedule casc -induction struct

VampireComplete X Smtlib2 -induction struct -s 1

Zipperposition X Zf default mode

ZipRewrite X Zf default mode

Zeno X ZenoHaskell default mode

Table 5.4: An overview over solvers used for the experiments.

benchmark C
v
c
4

C
v
c
4
G

e
n

Z
3

V
a
m
p
ir

e

V
a
m
p
ir

e
C
o
m
p
le

t
e

Z
ip

p
e
r
p
o
si
t
io

n

Z
ip

R
e
w

r
it

e

N+Leq+Add+Mul-ax0 X X X X X X X

N+Leq+Add+Mul-ax1 X X X – – – X

N+Leq+Add+Mul-ax2 X X X X X – X

N+Leq+Add+Mul-ax3 X X X – – – X

N+Leq+Add+Mul-ax4 X X X X X – X

N+Leq+Add+Mul-ax5 X X X – – – X

N+L+Pref+App-ax0 X X X X X X X

N+L+Pref+App-ax1 X X X X X – X

N+L+Pref+App-ax2 X X X – – – –

N+L+Pref+App-ax3 X X X X X – X

N+L+Pref+App-ax4 X X X – – – X

Table 5.5: Results of the benchmark set Refl0. Each benchmark’s id has the format
<thry>-ax<n> where n is the index of the axiom of the theory thry of which the
reflective version should be proven.

of this domain-specific language to different output formats. The source code of this
program (including a command line interface to the previously mentioned translations,
and serializations) is publicly available on GitHub1.

5.4 Results

In Table 5.5 we can see the results of solvers proving reflective versions of conjectures.
What is striking is that the SMT solvers Cvc4, and Z3, can solver all benchmarks of
this category, while the problem seems to be harder for the saturation based theorem

1https://github.com/joe-hauns/msc-automating-induction-via-reflection

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/joe-hauns/msc-automating-induction-via-reflection

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Experimental evaluation

benchmark C
v
c
4

C
v
c
4
G

e
n

Z
3

V
a
m
p
ir

e

V
a
m
p
ir

e
C
o
m
p
le

t
e

Z
ip

p
e
r
p
o
si
t
io

n

Z
ip

R
e
w

r
it

e

eqRefl X X X X X X X

eqTrans X X X – – – X

excludedMiddle-0 X X X X X X X

excludedMiddle-1 X X X X X X X

universalInstance – – X X X X X

contraposition-0 X X X X X X X

contraposition-1 X X X – – – X

currying-0 X X X X X – X

currying-1 X X X – – – X

addGround-0 X X X X X X X

addGround-1 X X – – – X X

addExists – – – – – – X

existsZeroAdd – – – – – – –

mulGround X X X – – – X

mulExists – – – – – – X

existsZeroMul – – – – – – –

appendGround-0 X X X X X X X

appendGround-1 X X X – – X X

appendExists – – – – – – X

existsNil – – X X X – X

Table 5.6: Lists the results of solvers on the benchmark set Refl1. The benchmark id
is the same as the id of the conjecture of which the reflective version should be proven,
listed in Table 5.2.

provers. Further ZipRewrite does pretty well in this class of benchmarks as well.
A potential reason for this difference in performance between the ordinary saturation
approach and ZipRewrite might have to do with the following: For ZipRewrite

equalities for function definitions of the reflective extensions are translated to rewrite
rules that are oriented in way that they would intuitively be oriented by a human, this
means that for example the axiom (Axevalf

) can be evaluated as one would intuitively do.
In contrast Vampire, using superposition with the simplification ordering Knuth-Bendix
Ordering (KBO) will orient this equality in the wrong way, which means that it won’t
be able to evaluate it in the intuitive way, which might be the reason for the difference in
performance.

In Table 5.6 we see that the performance of the SMT-solvers drops as soon as more

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Results

benchmark C
v
c
4

C
v
c
4
G

e
n

V
a
m
p
ir

e

V
a
m
p
ir

e
C
o
m
p
le

t
e

Z
ip

p
e
r
p
o
si
t
io

n

Z
ip

R
e
w

r
it

e

Z
e
n
o ¨

C
v
c
4 ¨

C
v
c
4
G

e
n

Z̈
3

¨

V
a
m
p
ir

e
¨

V
a
m
p
ir

e
C
o
m
p
le

t
e

¨

Z
ip

p
e
r
p
o
si
t
io

n

¨

Z
ip

R
e
w

r
it

e

addCommut X X X X X X X – – – – – – –

mulCommut – – – – – – – – – – – – – –

addAssoc X X X X X X X – – – – – – –

mulAssoc – – – – – – – – – – – – – –

addNeutral X X X X X X X – – – – – – –

addNeutral-0 X X X X X X X – – – – – – –

addNeutral-1 X X X X X X X – – – – – – –

mulZero X X X X X X X – – – – – – X

distr-0 – – – – – – – – – – – – – –

distr-1 – – – – – X – – – – – – – –

leqTrans – – – – – – – – – – – – –

zeroMin X X X X X X – – X X – – X

addMonoton-0 – – – – – – – – – – – – –

addMonoton-1 – – – – – – – – – – – – –

addCommutId – X X X X X X – – – – – – –

appendAssoc X X X X X X X – – – – – – –

appendMonoton X X X X X X X – – – – – – –

allEqRefl X X X X X X – – – X – – – –

allEqDefsEquality X X – – X X – – – – – – – –

revSelfInvers – – – – X – – – – – – – – –

revAppend-0 – – – – – X – – – – – – – –

revAppend-1 – – – – – X – – – – – – – –

revsEqual – – – – – – – – – – – – – –

Table 5.7: Lists the results of running solvers on the benchmark set Ind. The benchmark
ids are the ones of the conjectures of Table 5.3. For every solver Slvr that supports
full first-order logic with equality as input, there is a solver ¨Slvr using the reflective
inductive theory as an input instead of using the solvers native handling of induction.
The greyed out cells mean that the problem cannot be translated to the solvers input
format.

complex reasoning is involved. Especially as soon as existential quantification is involved
the SMT solvers can hardly solve any of the problems. This is not surprising since SMT
solvers target at solving quantifier-free fragments of first-order logic.

The pattern of performance within the superposition provers is the same as before.
ZipRewrite does a bit better than the superposition solvers without any explicitly
specified rewrite rules, which might be accounted to the same reason as before.

Table 5.7 lists the results of the final experiment. As the previous experiments have shown
reasoning in the reflective theories is hard even for very simple conjectures. Therefore it is
not surprising that it is even harder for problems that require inductive reasoning to solve.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Experimental evaluation

Nevertheless there are some problems that can be solved using the reflective inductive
extension instead of built-in induction heuristics. The most striking result is that Z3 is
able to solve benchmarks that involve induction, even though it is a SMT-solver without
any support for inductive reasoning.

5.5 Discussion

Our experimental results show that meta-level reasoning using a reflective extension of
a theory is hard, hence replacing induction by reflective reasoning does not make the
problem easier at once. Despite that, the experiments show that some solvers can solver
problems with this approach to induction, which can be considered a proof of concept.

In fact this approach could become more feasible if solvers would have techniques that
are more tuned to this kind of benchmarks.

One problem mentioned before might be the ordering of equalities in saturation algorithms.
This could be approached using different term orderings like Lexicographical Path
Ordering (LPO), transfinite KBO [LW07], or KBO with weight functions tailored for
this application.

Another approach to make reasoning in these inductive extensions more feasible, would
be to consider the sorts introduced when extending the signature (varσ, termΣ, form, and
env) as inductive datatypes themselves. Obviously it would not make sense to use solvers’
support for inductive reasoning on them, and not on the original signature, but since
many SMT solvers support reasoning about term algebras without full induction, this
could yield a performance boost.

A further possibility to make reflective reasoning more feasible is to encode the reflective
extension differently. For example the choice of the primary connectives for the reflective
extension (in our case ∨̇, and ¬̇) could have effects on proof search as well.

What our last experiment also highlights is the fact that induction is hard; with or
without reflective reasoning involved. Properties that seem trivial for a human like
commutativity of multiplication, cannot be proven by any of the solvers we investigated.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Conclusion

We saw different approaches to inductive reasoning, that can be categorized in what
many ways. The categorization that was most important for our needs is the distinction
between first-order induction, like in the theory PA, and second-order induction, like in
TA.

As theories involving second-order induction are not even semi-decidable we decided to
focus on developing a method for first-order induction. First-order induction involves
an infinite number of axioms, namely all instances of the induction scheme. As modern
theorem provers are computer programs, they need a finite input, which means this
infinite number of axioms is impractical. Mathematical practice is to write down these
infinite sets of axioms as schemes of formulas. Alas these schemes of axioms are not
part of standard input syntax of todays theorem proves. In order to circumvent this
shortcoming we developed a method to express these schematic definitions in the language
of first-order logic by means of a conservative extension, which we called the reflective
extension of a theory.

We showed that this reflective extension is indeed a conservative extension of the base
theory, and contains a truth predicate, which gives us the means to quantify over formulas
within the language of first-order logic.

Using this method we replaced the first-order induction scheme of PA by the axioms
needed for the reflective extension, and a single additional axiom, called the reflective
induction axiom, and proved that the resulting theory is indeed a conservative extension
of PA. Further we demonstrated how to replace the induction scheme of a theory with
arbitrary inductive datatypes. This kind of conservative extension is what we called the
reflective inductive extension.

Additionally we sketched how this approach can be used to formalize the Hoare calculus
in pure first-order logic, using the reflective extension of a theory of integer arithmetic.

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Conclusion

Our experiments show that reasoning in the reflective extension of a theory is hard for
modern theorem provers, even for very simple problems. Despite the bad performance in
general, we have a positive result serving as a proof of concept of our method, namely
that the SMT-solver Z3, which does not support induction natively was able to solve
problems that require inductive reasoning. Further our experiments confirmed that
inductive reasoning is hard for most state-of-the-art theorem provers, even for very simple
problems. This confirms again the need for new methods to be developed in inductive
reasoning.

This thesis gives theoretical foundations, and a proof of concept for reflective reasoning.
Future work could go in two directions, practical and theoretical. Firstly specialized
reasoning procedures could be developed in order to make this work tractable in practice.
This could include rules that bypass the axioms that relate the formulas φ and pφq, and
instead replacing whole formulas by there reflective counterpart in one step, and vice
versa. As discussed in section 5.4 there are many heuristics that could be explored in
order to improve reasoning in this theory.
On the theoretical side an in-depth investigation of the ideas presented in section 4.4,
needs to be conducted. Further the relation between the reflective extension of a theory
with quantification over formulas, and second-order logic could be explored.

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[Aub79] Raymond Aubin. Mechanizing structural induction part II: strategies. Theor.
Comput. Sci., 9:347–362, 1979.

[Bar82] Jon Barwise. Handbook of mathematical logic. Elsevier, 1982.

[BBCW20] Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, and Uwe
Waldmann. Superposition for lambda-free higher-order logic. CoRR,
abs/2005.02094, 2020.

[Bek05] L D Beklemishev. Reflection principles and provability algebras in formal
arithmetic. Russian Mathematical Surveys, 60(2):197–268, apr 2005.

[BGP12] James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen. A
generic cyclic theorem prover. In Ranjit Jhala and Atsushi Igarashi, editors,
Programming Languages and Systems - 10th Asian Symposium, APLAS 2012,
Kyoto, Japan, December 11-13, 2012. Proceedings, volume 7705 of Lecture
Notes in Computer Science, pages 350–367. Springer, 2012.

[BIS92] Siani Baker, Andrew Ireland, and Alan Smaill. On the use of the constructive
omega-rule within automated deduction. In Andrei Voronkov, editor, Logic
Programming and Automated Reasoning,International Conference LPAR’92,
St. Petersburg, Russia, July 15-20, 1992, Proceedings, volume 624 of Lecture
Notes in Computer Science, pages 214–225. Springer, 1992.

[BM75] Robert S. Boyer and J. Strother Moore. Proving theorems about LISP
functions. J. ACM, 22(1):129–144, 1975.

[BR20a] Ahmed Bhayat and Giles Reger. A combinator-based superposition calculus
for higher-order logic. In Nicolas Peltier and Viorica Sofronie-Stokkermans,
editors, Automated Reasoning - 10th International Joint Conference, IJCAR
2020, Paris, France, July 1-4, 2020, Proceedings, Part I, volume 12166 of
Lecture Notes in Computer Science, pages 278–296. Springer, 2020.

[BR20b] Ahmed Bhayat and Giles Reger. A polymorphic vampire - (short paper).
In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated
Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France,

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

July 1-4, 2020, Proceedings, Part II, volume 12167 of Lecture Notes in
Computer Science, pages 361–368. Springer, 2020.

[BS11] James Brotherston and Alex Simpson. Sequent calculi for induction and
infinite descent. J. Log. Comput., 21(6):1177–1216, 2011.

[BT19] Stefano Berardi and Makoto Tatsuta. Classical system of martin-lof’s in-
ductive definitions is not equivalent to cyclic proofs. Logical Methods in
Computer Science, 15(3), 2019.

[BW99] Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL - lessons
learned in formal-logic engineering. In Yves Bertot, Gilles Dowek, André
Hirschowitz, Christine Paulin-Mohring, and Laurent Théry, editors, Theorem
Proving in Higher Order Logics, 12th International Conference, TPHOLs’99,
Nice, France, September, 1999, Proceedings, volume 1690 of Lecture Notes in
Computer Science, pages 19–36. Springer, 1999.

[CJRS12] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Hipspec:
Automating inductive proofs of program properties. In Jacques D. Fleuriot,
Peter Höfner, Annabelle McIver, and Alan Smaill, editors, ATx’12/WInG’12:
Joint Proceedings of the Workshops on Automated Theory eXploration and
on Invariant Generation, Manchester, UK, June 2012, volume 17 of EPiC
Series in Computing, pages 16–25. EasyChair, 2012.

[Com94] Hubert Comon. Inductionless induction, 1994.

[Cru17] Simon Cruanes. Superposition with Structural Induction. In Proc. of FRoCoS,
pages 172–188, 2017.

[DJ07] Lucas Dixon and Moa Johansson. Isaplanner 2: A proof planner in isabelle.
DReaM Technical Report (System description), 2007.

[DKW08] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of
automated techniques for formal software verification. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., 27(7):1165–1178, 2008.

[dN98] Hans de Nivelle. The resolution calculus, alexander leitsch. J. Log. Lang.
Inf., 7(4):499–502, 1998.

[EP20] Mnacho Echenim and Nicolas Peltier. Combining induction and saturation-
based theorem proving. J. Autom. Reason., 64(2):253–294, 2020.

[GKR18] Bernhard Gleiss, Laura Kovács, and Simon Robillard. Loop analysis by
quantification over iterations. In Gilles Barthe, Geoff Sutcliffe, and Margus
Veanes, editors, LPAR-22. 22nd International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning, Awassa, Ethiopia, 16-21
November 2018, volume 57 of EPiC Series in Computing, pages 381–399.
EasyChair, 2018.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[HHK+20] Márton Hajdú, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and
Andrei Voronkov. Induction with generalization in superposition reasoning.
In Christoph Benzmüller and Bruce R. Miller, editors, Intelligent Computer
Mathematics - 13th International Conference, CICM 2020, Bertinoro, Italy,
July 26-31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer
Science, pages 123–137. Springer, 2020.

[Hor11] Leon Horsten. The Tarskian Turn: Deflationism and Axiomatic Truth. Mit
Press. MIT Press, 2011.

[HUW14] John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem
proving. In Jörg H. Siekmann, editor, Computational Logic, volume 9 of
Handbook of the History of Logic, pages 135–214. Elsevier, 2014.

[HW17] Stefan Hetzl and Tin Lok Wong. Some observations on the logical foundations
of inductive theorem proving. Logical Methods in Computer Science, 13(4),
2017.

[KKRV16] Evgenii Kotelnikov, Laura Kovács, Giles Reger, and Andrei Voronkov. The
vampire and the FOOL. In Jeremy Avigad and Adam Chlipala, editors,
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs
and Proofs, Saint Petersburg, FL, USA, January 20-22, 2016, pages 37–48.
ACM, 2016.

[KP13] Abdelkader Kersani and Nicolas Peltier. Combining superposition and
induction: A practical realization. In Pascal Fontaine, Christophe Ringeissen,
and Renate A. Schmidt, editors, Frontiers of Combining Systems - 9th
International Symposium, FroCoS 2013, Nancy, France, September 18-20,
2013. Proceedings, volume 8152 of Lecture Notes in Computer Science, pages
7–22. Springer, 2013.

[KRV17a] Laura Kovács, Simon Robillard, and Andrei Voronkov. Coming to terms
with quantified reasoning. In Giuseppe Castagna and Andrew D. Gordon,
editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20, 2017,
pages 260–270. ACM, 2017.

[KRV17b] Laura Kovács, Simon Robillard, and Andrei Voronkov. Coming to Terms
with Quantified Reasoning. In Proc. of POPL, pages 260–270, 2017.

[Lei12] K. Rustan M. Leino. Automating induction with an SMT solver. In Viktor
Kuncak and Andrey Rybalchenko, editors, Verification, Model Checking,
and Abstract Interpretation - 13th International Conference, VMCAI 2012,
Philadelphia, PA, USA, January 22-24, 2012. Proceedings, volume 7148 of
Lecture Notes in Computer Science, pages 315–331. Springer, 2012.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[LW07] Michel Ludwig and Uwe Waldmann. An extension of the knuth-bendix or-
dering with lpo-like properties. In Nachum Dershowitz and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, 14th
International Conference, LPAR 2007, Yerevan, Armenia, October 15-19,
2007, Proceedings, volume 4790 of Lecture Notes in Computer Science, pages
348–362. Springer, 2007.

[Moo19] J. Strother Moore. Milestones from the pure lisp theorem prover to ACL2.
Formal Aspects Comput., 31(6):699–732, 2019.

[PCI+20] Grant Passmore, Simon Cruanes, Denis Ignatovich, Dave Aitken, Matt Bray,
Elijah Kagan, Kostya Kanishev, Ewen Maclean, and Nicola Mometto. The
imandra automated reasoning system (system description). In Nicolas Peltier
and Viorica Sofronie-Stokkermans, editors, Automated Reasoning, pages
464–471, Cham, 2020. Springer International Publishing.

[Pfe84] Frank Pfenning. Analytic and non-analytic proofs. In Robert E. Shostak,
editor, 7th International Conference on Automated Deduction, Napa, Cali-
fornia, USA, May 14-16, 1984, Proceedings, volume 170 of Lecture Notes in
Computer Science, pages 394–413. Springer, 1984.

[RK15] Andrew Reynolds and Viktor Kuncak. Induction for SMT Solvers. In Proc.
of VMCAI, pages 80–98, 2015.

[RSV18] Giles Reger, Martin Suda, and Andrei Voronkov. Unification with abstraction
and theory instantiation in saturation-based reasoning. In Dirk Beyer and
Marieke Huisman, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 24th International Conference, TACAS 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I,
volume 10805 of Lecture Notes in Computer Science, pages 3–22. Springer,
2018.

[RV19] Giles Reger and Andrei Voronkov. Induction in Saturation-Based Proof
Search. In Proc. of CADE, pages 477–494, 2019.

[SDE12] William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. Zeno: An
Automated Prover for Properties of Recursive Data Structures. In Proc. of
TACAS, pages 407–421, 2012.

[Sha91] Stewart Shapiro. Foundations without foundationalism: A case for second-
order logic, volume 17. Clarendon Press, 1991.

[Str12] Sorin Stratulat. A unified view of induction reasoning for first-order logic. In
Andrei Voronkov, editor, Turing-100 - The Alan Turing Centenary, Manch-
ester, UK, June 22-25, 2012, volume 10 of EPiC Series in Computing, pages
326–352. EasyChair, 2012.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[Tak13] Gaisi Takeuti. Proof theory, volume 81. Courier Corporation, 2013.

[vB06] Johan van Benthem. Modal frame correspondences and fixed-points. Stud
Logica, 83(1-3):133–155, 2006.

[Vor14] Andrei Voronkov. Avatar: The architecture for first-order theorem provers.
In Proceedings of the 16th International Conference on Computer Aided
Verification-Volume 8559, pages 696–710. Springer-Verlag, 2014.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Abstract
	Contents
	Introduction
	Motivation
	Goals

	Preliminaries
	Mathematical Logic
	Induction

	State of the Art
	Induction by Reflection
	Axiomatic theories of truth
	Reflection in an arbitrary theory
	Finitely axiomatizing induction
	Other applications

	Experimental evaluation
	Problems
	Solvers
	Implementation
	Results
	Discussion

	Conclusion
	Bibliography

