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A physiological model of human mobility: A global
study
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The movement of people has led to several challenges in terms of traffic congestion, energy

consumption, emissions and climate change. Human mobility modelling is currently descri-

bed mainly through socio-economic variables, such as travel time, travel costs, income and

car-ownership. The overall objective of this paper is to relate mobility behaviour based on

measurable entities of travel time and distance and the entities of speed. A simple underlying

mechanism of human mobility is presented based on the human energy expended. The

energy is related firstly to the average values of travel modes. Explicit formulas for the

distribution within each travel mode are developed and the concept is also shown to apply to

multi-modal mobility. The approach is described in its most basic and fundamental form, but

opens up perspectives for new applications and analyses approaches to transport modelling,

planning and appraisals. The approach shows that travel time and distance are consistently

inversely proportional and limited by the physiological power consumption. The basic

hypothesis and the related verifications is shown on all modal combinations of daily mobility

with a median R2 of around 0.8. The approach is validated using national travel surveys of

Germany, Switzerland, UK and US, spanning over five decades to 2018.
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Introduction

The implications of human mobility can be found not only
in transportation sciences and spatial economics, but also
in social sciences and politics due to the manifold effects it

has on the individual forms of mobility, infrastructure and urban
planning, but most notably in respect to the environment, energy
and climate (IEA, 2019; OECD, 2020). Such implications are also
strongly related to the individual travel behaviour, where the
individual traveller experiences the everyday-related mobility
behaviour and is therefore confined in his or her perception and
conditions of the personal mobility options. The individual dis-
cernments of mobility issues may therefore differ to the actual
issues and objective causes of mobility behaviour and their
implications on the social and environmental level.

In relation to this complexity, mobility studies should provide
explanations to such problems and the most important variables
characterising and explaining mobility behaviour are generally
assumed to be the entities of generalised cost, i.e. travel time and
—as part of the socio-economic variables—direct travel costs, car-
ownership or income, culminating in the socio-economic
approaches of utility theory (Barbosa et al., 2018; Ben-Akiva
and Lerman, 1985; McFadden, 2000; Mokhtarian and Chen, 2004;
Small, 2012). Despite the basic nature of these measures and their
“extreme importance for mobility modelling” (Barbosa et al.,
2018), their functional descriptions and respective predictions are
acknowledged to be ambiguous and have not been combined in a
consistent model (Brathwaite and Walker, 2018). Also, approa-
ches explaining the extent of daily travel time itself, have stated a
law of constant travel time or a universal constant across space
and time at around 1–1.3 h per day (Ahmed and Stopher, 2014;
Schafer, 1998). Although this phenomenon of the so-called travel
time budget (TTB) has been recognised since the early 1960s, it is
generally given as average statistics without decisive reasons for
its stability or conclusive underlying functional relationships
(Zahavi et al., 1981; Ahmed and Stopher, 2014; Mokhtarian and
Chen, 2004).

Other concepts of travel behaviour modelling have often been
made in analogies to the original physical concepts and especially
Newton’s mechanics, which have been used in two respects:
Firstly, in terms of Newton’s laws of motion as, e.g. in pedestrian
modelling (Helbing et al., 2001), and, secondly, in terms of the
gravity models (GM), where the frequency of trips is proportional
to the “masses of origin and destination” and the relative distance
(function), which was evaluated in the early stages by ticket prices
of train, bus and aeroplane (Barbosa et al., 2018; Lill, 1891;
Wilson, 2010, 1967; Zipf, 1946). Further developments evaluated
variants of the model structure (Wilson, 1967, 2010; Yan et al.,
2013), with respect to commuting or migration (Masucci et al.,
2013; Simini et al., 2012), opportunity and radiation modelling
(Ruiter, 1967; Simini et al., 2012; Stouffer, 1940; Yang et al., 2014),
comparisons of gravity vs. scaling, or maximum entropy (Anas,
1983; Brockmann et al., 2006; Bazzani et al., 2010; Song et al.,
2010; Wilson, 2010; Bettencourt, 2013; Chen, 2015; Curiel et al.,
2018).

Many of these studies have been developed based on motorised
means of transport, foremost on car travel, and in combination
with one specific travel purpose, i.e. commuting. However, if we
envisage a general model, then all modes of transport, including
the active modes with walking and cycling, and all purposes have
to be equally accounted for, irrespectively of their current level of
the modal split. This may be one main reason why such models
are often not accepted in the wider community as generally
applicable mobility models (Brathwaite and Walker, 2018).

In this paper, a physical/physiological mobility model (PHM)
is developed based on a physical methodology and physiological
energy effort, which consistently connects travel time, travel

distance, and the extent of daily travelling for all modes of
mobility. The basic hypothesis assumes the existence of specific
probability density functions for spending physiological energy
for one-, two- or multi-modal travel. The model, described in its
most basic and fundamental form, is termed ‘Grundmodell’,
focusing on the methodological consistency and the verification
using real data. As such, it can be used to explain the extent of
travel behaviour for all modes and modal combinations at a
macroscopic level. Furthermore, the TTB model is explained as
a natural consequence of the PHM; but the PHM concept has a
wider range of validity and additional explanatory power. It is
shown that, without any loss of generality (Kölbl and Helbing,
2003), the PHM can be systematically refined with further dis-
aggregation, such as trip purpose or income groups, or adjusted
for given cities or regions with a detailed knowledge of the
transport infrastructure. However, it should be noted that, the
comparison with the socio-economic variables is not an objective,
since it would go far beyond the scope of this paper. The focus on
the work described here is on the applicability to all forms of
human mobility, i.e. in mono- and multi-modality. This has not
been shown before in such a stringent and consistent metho-
dology and on such a comprehensive data set.

Material and data methods
Data and design of the study. The data collection has been
chosen, because these data are considered as the official travel
survey data, used by official government departments, and have
similar timespans of consecutive surveying. They still constitute
the “gold-standard” of travel surveying and are the longest,
publicly and electronically available surveys.

The selected countries for our data verification are—in
alphabetic order—Germany with the survey of KONTIV
(1976–2000) & MID (2000–2017) & the Mobility Panel
(1995–2017) (Bundesministerium für Verkehr und digitale
Infrastruktur, 2019), Switzerland (1974–2015) (Bundesamt für
Statistik, 2015), the UK National Travel Survey (1972–2016)
(Department for Transport, 2019) and the US National House-
hold Travel Survey (1977–2017) (U.S. Department of
Transportation, 2019).

The sources for all data have been referenced under the
reference section. All data are officially and publicly available,
either free of charge or for a data service charge. The changes in
survey methodologies within each national survey over the years
have been ignored as secondary as can be seen in the Germany
data, where two parallel surveying methods yielded matching
results. All data have been used without correction, since the
statistical background for weighting is not always clearly stated
and these have been ignored. Furthermore, all trips without any
distinction in trip purposes are considered as for a daily trip
making analysis, such a distinction cancels out.

Data pre-processing. The study data base was set up using the
following fields: household-identity number (id), person-id, day-
id, trip-id, year of travel, overall travel time and distance of a trip
and mode of transport (MoT), which were standardised with
overall door-to-door travel and main mode of transport.

The definition of the main mode of travel is the general
standard of travel surveying, since for example, walking is nearly
part of every trip. The following definition is generally used: “The
main mode of a trip is that used for the longest stage of the trip.”
“With stages of equal length the mode of the latest stage is used”
(Department for Transport, 2019). However, this level of trip
stage detail is not present in all the surveys, especially those the
earlier ones. An analysis of surveys with such a detailed
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distinction of trips into coded modal trip stages revealed that the
average number of modal stages per trip is around 1.1, limiting
the extent in the modal definition of main mode of transport. It is
to be noted that this distinction falls in the same methodological
category as multi-modal trip making and therefore this does not
change any assumptions of the PHM. However, most impor-
tantly, the travel surveys specify all modes and contain all modes
alike, including the active modes with walking and cycling. All the
surveys assume include walking trips except the UK NTS, which
makes a distinction regarding long walks (>1 mile) and short
walks (>50 yards). This distinction has been considered in the
above analysis, so only the days, which included short walks have
been used.

Correctness of records. Since there are incomplete data sets in
the data and to have a criteria for the correctness of records, two
conditions for the inclusion of an individual data set have been
defined. Firstly, the daily record according to all trips-ids has to
be complete with data for time, distance and mode of transport.
Secondly, the given record is within the physically possible limits,
for example, average trip speeds for walking (<33 km/h), cycle
(<70 km/h), car driver (<150 km/h), bus (<100 km/h), rail
(<250 km/h), which resulted in a data usage of more than 80% of
all data. This issue of the upper limits is also relevant for the
distribution tail. But the limits have been retained in order to
show the full range of validity of PHM.

Data analysis. The data analysis has been undertaken using
MATLAB. The code was generated with the standard functions of
the software package, including those for estimating the para-
meters of the distribution function.

The following steps were undertaken to produce a consistent
data base:

● Travel distance is given in kilometre and miles, where all
entries have been converted to kilometres.

● Travel time is used as given “overall travel time”.
● Mode of transport is given different forms. The early data

bases provide only the “main mode of transport” as the
mostly used mode throughout a trip. This has been cross-
checked with detailed stage information, when provided.
The definition of mode of transport is also combined with
other variables. In the US-data, for example, a distinction
between car-driver and car-passenger is given through a
combination with other variables. Hence, the combination
of “mostly used” and other related variables leads to an
overall standard definition of (main) mode of transport.

● Travel speed is used as a measure for correctness of the
single trips according to the physically possible criteria of
the MoT used as described above.

● Completeness and consistency of the single travel day was
checked where all the daily trip values have to stay within
the defined physical limits. This assumption is actually a
criteria for the carefulness of the surveyed person, i.e. that
he or she took the surveying seriously and therefore
provided correct values.

Over 80% of all the data were able to be used for the data
analysis following the application of this standardisation process.

Table 1 provides the number of observations regarding survey,
days and trips:

Theory and method
The PHM-Model. We consider a region, which is partitioned as a
grid structure of locations and where people travel between
locations, from ri

! to rj
!, using certain modes of transportation m

(e.g. walking, bike or velo, car, train, etc.) over a respective day
(Fig. 1). At a microscopic level, the number of people travelling
can be modelled by

N ri
!; rj

!; m
� �

¼ nt ri
!� �

nd rj
!� �

W ri
!; rj

!; m
� �

ð1Þ

where nt ri
!� �

and nd rj
!� �

contain all details about the total

number of travellers and available destinations in different areas.
Apart from travel time and distance, the mean human energy Em

ij

consumed during a trip is given with

Em
ij ¼ Pm ri

!� rj
!���

���=vm ð2Þ
where Pm is the mean power and vm the mean velocity of a
respective mode travelled. The power Pm is the human physio-
logical energy effort of an activity (Ainsworth et al., 2011; Bou-
chard et al., 1983; Dowd et al., 2018; Spitzer et al., 1982; WHO,
1985) given in kJ/min, since it is the human traveller per se, who
starts and stops walking, driving, riding a bus, etc.

In the following we consider a travel behavioural distribution

W ri
!; rj

!; m
� �

for a given mode m

W ri
!; rj

!; m
� �

� e�E=E0;m ð3Þ
where E0,m is a single global scaling factor and E is the associated
physiological energy consumed along a specific path.

This Grundmodell is based on the assumption that the
amount of human movement or travel is constrained
primarily by the physiological energy consumed, where energy
usage is a hallmark for every human activity (Dowd et al.,
2018; Spitzer et al., 1982). In the literature, physical activities
are quantitatively given in different units such as the
metabolic equivalent of task (MET), where 1 MET describes
3.5 mL of oxygen per minute per kilogram of an adult, often
characterised as the metabolic cost of resting quietly. A
respective activity is then assigned an intensity unit on the
basis of their rate of energy expenditure expressed as multiples
of 1 MET (Ainsworth et al., 2011). Although there are
approximate conversions with corrections factors of MET to
kJ/min, the tables with unconverted values of kJ/min (Spitzer
et al., 1982) are used for the developed approach, because they
can be directly applied to time and distance travelled.

In order to provide the most general form of a region, i.e.
without any human location-based accumulations or settlements,

a simple uniform distribution for both nt ri
!� �

and nd rj
!� �

is

assumed. Specifically, we set

nd rj
!� �

¼ nd ¼ ρd Δxð Þ2 ð4Þ
where ρd is the homogenous density of destinations. Considering
the travel movement on a path we introduce the density of path
length ℓ with ρ(ℓ)= 2πℓρd, where the number of available
destinations scales linearly with the circumference of a circle
around the origin as the path length ℓ increases (Fig. 1).

With Eq. (2) we obtain the physiological energy spent for a trip
with the path length ℓ as

E ¼ Pm‘=vm ð5Þ
Since Eq. (5) implies that

E � ‘

an additional energy term E should exist in the Grundmodell.
Thus, the corresponding probability density function is given by

ewm Eð Þ ¼ E�2
0;mEe

�E=E0;m ð6Þ
where the probability of a travel path with an energy effort
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Table 1 Number of days and trips per country survey and year, respectively.

Country Survey Year Days Trips Country Survey Year Days Trips

CH MZV 1974 5016 19,965 UK NTS 1972 10,023 35,624
CH MZV 1979 7388 26,846 UK NTS 1973 3068 10,747
CH MZV 1984 6912 27,644 UK NTS 1975 8480 27,713
CH MZV 1989 32,199 113,980 UK NTS 1976 9311 29,741
CH MZV 1994 14,950 54,474 UK NTS 1978 12,147 45,785
CH MZV 1995 664 2351 UK NTS 1979 6361 22,499
CH MZV 2000 24,064 95,290 UK NTS 1985 9734 37,047
CH MZV 2001 1256 4611 UK NTS 1986 9969 36,456
CH MMV 1994 14,924 54,429 UK NTS 1988 3479 13,192
CH MMV 1995 664 2349 UK NTS 1989 7277 28,043
CH MMV 2000 24,168 95,606 UK NTS 1990 6896 25,996
CH MMV 2001 1223 4528 UK NTS 1991 6954 25,973
CH MMV 2005 23,361 86,051 UK NTS 1992 6626 23,967
CH MMV 2006 5593 20,064 UK NTS 1993 6424 23,389
CH MMV 2010 47,245 180,310 UK NTS 1994 6440 24,085
CH MMV 2011 6342 23,392 UK NTS 1995 6376 22,995
CH MMV 2015 44,143 166,634 UK NTS 1995 6196 22,968
CH MMV 2016 4115 15,006 UK NTS 1996 5855 21,878
DE KONTIV 1975 21 55 UK NTS 1997 5794 21,489
DE KONTIV 1976 21,262 67,943 UK NTS 1998 5237 19,030
DE KONTIV 1977 30 86 UK NTS 1999 5356 19,193
DE KONTIV 1978 115 341 UK NTS 2000 6029 21,124
DE KONTIV 1982 19,592 69,179 UK NTS 2001 6066 21,678
DE KONTIV 1983 2543 8387 UK NTS 2002 11,944 41,340
DE KONTIV 1989 27,840 87,240 UK NTS 2002 12,490 42,262
DE KONTIV 1990 2739 8071 UK NTS 2003 14,507 49,163
DE MID 2001 1391 4869 UK NTS 2003 14,970 49,527
DE MID 2002 41,845 151,378 UK NTS 2004 14,399 48,597
DE MID 2008 38,543 139,900 UK NTS 2004 14,884 49,173
DE MID 2009 9344 32,126 UK NTS 2005 15,025 50,738
DE MID 2016 70,330 249,386 UK NTS 2005 15,557 51,252
DE MID 2017 149,990 527,718 UK NTS 2006 14,634 49,335
DE MobPan 1994 3235 12,148 UK NTS 2006 15,079 49,689
DE MobPan 1995 4680 16,643 UK NTS 2007 14,739 47,609
DE MobPan 1996 9607 36,962 UK NTS 2007 15,304 48,211
DE MobPan 1997 9747 37,849 UK NTS 2008 14,229 46,341
DE MobPan 1998 9495 36,445 UK NTS 2008 14,608 46,372
DE MobPan 1999 12,091 46,076 UK NTS 2009 14,914 48,748
DE MobPan 2000 10,229 37,621 UK NTS 2009 15,454 49,290
DE MobPan 2001 12,936 48,881 UK NTS 2010 13,974 45,435
DE MobPan 2002 11,267 42,846 UK NTS 2010 14,514 45,951
DE MobPan 2003 12,615 48,057 UK NTS 2011 528 1622
DE MobPan 2004 11,650 43,636 UK NTS 2011 13,755 43,050
DE MobPan 2005 10,885 41,312 UK NTS 2012 14,743 46,411
DE MobPan 2006 9859 37,776 UK NTS 2013 12,180 37,281
DE MobPan 2007 9983 37,193 UK NTS 2014 11,969 36,781
DE MobPan 2007 9983 37,193 UK NTS 2015 11,748 35,858
DE MobPan 2008 11,407 42,758 UK NTS 2016 11,340 33,994
DE MobPan 2008 11,407 42,770 UK NTS 2017 9727 27,684
DE MobPan 2009 10,360 38,583 UK NTS 2018 762 2147
DE MobPan 2009 10,360 38,583 US NHTS 1977 25,485 95,497
DE MobPan 2010 11,195 41,846 US NHTS 1978 8799 31,574
DE MobPan 2010 11,195 41,846 US NHTS 1983 7171 24,369
DE MobPan 2011 11,433 42,185 US NHTS 1984 658 2138
DE MobPan 2012 12,106 44,237 US NHTS 1990 28,155 110,018
DE MobPan 2013 12,213 41,472 US NHTS 1991 6628 25,014
DE MobPan 2014 16,831 61,643 US NHTS 1995 40,746 196,398
DE MobPan 2015 16,993 62,476 US NHTS 1996 32,611 152,950
DE MobPan 2016 17880 64601 US NHTS 2001 76919 347,373
DE MobPan 2017 19035 68153 US NHTS 2002 48,887 211,910

US NHTS 2008 172,426 760,309
US NHTS 2009 70,698 308,252
US NHTS 2016 143,717 605,583
US NHTS 2017 68,961 283,088
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E1 < E < E2 is given by eWm E1 <E <E2
� � ¼ R E2

E1
ewm Eð ÞdE. The

additional energy term E leads also to a natural reduction of
probabilities for low E, guaranteeing that ewm ! 0 for E→ 0
without any additional ad hoc regularisations. The average energy
expenditure 〈Em〉 from the frequency distribution can now be
calculated from Eq. (6) where

hEmi ¼
Z 1

0
E ewm Eð ÞdE ¼ 2E0;m ð7Þ

Multi-modal mobility and modal split. The travel survey data
are based on daily travel behaviour, where a household with one
or all persons is observed over a course of one or more days. The
modal mobility behaviour is thus defined in relation to the
number of modal trips made per person and day, i.e. the daily trip
making by using one, two or more modes of transport (MoT).

The daily travel effort of a person Enm
d can therefore be

calculated by Eq. (2) as

Enm
d ¼ ∑n ∑m Em

ij nð Þ ð8Þ
where n is the number of trips per day d, done by a person with
n-MoTs m, again satisfying the assumption of independence of

averaging. The probability density for a trip comprising multi-
modal travel is given by

ewnm Eð Þ ¼ E�2
0;nmEe

�E=E0;nm ð9Þ

where the only parameter E0,nm is again proportional to the
average energy effort for a specific combination of multi-modal
travel.

Results
Physiological travel distribution functions. Out of more than
870 daily modal combinations, only four have been selected.
These are common, quantitatively very different and still hold a
common combination, i.e. walking (wk), car-driver (cd), rail train
(rt), and their combination (wkcdrt). For such distributions, the
general definition of daily mobility is used, where a person uses
only one (main) mode of transport, i.e. walking, driving the car or
the train for the whole day (d1), or in the modal combination, or
using all three modes (d3).

An impression of the raw data variations and the modal
distribution functions on a linear scale is seen in Fig. 2. The raw
data show large variations, which could be reduced with larger
bins for smaller variations. With a focus on the Grundmodell and
without any loss of generality, a uniform distribution of all
travellers over the travelling area is assumed as already given with
Eqs. (6) and (9), leading to only one distribution function for all
travellers over the whole area.

Although a separate modal distribution function could be
depicted for each country, for reasons of modal differences and
clarity, only one modal function for all countries has been plotted
in Fig. 2. For the parameter analysis, fitting was done using the
maximum-likelihood method and for each modal behavioural set,
year and survey.

The main frequencies of travel lie in the region below 400 min
and above, i.e. to the right, the values approach zero. The selected
d1-modes with their respective colour are walk (wk), car driver
(cd), rail (rt); the d3-mode combination, (where the data are not a
combination of three former) is with car-driver & rail & walk
(cdrtwk). The markers show the different countries: Germany
kontiv & MID ▷, Germany mobility panel ▽, Switzerland ◯,
UK □ and US ⬨. The distribution functions give a representative
course of the data with w(0)= 0 and w(∞)→ 0. The data
frequencies are averages of the respective survey countries, the
distribution functions represent the overall averages.

Fig. 2 Travel time and distribution function. A comparison of daily modal travel time distributions per capita between the relative frequencies of the raw
data (individual markers) and the exemplary distribution function (continuous lines) of the proposed mobility model.

Fig. 1 Conception of study area. Schematic concept of a region described
as a grid structure of locations, origin ri

! and destination rj
! with a

visualisation of possible destinations at the same travel distance (circles).
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The model distributions show a correct asymptotic behaviour
by design, as the relative frequencies for t→ 0 and for t→∞ are
exactly zero. The model also captures the region of small travel
times, irrespective of the large variations in data. The main area of
the distributions is in the range between 0 to 360 min, or
statistically speaking, up to the 0.975-quantile or about five scaled
means of car travel.

Additionally, the overall average daily travel time per capita
and at their relative frequency of each surveyed year is depicted in
Fig. 2, representing the TTB-model (and marked by the greyish
points of d0). They are in full agreement with the values between
60 and 120 min of the TTB-literature (Ahmed and Stopher,
2014). This comparison of different modal distribution functions
shows the compliance with the theoretical distribution function,
its agreement with different modal travel behaviour and the
methodological relationship and consistency with previous TTB-
research.

To obtain a relational understanding of the distribution
functions with regard to the different physical entities, the daily
mobility frequency distributions of the different MoTs are plotted
in a logarithmic scale in Fig. 3. The functions over time in
minutes (being the equivalent plot to Fig. 2) are shown in Fig. 3a;
in Fig. 3b the distributions are depicted over distance in km, and
in Fig. 3c over travel energy in kJ. All three subfigures agree well
with the PHM-model (solid lines).

The three 1-modal modes are walk (wk), car-driver (cd), rail
(rt); the 3-modal mode is the combination of the three, i.e.
(cdrtwk). Figure 3a is exactly the same as Fig. 2 and presents
already a clearer course of the different data wk is within the
vicinity to cd and rt is close to cdrtwk. In Fig. 3b wk is far off cd;
cd, and particular rt and cdrtwk are relatively (very) close. In Fig.
3c all 1-modes collapse nearly to one curve and the 3-modal curve
is shifted, showing the amount of the different energy effort. All
data points <0.975 quantile are depicted. The other values would
over-proportionally distort the plot in terms of horizontally
flattening out, which is only due to the binning of a single
frequency observation in this area.

The microscopic relationship of Eqs. (2) and (8) and the
macroscopic distribution of Eqs. (6) and (9) enable, that travel
time (Fig. 3a) and travel distance (Fig. 3b) can be directly derived
from travel energy with the respective modal powers (Fig. 3c).
These functional relationships show the microscopic and
macroscopic agreement between all three plots and, thus, the
methodological consistency of the PHM.

In terms of goodness-of-fit of the 870 modal combinations, an
R2-values has been calculated for each modal distribution
function and for each survey year and country. These are then
classified according to the modal usage and depicted in boxplots
(Figs. 4–6). To capture nearly all modes such as air and many
multi-modal combinations, the minimum data size is set to >8.
Furthermore, to attain daily mobility in all combinations, the
following denotations apply: m= d1 means, that only 1 MoT is
used throughout the day; similarly m= d2 denotes the daily usage
of 2 MoTs, and m= d3, where 3 or more MoTs per day are used.
For example, a d1-behaviour is one, where a person only walks or
only takes a car, or only a bus or a train for the whole daily trip
making; a d2-behaviour is where a person takes the bus plus the
car, or the bike plus the train, and so on. Without a modal
distinction of daily travel behaviour, which is the general measure
in all standard travel statistics, the notation is m= d0.

The boxplots are given for the specific modes and modal
combinations and the three main indicators, i.e. daily travel time
(Fig. 4), daily travel distance (Fig. 5) and daily travel energy (Fig. 6),
providing the statistical accuracy to Fig. 3 for the three entities. It
should be noted that travel time and distance has been recorded
separately and are treated in that way. Travel time appears to be
well approximated by the distribution function with a general
median of R2 of around 0.9. By comparison, travel distance and
travel energy yield median values of around 0.8. The odd-one-out
appears to be car-passenger (cp), which shows greater differences in
relation to travel distance. This may be due to the estimation of
distance travelled or to the definition of the main mode of
transport, where walking stages may have a greater influence. Such
influences of modal combinations by stages may also be a reason
for the greater spread of values of d0 and d1, or this may indicate
that travelled distance is more sensitive than travelled time.

Estimation of the physiological modal powers. The stability
over time of daily travel by mode can be seen in Fig. 7. On an
overall level, denoted by d0, i.e., the stability of daily travel
behaviour without modal distinctions is well known from the
TTB-approaches (Ahmed and Stopher, 2014; Schafer, 1998). The
data are based on the raw data and the markers show the different
countries: Germany kontiv ▷, Germany mobility panel ▽,
Switzerland ◯, UK □ and US ⬨. Whereas travel time lies
between 50 and 200 min, i.e. a 4 fold scale, travel distance lies
between 3 km and 100 km, a 30-fold scale. Both entities, however,

Fig. 3 Travel distribution functions. Data and distribution functions of daily travel time a, distance b and energy c in a double logarithmic representation.
Note that the x-axis can now depict all values.
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Fig. 4 Boxplot of R2-value-distribution of daily travel time according the respective modes of transport. The abbreviations of the modes of transport are:
d0, d1, d2, d3, as defined above, wk—walking, vo—velo or bike, bs—stage bus, cd—car driver, cp—car passenger, rt—rail, and the respective combinations.

Fig. 5 Boxplot of R2-distribution of daily travelled distance according the respective modes of transport. The abbreviations of the modes of transport
are: d0, d1, d2, d3, as defined above, wk—walking, vo—velo or bike, bs—stage bus, cd—car driver, cp—car passenger, rt—rail, and the respective
combinations.

Fig. 6 Boxplot of R2-distribution of daily travel energy according the respective modes of transport. The abbreviations of the modes of transport are: d0,
d1, d2, d3, as defined above, wk—walking, vo—velo or bike, bs—stage bus, cd—car driver, cp—car passenger, rt—rail, and the respective combinations.
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show a stability of the years, irrespectively of the countries. The
differences in country values seem to be relatively consistent,
which could be traced back to the surveying methods. A similar
stability shown in Fig. 7, can also be observed with daily travel
behaviour of walking (wk), car-driver (cd) or rail train (rt). The
daily behaviour of the multi-modal combination (cdrtwk) are
fairly consistent, where the variations may be mainly linked to the
result of a lower numbers of observations.

The plot related to distance (Fig. 7b) indicates similarly stable
behaviour, with the modal values further apart, especially
walking. The TTB values shown in Fig. 7 are higher than for
car-driver, they are smaller with regard to distance.

To estimate the mobility effort we, firstly, make use of Eq. (5)
and Fig. 7 with respect to stable travel times and physiological
measurements of walking and cycling. That is, we make a rough
estimate of an average energy expenditure Ed1 of a daily single
modal behaviour, i.e. Ed1 ¼ Pm tð Þtm with m=wk, vo and
accounts for roughly around 800 kJ. By assuming this average
Ed1 for all daily single modal behaviour, we can estimate all other
average power values with Pm tð Þ ¼ Ed1=tm for the other d1-
behaviours, such as car-driver, bus, train, etc.

These averagemodal powers Pm tð Þ can, according to Eq. (2), be
applied to all related individual trips, yielding an energy
expenditure ϵi of an individual trip with ϵi ¼ Pm tð Þti;m, where
the ti,m are the raw data values. With that, all individual daily
travel energy expenditures ϵd ¼ ∑ϵi are then calculated for all
modal combinations, i.e. again d1- and also d2- and d3-modal
travel effort. This approach ensures, that the microscopic
variations of travel effort of each trip and each person with
different travel times is retained through all surveys and years.
Thus, the estimated 800 kJ is not a fixed constant, but only a
macroscopic average.

This method can further be substantiated by the following
considerations: Ed1 is different to 〈Em〉, i.e. Ed1 is an assumed
average value only for d1-modal behaviours, 〈Em〉 is a calculated
average from the distribution function of any modal combinations;
(only in idealised, theoretical terms, they are quantitatively equal,
and only for d1-values). Hence, the values in Fig. 3c still vary. Also,
from a theoretical point of view, the assumption of a modal average
power value is evaluated through the constant elasticity measure E0
of the exponential distribution function, where the distribution
function retains its validity over a scaling range of around 5.

Furthermore, since the speed vi of an individual trip i is vi= li/
ti= Pi(t)/Pi(l), the distance-related powers can be calculated with
Pi(l)= Pi(t)/vi. Including the modal classification, these power
values yield averages of 〈Pm(l)〉. In turn, these have to comply
with the distance-related distribution functions of Eq. (6) and
distance-related physiological measurements and constitutes a
further verification of Fig. 3c. The intrinsic nature of the physical
relationships shows that the methodology is also consistent with
outside measurements. Thus, the estimate of 800 kJ for Ed1 is only
a requirement for missing measurements in terms of power or
daily expenditure. It does not constitute a necessary pre-requisite,
and the relative ratios to the d2- or d3-modal behaviour will
remain proportional. However, and most importantly, the
methodology and the estimation approach allow replacement
with real measurements at each point of the procedure, without
any changes to the overall derivation.

Modal physiological powers and measurements. The estima-
tions of the modal physiological power of time and distance
according to speed can be seen in Fig. 8, providing a
time–distance–energy space of the PHM and the innate human
mobility behaviour, which occurs on an unconscious level. Figure 8
gives a 3-dimensional depiction with the common horizontal axis
of speed in km/h and split into two dimensions. The upper plots
show distance-specific modal powers in kJ/km, while the corre-
sponding lower plots show time-specific modal powers in kJ/min.
The left column uses a linear scaling while the right is doubly-
logarithmic, covering a larger range of values. Each point denotes
a modal power average of the respective survey years, using the
same country markers as in previous figures. The abbreviations of
the selected MoT are: ar—air, bs—stage bus, cd—car driver, rt—
rail, vo—velo or bike, wk—walking and the respective combina-
tions of 2- and 3-modal day travel (which are based on different
data). The markers show again the different countries: Germany
kontiv ▷, Germany mobility panel▽, Switzerland◯, UK□ and
US ⬦. For reasons of clarity, the values >50 km/h are omitted in
the linear plot Fig. 8a. The logarithmic plot Fig. 8b with travel
speeds scale up to 103 can include power values of air travel. In
general, the time values have an around 10-times larger variability
than the distance values. The logarithmic plots indicate that the
data can be approximated by a diagonal line, where all MoTs and
also future modes should align to.

Fig. 7 A comparison of daily travel time and travel distance. Average daily travel time a and distance b per capita over years on a semi-logarithmic scale
of walking (wk), car driver (cd), rail train (rt), the modal combination of car-driver, walking and rail, and the standard average daily travel time, without
modal distinctions (d0), representing the travel time budget approaches.
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The range of specific power values is visualised in Fig. 8. Table 2
provides examples of calculated averages of the whole modal
hierarchy with a comparison to some power values of physiological
measurements (Ainsworth et al., 2011; Bouchard et al., 1983; Spitzer
et al., 1982; WHO, 1985) marked with *. This comparison verifies the
consistency and complementarity of the physical methodology
between modal travel behaviour and physiological measurements
as meaningful and realistic quantities. The values for the proposed
modes are given as mean values over all data. The overall modes (d0,
d1, d2, d3, as defined above) show similar power values, which can
explain the differences in time and distance travelled. With increasing
level of specifications, the values of single MoT-s vary greatly between
time, distance and modal powers. The measured P*

m are slightly
lower, because they have been measured on an even path and do not
include stop & go or up & downs. Car driver (cd) varies from driving
on a country road (5.9 kJ/min) to driving the city under congestion
(12.6 kJ/min). The high ride comfort of air travel is reflected by a
P*
m tð Þ of 1.5 kJ/min which is approximately equivalent to “sitting on a

chair”-measurements (Spitzer et al., 1982).
The daily travel time of the overall daily modal behaviour (d0)

lies in the range of the TTB-approaches (Ahmed and Stopher,
2014; Schafer, 1998). The time values of the d1-mode per day, up
to d3-modes per day rise steadily as the time-specific power
values do not vary. As the MoTs are further specified, values
become more and more diverse and the common functional
relationships of Fig. 8 can hardly be envisaged.

A comparison of walking (wk) and cycling (vo) shows that the
travel time and Pm(t) of wk should slightly be higher as shown by
the physiological measurements, which is most likely due to the
non-recorded short walking trips. Also, these physiological
measurements have been made on “even paths” (Bouchard et al.,
1983; Spitzer et al., 1982). This is not the case under real mobility
conditions, where a certain amount of stop & go or up & down is

involved. Taking the motion of the means of transport further
account, i.e. into for example of public transport, an effort for an
additional balancing out of the motion should lead to higher
physiological values, as it can be seen with Pm(t) of air, where
“sitting on the chair” with 1.5 kJ/min (Spitzer et al., 1982)
corresponds well to the calculated 2.6 kJ/min. It should be noted
that physiological measurements of many different activities
especially in terms of travel and mobility, are uncommon and
more data studies are needed. However, the values may not have
changed significantly due to the similar physiological human
constitutions over time (Bouchard et al., 1983; Spitzer et al., 1982;
WHO, 1985).

Overall, there is an agreement between the calculated values
and the respective measurements, and their ratios, which are
more or less fixed because of the independent measured travel
time and distance related to the ground-truth. This underlines
the validity of the distribution function and its applicability to
time, distance and energy.

Classification of daily mobility. With the above classification, a
different definition for the Modal Split, which is usually defined
on the basis of trips made of d0, can be obtained without the
above daily behavioural distinction. If the daily modal travel
behaviour in terms of the number of modes used, i.e. a d1-, d2-
and d3-behaviour, then in all surveys the relative frequencies of
these three categories are roughly 70% for d1-, 25% for d2- and
5% for d3-behaviour. This has remained stable over the course of
the 5 decades for all countries (Fig. 9a). It should be noted that
Fig. 9a is based only on the raw data and the above definition of
daily mobility, yielding therefore an independent account for the
daily mobility combinations of the observed countries.

In Fig. 9 d1 means that 1 mode (e.g. bike, car driver or train),
is used by a person throughout the travel day; d2 means a

Fig. 8 Time-distance-energy-space. Power of distance and time over speed of selected modes of transport in linear a and double logarithmic
b representation. The figure is actually a 3-dimensional plot in horizontal (Pm(t)—bottom) and vertical (Pm(l)—top) projection over travel speed,
showing modal human behaviour in a time–distance–energy–space.
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combination of 2 modes (e.g. walking plus bus) and so on. The
d3 values contain the values for 3 and more modes per day. The
markers show again the different countries: Germany kontiv &
MID ▷, Germany mobility panel ▽, Switzerland ◯, UK □
and US ◊. The relative share of all daily travel, i.e. the modal
split, is around 70/25/5 percent over all survey countries and
years. The daily energy effort per capita, measured in kilo Joule,
increases by a ratio of around 1:1.5:2 between d1:d2:d3, which
means that for d3 a persons will spend twice as much
physiological energy as for d1-behaviour. Figure 9b also
contains d0-values, which is the daily travel behaviour per
capita with no modal distinctions. These values correspond to
the TTB approaches and comprehend all modal behaviour,
therefore the modal split= 1.

From Eqs. (2) and (8) with the d1-modal behaviour, a further
consequence can be obtained for the specific MoT in question.
Since modal travel time and distance are independent observa-
tions, the multiplication with the (average) physiological power
Pm with m=walking, velo or bike, car driver, bus, rail train, etc.
results in the daily energy effort Ed of a person, Eq. (8). Such daily
travel behaviour has only one specific average physiological
power value for the daily energy effort, which should comply with
physiological measurements.

Such modal powers are more or less the same for the other
daily travelling behaviour, where two (d2), three or more modes
(d3) are used throughout the day, since the topology of the areas
is the same. Hence, for the Grundmodell of PHM, the same
modal powers can and are used for the trips of the d2-, d3-efforts,
which yields realistic effort values for all daily modal trip
combinations. Based on the independently recorded trip time and
trip distance, a cross-check can be made and the consistency of
the methodology can be validated. From a methodological view
point, this means that, the effort ratios between d1, d2 and
d3-behaviour are preserved even without any specifications for
the power values.

An estimation for the absolute amount of the daily mobility
effort is shown in Fig. 9b, where the d2-effort is 1.5-fold of d1 and
2-fold from d1 to d3-effort. A two 2-dimensional plot of a
3-dimensional relation is shown in Fig. 9, where each single point
over the years on the left Fig. 9a has a corresponding energy
expenditure on the right in Fig. 9b. This increase in required
effort for multi-modal mobility may be a reason for its small
proportion, thus, a clear indication for the assumption of a least
effort (Zipf, 1949).

The effort values without modal distinctions of d0-behaviour is
also shown in Fig. 9b, i.e. the sum of d1, d2, d3 and a modal split

Table 2 Comparison of ground truth, with overall averages of time, distance and speed, calculated and measured power values of
selected modes of transport (MoT), nominated as in Fig. 4, including air travel (ar).

MoT units td (min) ld (km) Pm(t) (kJ/min) Pm(l) (kJ/km) v (km/h) P�
m tð Þ (kJ/min) P�

m lð Þ (kJ/km)

d0 81 39 11.6 23.8 29.2
d1 68 36 11.6 22.1 31.4
d2 104 46 11.7 26.9 26.1
d3 139 64 11.2 24.7 27.1
wk 53 3 15.3 241.7 3.8 14.3* 210*
vo 50 9 15.6 85.3 11.0 13.3* 72.2*
cd 73 49 10.7 16.2 39.8 8.0 (5.9–12.6)*
cp 64 46 12.1 16.9 43.1
bs 77 20 10.3 40.7 15.1
rt 152 92 5.1 8.6 35.8
cdwk 108 43 12.4 31.1 24.0
rtwk 183 81 7.5 17.0 26.3
cdrtwk 201 106 8.3 15.9 31.1
ar 277 1213 2.6 0.6 256.6 1.5*

The calculated values are given as overall averages, the measured values from Spitzer et al. (1982) are marked with *.

Fig. 9 Modal split and travel energy.Modal split over survey years (a) and corresponding daily energy effort per capita (b) of 1-, 2- & 3+modal behaviour
(marked by d1, d2, d3).

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-021-00931-6

10 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |           (2021) 8:256 | https://doi.org/10.1057/s41599-021-00931-6



of 1. These values correspond to the TTB-approaches and show
the mobility effort with the stability of the assumed “constancy”
of daily travel time per capita (Ahmed and Stopher, 2014; Schafer,
1998).

Discussion
In the following, some comparative considerations can be made
with the commonly used transport model, i.e. the GM and its
methods, to provide possible options for future research and
applications.

Physical consistency of the PHM. From a theoretical point of
view, the distribution function of the PHM is in principle not a
chosen statistical distribution according to its goodness-of-fit
(Chen and Fan, 2020; Li, 2019; Small, 2012). However, according
to the innate functional derivation, the distribution function
satisfies the fitting of the three dimensions, time, distance and
energy, simultaneously. The PHM can be based on the maximum
entropy principle, also the concept of the Grundmodell, with the
minimum required information. Furthermore, the PHM deter-
mines the distribution function of Eqs. (6) and (9) and hence, for
example, the average energy can directly be derived using Eq. (7).
In contrast to the GM, the exponential function cannot be altered,
in order to comply with the three time, distance and energy
dimensions simultaneously and consistently. It provides the
derivative rigour, required for theoretical stringency and metho-
dological guidance. Beyond the Grundmodell, the distribution
function allows further specifications, without any loss of gen-
erality (Kölbl and Helbing, 2003). These conditions ensure, that
the methodological edifice retains its consistency, even when
modal compositions and decompositions are made. This con-
sistency can also be observed in the parameters, having a defined
specification of units, which can be measured and verified micro-
and macroscopically.

Accuracy, applicability and limitations. It can be seen from
Fig. 2, that the quantitative accuracy depends on the scale of
granularity, i.e. related to measurement definitions, binning or
zone sizes. The PHM uses the R2-measures with regard to dis-
tance bins of 0.05–0.3 km, depending on the MoT and the
minimum survey distance. Thus, the PHM also provides the
sensitivity for non-motorised MoTs and applicability at a
microscopic scale.

The accuracy of the goodness-fit statistics is foremost
dependent on the distribution function, which goes to zero in
the vicinity of the origin (Figs. 2 and 3). These values are often
ignored in transportation (Barbosa et al., 2018), due to the
exponential or power distributions usually applied, but is
accurately captured by the PHM model. A further influence are
the data of the (fat) tails, which become sparse as data move
towards the frequency of a single observation, i.e. 1/nt . Hence, the
data points in the distribution must flatten out horizontally,
which may question their representativeness. This is not apparent
in a linear depiction, but in a logarithmic one, where data
frequencies do not decrease towards zero, as they would do if the
number of observations would be very high or go to infinity.

The current level of accuracy is also limited to the available
data, especially from a perspective of the physiological data, since
power values depend on age, sex, speed of the action, body height
and weight, level of fitness, the inclination of the surface and
infrastructure. Whereas the first three items could be related to
the dedicated data categories of the travel data, the others
variables could be measured and integrated with modern
observation gadgets such as physiological watches or accurate
geo-referencing. But most importantly, all variables with a

required categorisation have to be equivalently represented on
both, on the areas of physiology as well as on those of the
mobility surveys.

Physiological variables and diversity. Whilst the Grundmodell
considers physiological behaviour in its simplest form, which is
the prime focus of this paper, further specifications are possible.
Additional levels and extensions for transport modelling may be
added, with developments towards a new understanding of
transport supply with modal split assessments of a city or region
or in respect to transport & land-use (Bart, 2010; Barthélemy,
2011; Wegener and Fuerst, 2004; Wilson, 2010). From a micro-
scopic perspective for a practical application, this approach sup-
ports the growing literature on mobility & health, where the
positive effects of the physiologically active modes such as
walking and cycling for a healthier and longer life have been
shown with statistical significance (Ainsworth et al., 2011; Batista
Ferrer et al., 2018; Cooper et al., 2003; Dowd et al., 2018; Gopi-
nath et al., 2018; Kujala et al., 1998; Pyky et al., 2018). The
individual physiology depends further on age, sex, the daily
activities of work or leisure or stress (Cooper et al., 2003; Spitzer
et al., 1982; WHO, 1985). Such group classifications can be
directly assessed with the PHM which can be correlated with the
body mass index, which raises issues such as the discussion on the
lack of physiological activity or obesity. Furthermore, children,
mobility impaired or elderly who have lower physiological per-
formance limits in medical terms, can directly be addressed
methodologically. Twofold: firstly, with their lower available daily
energy budget, i.e. that they have a lower level of their daily trip
making and therefore are tempted to be driven around to meet
their daily schedule (which is then not only due to their time
management); or secondly, from a power perspective, for exam-
ple, uneven road surfaces, curbs, steps or stairs demand relative
higher power values especially for mobility impaired for over-
coming such simple barriers. Even more, Spitzer (Spitzer et al.,
1982) shows the variance of power values of walking, for example
on slope pavement surface or stair usage, which can be used for
the infrastructure design, D-tour assessment, an evaluation of
active or barrier friendly infrastructure or for (public) transport
access. In addition, because of the physiological approach, these
effort evaluations can be applied to new modes, such as
e-mobility with e-scooter, and in each country. Hence, the PHM
enables already a direct verification of the energy function
through physiological measurements, on a mono- and multi-
modal level.

Homo economicus vs. homo mobilis. From the onset of mobility
research (Dupuit, 1844; Gossen, 1854; Lill, 1891; Zipf, 1946)
human travel behaviour has been connected with economic
behaviour. The related economic driven hypotheses of the homo
economicus are still the main underlying principle of travel
behaviour research (Barbosa et al., 2018; Ben-Akiva and Lerman,
1985; Lohse and Schnabel, 2011; McFadden, 1974; Ortúzar et al.,
2011; Wilson, 2010, 1967; Yan et al., 2013). According to the fit
quality or to the parameter values, either power or the expo-
nential law or combinations are chosen (Barbosa et al., 2018;
Barthélemy, 2011; Gallotti et al., 2016). The problem of mono-
tonically decreasing fit functions has already been discussed by
Lill (1891) in the derivation of his travel law given as a hyperbolic
distribution, where, at x= 0, the number of trips goes to infinity,
which could be termed as the zero-origin problem. He simply
dismissed the argument due the (methodological) consistency
with the functional monotony and such “0”-trips are from a
practical perspective excluded. However, an exponential function
implies, that trips with zero distances have the highest frequency
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which is clearly unrealistic. The problem has either been ignored
or explained with the help of additional variables and model
extensions. A similar pragmatic argument is used due to large
scaling validity fit of 5 t=t- units (Barthélemy, 2011; Gallotti et al.,
2016).

By contrast, the PHM with E0 has a definite meaning, also in
terms of measureable dimensions, defining the physical level of
the homo mobilis for all modes of mobility alike. It resolves the
zero-origin problem with the usage of Eq. (4) and the function of
the possible density of destinations. This consideration has not
been taken into account explicitly in any other models although it
is a basic fact and a fundamental prerequisite, i.e. with zero trip
length there cannot be any trip. Furthermore, the PHM retains
substantially the modal methodology as well as the scaling
validity.

Economic implications for mobility planning. The equal
treatment and inclusion of all daily trips per person, i.e. the basis
for the TTB-approaches (Ahmed and Stopher, 2014), showed that
average daily travel time should be independent of the average
GDP per capita on a global scale (Schafer, 1998). The extent of
daily travel time with a detailed justification of the disaggregation
into different modes used per person per day, based on the
limited physiological energy effort for all modes of mobility alike,
has been shown in this paper.

From this definition of mobility our results indicate that
mobility remains stable and does not increase as it is often
assumed, for example, in public white papers (European
Commission, 2016). Only modal split and, as such, the modes
of mobility have changed toward the motorised modes with a
disproportional increase in travel time and distance. Therefore,
methodological adaptations can be established for current
mobility performance indicators such as modal spit assessment
or transport capacity. This raises questions about rational or
bounded rational behaviour (Hargreaves-Heap and Hollis,
1987; Mahmassani and Chang, 1987; Sun et al., 2018; Vuong,
2018). Rational behaviour in physical terms is clearly a choice of
the homo mobilis towards minimising expenses or least travel
effort (Zipf, 1949) (as it can be seen in the ratio of mono-modal
vs. duo or multimodal behaviour of Fig. 9). In addition, short
term gains through minimising the travel power with a
development towards a motorised modal choice has led to an
increase in absolute travel time in the long term with additional
monetary travel expenditure of the homo economicus. A
reassessment of the current methodology of cost-benefit
analyses would be required to answer such a question, where
macro-economic time savings play a major part in infrastruc-
ture or land-use planning (Hensher, 2011; Li, 2019; Metz, 2008;
Vickerman, 2017).

Future work. Multi-modal travel can be considered in the same
way as mono-modal travel in the PHM, where the modal trip-
energy expenditures are totalled. This satisfies the assumption of
independence of averaging, so that the (macroscopic) distribution
function of Eqs. (6) and (9) are methodologically the same. In
fact, the trip modes in a multi-modal travel do not seem to be
independent, and the sum of all related energy efforts is con-
strained (Frodesen et al., 1979). Furthermore, other entities of
trips or activity patterns, with variables such as starting or ending
point with the trip purpose, have not been presented. These
problems would be addressed in the daily modal choice model-
ling, which is not the focus of this paper. Similarly, verification
regarding number of trips would also be a further step in the
model development.

Conclusions
The main purpose of this paper is to provide a physical human
mobility model (PHM), based on the daily physiological effort
and the modal power consumptions, a component, which has not
been taken into account explicitly in any other transport and
mobility models, which are based foremost on socio-economic
variables. This variable enables an application to all modes of
transport alike and therefore for mono- as well as for multi-
modal travel behaviour and in simultaneous relation to time and
distance.

With survey data of four countries on two continents and over
five decades, it is possible to describe, measure and explain the
extent of human travel behaviour for all modes and modal
combinations. The PHM presented is shown in the most basic
form, i.e. the Grundmodell, where only the relationships of phy-
siological energy effort related to power, time and distance are
utilised in a consistent model of daily travel behaviour per capita.

The methodological pre-requisite is the classification in daily
travel behaviour per person. This simple statistical analysis of the
raw data reveals a 70/25/5 percentage share, where respectively
only 1/2/3+ modes are used throughout the day and across the
survey years and countries. This definition of modal split is dif-
ferent to the one generally used, which is based only on trips
made. The daily modal split definition allows a more consistent
and general methodology, especially for modal usage. For the
mobility effort, only one parameter is assumed, which can be
verified with respect to the surveyed ground-truth of travel time
and distance. Since daily physiological measurements do not
exist, an assumed average estimate of 800 kJ as the only parameter
for 1-modal daily mobility has been made to quantify all modal
behaviour, single and multimodal ones. The PHM then is able to
describe a consistent time–distance–energy space, which yields
comparable results to available physiological measurements. In
addition, the PHM can therefore provide a fully measureable and
theoretically verifiable ansatz based on physical methods, where
microscopic and macroscopic behaviour are consistently and
complementary integrated. The discussion on the physiological
variables shows that the approach developed is only a first step for
a novel mobility planning methodology, where further differ-
entiations are possible without any loss in generality.

Due to the firm basis of the human physiology and its travel
behaviour, it is now possible to provide an explanation to the
well-known phenomenon of the TTB, which has been observed
globally (Ahmed and Stopher, 2014; Schafer, 1998). Through the
definition of daily modal behaviour, it is also possible to explain
the variations according to time and distance, which has been
termed in the literature and policy papers as an increase in
mobility, which is actually related foremost to a modal shift from
non-motorised to motorised modes of transport, i.e. the induced
traffic. Some implications for transport and infrastructure plan-
ning have already been discussed in the literature (e.g. Metz,
2008), however, there are even more fundamental consequences,
for example, regarding bounded rational behaviour of homo
economicus vs. homo mobilis, and with that a redefinition of
transport economics and its methods for appraisal such as travel
time savings or cost-benefit analysis. Such methodological re-
developments are required in order to meet the challenges of
climate change and the required transition of mobility.

Data availability
The datasets analysed during the current study are available from
the follow public resources: Bundesamt für Statistik: Mikrozensus
Mobilität und Verkehr: Erhebungen in den Jahren 1974, 1979,
1984, 1989, 1994, 2000, 2005, 2010 und 2015, https://
www.bfs.admin.ch/bfs/de/home.html; Bundesministerium für
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Verkehr und digitale Infrastruktur (2019) https://www.bmvi.de/;
Department for Transport: National Travel Surveys 1972/3, 1975/
6, 1978/9, 1985/6, 1988–2017, https://www.data-archive.ac.uk/;
U.S. Department of Transportation, F.H.A.: National Household
Travel Survey 1977, 1983, 1990, 1995, 2001, 2009 and 2017,
https://nhts.ornl.gov. The datasets generated and analysed during
the current study are not publicly available due to legal reasons
since the above authorities require a personalised registration.
However, aggregated data are available from the corresponding
author on reasonable request. All figures have been generated by
the authors; no external copyright or ownership rights apply.
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