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ABSTRACT: The mechanism of the Lewis base F− catalyzed 1,3-dipolar
cycloaddition between CO2 and nitrilimines is interrogated using DFT
calculations. F− activates the nitrilimine, not CO2 as proposed in the
literature, and imparts a significant rate enhancement for the cyclo-
addition. The origin of this catalysis is in the strength of the primary
orbital interactions between the reactants. The Lewis base activated
nitrilimine−F− has high-lying filled FMOs. The smaller FMO-LUMO gap
promotes a rapid nucleophilic attack and overall cycloaddition with CO2.

The general use of small, highly abundant organic
molecules, such as carbon dioxide (CO2), as building

blocks in organic synthesis by activation and selective
transformation to useful chemicals is highly attractive from
both an economic and societal point of view.1 Carbon dioxide
is a desired feedstock for more complex hydrocarbon
derivatives, since it is an abundant green-house gas that is
cheap.2 Chemists have engaged in significant efforts toward
crafting methods to activate these otherwise unreactive
molecules; however, it is in many cases a trial-and-error
process, as the factors that play a role in the bond activation
are not entirely understood.
In 2017, Lu and co-workers developed a convenient

methodology to efficiently activate CO2 by F− (used as CsF/
18-crown-6) and subsequently trap it with nitrilimines via a
1,3-dipolar cycloaddition to access 1,3,4-oxadiazole-2(3H)-
ones (Scheme 1).3 In this reaction, F− first acts as a base to
produce the nitrilimine intermediate (i.e., a 1,3-dipole) from
hydrazonyl chloride. The nitrilimine then undergoes a
cycloaddition reaction with CO2 (i.e., dipolarophile) to form

the oxadiazolone. It was found that the presence of a base (e.g.,
amines or carbonates) alone does not facilitate efficient
conversion to the product, but instead generates a large
amount of the (undesired) dimerized dipole product.
The authors proposed the formation of the known and

stable fluorocarbonate (CO2F
−),4 formed from CO2 and F−.

Fluorocarbonate has been suggested to enhance the reactivity
of CO2 in some reactions (Scheme 1).5 The use of simple
Lewis bases (e.g., F−) as catalysts for the activation of small
molecules, which allows for efficient transformations under
mild conditions, is of high interest.6 Merino and co-workers
previously investigated this reaction computationally and
provided evidence for an operative mechanism based on the
analysis of a number of possibly competing potential energy
surfaces; however, they did not comment on the origin of the
catalytic effect of the F− Lewis base.7 Lu and co-workers
experimentally showed that a base alone does not efficiently
facilitate the cycloaddition reaction, so that F− is playing
another role, presumably as a catalyst.3 In contrast to the work
of Merino et al., this indicates that F− does not solely act as a
base. It is widely accepted that these 1,3-dipoles are readily
formed from the hydrazonyl chloride, even in the presence of
weak bases.8 We have revisited the mechanism of this formal
1,3-dipolar cycloaddition between CO2 and nitrilimine to
identify the catalytic role of the F− in this transformation.
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Scheme 1. Proposed Mechanism of the Fluoride-Catalyzed
1,3-Dipolar Cycloaddition between CO2 and Nitrilimines by
Lu and Co-workers, in Which the Lewis Base F− Together
with CO2 Forms the Activated Dipolarophile (i.e., CO2F

−);3

R1 and R2 = Aryl or Alkyl
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Three possible reaction pathways (Scheme 2) have been
investigated, using state-of-the-art DFT calculations, to unravel

the physical mechanism behind the Lewis base F− activation in
1,3-dipolar cycloaddition reactions: (i) the uncatalyzed cyclo-
addition, (ii) the activation of the dipolarophile, by the
generation of CO2F

− by F−, followed by the cycloaddition, and
(iii) the activation of the dipole by the addition of F− to
nitrilimine 1 forming activated nitrilimine−F− 2, followed by
the cycloaddition. In order to pinpoint the actual role of F− in
lowering the reaction barrier, we selected the model system
depicted in Scheme 2. We found that the inclusion of Cs+ and
18-crown-6, as Merino and co-workers did, slightly raises the
reaction barrier due to the fact that F− is less Lewis basic
because of the interaction with the Cs+ (Supporting
Information Figure S1), while the overall mechanism remained
unchanged.
To identify the origin of the catalytic effect of the Lewis

base, we employed the distortion/interaction−activation strain
model9 in combination with Kohn−Sham molecular orbital
(KS-MO)10 theory and energy decomposition analysis
(EDA).11 This methodological approach facilitates the analysis
of the potential energy surface and, more importantly, the
activation barrier, by decomposing the total energy of the
system into chemically meaningful and easily interpretable
terms and has been used by us to study other related 1,3-
dipolar cycloadditions.12

The reaction profiles of the three reaction pathways of the
studied 1,3-dipolar cycloaddition between carbon dioxide and
nitrilimine 1 in the presence of the Lewis base F−, as well as
their key transition state structures, are shown in Figure 1. The
uncatalyzed pathway (i.e., pathway I; black) follows a
concerted cycloaddition reaction with a barrier of ΔG‡ =
22.7 kcal mol−1 leading to product 3 (Figure 1a). The
transition state, I-TS, is highly asynchronous, but is still
concerted, with a C···N distance of 1.57 Å and a C···O distance
of 2.33 Å (Figure 1b). This relatively high computed reaction
barrier is consistent with the experimentally observed
dimerization of nitrilimine 1 in the absence of F−, a process
that goes with a more favorable barrier of ΔG⧧ = 20.1 kcal
mol−1 (see SI Figure S2).3

Pathway II (blue) begins with the exergonic (ΔGrxn = −18.9
kcal mol−1) formation of CO2F

− from CO2 and F−.
Coodination of F− to CO2 is driven by stabilizing covalent
and electrostatic interactions and induces a buildup of electron
density on the oxygens of CO2F

− compared to CO2 (see SI
Table S1 and Figure S3). This leads, in contrast to pathway I,
to a stepwise mechanism, whereby addition of the oxygen of
the CO2F

− to the electrophilic imine carbon center in II-TS
occurs first and leads to II-INT (Figure 1b). This is the rate-
limiting step of pathway II and goes with a reaction barrier of
ΔG⧧ = 16.2 kcal mol−1, which is 6.5 kcal mol−1 lower than the
uncatalyzed cycloaddition. Next, II-INT undergoes ring closure
via a near barrierless pathway through II-TS2 (ΔG‡ = 1.2 kcal
mol−1). Formation of product 3 and F− from II-INT2 is
endergonic; however, the F− transfer, either to a second
molecule of CO2 leading to 3 and CO2F

− or to a second
nitrilimine leading to 3 and 2, is exergonic. Lastly, pathway III
(red), which like pathway II proceeds via a stepwise process,
first begins with the barrierless formation of a Lewis base (or
nucleophilic catalyst) activated nitrilimine−F− (i.e., 2) by the
coordination of F− on the electrophilic nitrile carbon of
nitrilimine 1 (see SI Figure S6). Formation of 2 is highly
exergonic (ΔGrxn = −34.2 kcal mol−1) and is more than twice
as favorable compared to the formation of CO2F

− due to even
more stabilizing covalent and electrostatic interactions (path-
way II; blue, ΔΔGrxn = −15.3 kcal mol−1; see Table S1). The
imine nitrogen of nitrilimine−F− 2 exhibits an increased
electron density, compared to dipole 1 (see SI Figure S3), and
can engage in an efficient addition to CO2. Activated

Scheme 2. Possible Reaction Pathways for the 1,3-Dipolar
Cycloaddition between Carbon Dioxide and Nitrilimine 1 in
the Presence of the Lewis Base F−

Figure 1. (a) Reaction profiles (ΔGtoluene in kcal mol−1) for the three reaction pathways of the studied 1,3-dipolar cycloaddition between carbon
dioxide and nitrilimine 1, including (i) uncatalyzed cycloaddition (black), (ii) formation of CO2F

− followed by stepwise cycloaddition (blue), and
(iii) formation of 2 followed by stepwise cycloaddition (red), computed at SMD(toluene)-M06-2X-D3/def2-TZVP; TS = transition state and INT
= intermediate. (b) Key transition state structures with key bond lengths (in Å) for the three reaction pathways.
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nitrilimine−F− 2 can then proceed through transition state III-
TS with a very low barrier of only 6.6 kcal mol−1, resulting in
III-INT. This intermediate then undergoes intramolecular ring
formation, through III-TS2 with a barrier of 14.3 kcal mol−1, to
then form product 3 and regain the Lewis base F−. We have
also computed pathway III with the corresponding Cl− adduct
of 1, which is a similar intermediate to that proposed by
Merino and co-workers,7 and we found that F− adduct 2
follows a lower energy pathway in the reaction with CO2 (see
Supporting Information, Schemes S1−S3 and Figure S1).
In order to gain quantitative insight into the physical factors

why Lewis base catalyzed (i.e., nucleophilic-catalyzed) reaction
pathway III is highly favored over the uncatalyzed pathway I,
we turned to the distortion/interaction−activation strain
model (D/I-ASM).9 The D/I-ASM decomposes the electronic
energy (ΔE) into two distinct energy terms, namely, the strain
energy (ΔEstrain) and the interaction energy (ΔEint). The strain
energy results from the deformation of the individual reactants
and the interaction energy accounts for all chemical
interactions between the deformed reactants along the reaction
coordinate, defined, in this case, as the forming N···C bond.12

As previously discussed, pathway I goes with a reaction barrier
of 22.7 kcal mol−1, while the first step of pathway III proceeds
with a barrier of only 6.6 kcal mol−1. Figure 2a shows the D-I/
ASM analysis of pathway I (black) and pathway III (red). The
origin of the lower barrier, in terms of electronic energy
(trends are consistent for ΔE‡ and ΔG‡) for Lewis base
catalyzed pathway III, can be traced exclusively to a more
stabilizing interaction energy, while having a comparable strain
energy.
The interaction energy between the deformed reactants can

be further analyzed in terms of quantitative Kohn−Sham
molecular orbital theory (KS-MO)10 together with a canonical
energy decomposition analysis (EDA).11 The EDA decom-
poses the ΔEint into the following four physically meaningful
energy terms: electrostatic interactions (ΔVelstat), (steric) Pauli
repulsion (ΔEPauli), orbital interactions (ΔEoi), and disperision
interactions (ΔEdisp). The EDA (Figure 2b) shows that the
more stabilizing ΔEint for the Lewis base catalyzed pathway III
originates from a significantly more stabilizing ΔEoi. The
ΔVelstat is slightly more stabilizing and the ΔEPauli remains
almost unchanged. The origin of the more stabilizing of the
Lewis base catalyzed pathway can be analyzed and explained
by means of a Kohn−Sham molecular orbital analysis (KS-
MO). We have quantified the key occupied−unoccupied
orbital interaction between the FMO of 1 and 2 and the
antibonding unoccupied orbital of CO2 at consistent geo-
metries with a N···C bond length of 2.14 Å (Figure 2c). The
stronger orbital interaction of the Lewis base catalyzed
pathway could be traced back to the smaller FMO energy
gap for the normal electron demand (NED) orbital
interactions with the LUMOCO2. This originates from the
much higher energy of the filled FMOs of 2 (i.e., nitrilimine−
F−), compared to 1 (i.e., uncatalyzed pathway). The HOMO
of 2 also shows a similar trend, but the overlap is much lower
since the orientation of this orbital is nearly orthogonal to the
LUMOCO2 (see SI Figure S4). In all, the presence of the
negatively charged Lewis base F− in 2 causes a significant
negative external potential that destabilizes the FMOs (see SI
Figure S5). Additionally, the FMOs, especially the HOMO−
12, are further destabilized as a result of (steric) Pauli repulsion
with the filled FMOs of F− (see SI Figure S5).

In conclusion, we have investigated the Lewis base,
nucleophile, F− catalyzed 1,3-dipolar cycloaddition between
CO2 and nitrilimine. In contrast to the previous proposed
mechanism,3 we find that the reaction actually proceeds via the
addition of the Lewis base F− to the dipole (i.e., nitrilimine),
thereby activating the dipole, which rapidly engages in
nucleophilic attack and overall cycloaddition with CO2
(Scheme 3). Our distortion/interaction−activation strain
analysis revealed that the mechanism behind the Lewis base
catalysis was driven by the more stabilizing interaction energy
between the reactants. This could be traced back to the

Figure 2. (a) Distortion/interaction−activation strain model analysis;
and (b) energy decomposition analysis of the cycloaddition reaction
of 1 (black) and 2 (red) with CO2 (transition states indicated with a
dot).13 (c) Frontier molecular orbital diagram of the most important
FMO-LUMOCO2 orbital interaction with the calculated energy gaps,
orbital overlaps, and the S2/Δε terms, at consistent geometries with a
N···C bond length of 2.14 Å. Computed at SMD(toluene)-M06-2X-
D3/def2-TZVP using autoDIAS14 for (a) and M06-2X-D3/TZ2P//
SMD(toluene)-M06-2X-D3/def2-TZVP using PyFrag15 for (b,c).

Scheme 3. Novel Mechanism Emerging from Our Study for
the Lewis Base F− Catalyzed 1,3-Dipolar Cycloaddition of
CO2 to Nitrilimines, Where F− Activates the Dipole, Instead
of the Dipolarophile
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stronger normal electron demand (NED) orbital interactions,
as a result of the higher-lying donor orbitals of 2 (i.e.,
nitrilimine−F− species). This leads to smaller NED energy
gaps and, thus, more stabilizing orbital interactions with the
LUMO of CO2. F

− destabilizes all FMOs of 2 by (i) the
presence of a negative potential of the anion and (ii) the Pauli
repulsion between the filled FMOs of the nitrilimine and F−. In
all, this showcases the potential of Lewis base catalyzed small
molecule activation, in which one can tune the reactivity of the
reactants by the Lewis base.

■ METHODS
Computational Details. Conformer searches were performed

using Grimme’s CREST 2.7.116 using default settings and toluene as
solvent. DFT calculations were performed using Gaussian 09 Rev.
D.0117 employing the M06-2X density functional18 in combination
with the def2-TZVP19 basis set. Solvent effects were included by using
the SMD model20 as implemented in Gaussian with toluene as a
solvent. Empirical dispersion was included using Grimme’s D3
model21 without additional dampening as proposed by Grimme and
co-workers. Quasi-harmonic correction22 was applied to all
frequencies by raising all vibrations below 100 cm−1 to 100 cm−1.
All computed stationary points have been verified by performing a
vibrational analysis calculation, to be energy minima (no imaginary
frequencies) or transition states (only one imaginary frequency). The
character of the normal mode associated with the imaginary frequency
of the transition state has been inspected to ensure that it is associated
with the reaction of interest. The potential energy surfaces of the
studied cycloaddition reactions were obtained by performing intrinsic
reaction coordinate (IRC) calculations. The distortion/interaction−
activation strain model (D/I-ASM)9 was performed by the use of
autoDIAS,14 followed by an energy decomposition analysis (EDA)11

in the gas phase, based on the solution PES, using PyFrag15 and the
Amsterdam Density Functional (ADF2018.106) software package at
M06-2X-D3/TZ2P.23 The optimized structures were illustrated using
CYLview.24

Distortion/Interaction−Activation Strain and Energy De-
composition Analysis. The distortion/interaction−activation strain
model9 is a fragment-based approach in which the potential energy
surface (PES) can be described with respect to, and understood in
terms of the characteristics of, the reactants. It considers the rigidity of
the reactants and to which extent they need to deform during the
reaction plus their capability to interact with each other as the
reaction proceeds. With the help of this model, we decompose the
total energy, ΔE, into the strain and interaction energy, ΔEstrain and
ΔEint, respectively [eq 1].

E E Estrain intΔ = Δ + Δ (1)

In this equation, the strain energy, ΔEstrain, is the energy required in
order to deform the reactants from their equilibrium to the geometry
they adopt over the course of the reaction. On the other hand, the
interaction energy, ΔEint, accounts for all the chemical interactions
that occur between these two deformed reactants along the reaction
coordinate.
The interaction energy between the deformed reactants can be

further analyzed in terms of quantitative Kohn−Sham molecular
orbital (KS-MO)10 theory together with a canonical energy
decomposition analysis (EDA).11 The EDA decomposes the ΔEint
into the following three energy terms [eq 2]:

E V E E Eint elstat Pauli oi dispΔ = Δ + Δ + Δ + Δ (2)

Herein, ΔVelstat is the classical electrostatic interaction between the
unperturbed charge distributions of the (deformed) reactants and is
usually attractive. The Pauli repulsion, ΔEPauli, includes the
destabilizing interaction between the fully occupied orbitals of both
fragments due to the Pauli principle. The orbital interaction energy,
ΔEoi, accounts for, among others, charge transfer between the
fragments, such as HOMO−LUMO interactions. Finally, the ΔEdisp

term accounts for the interactions coming from disperion forces. In
the herein presented distortion/interaction−activation strain and
accompanied energy decomposition diagrams, the energy terms are
projected onto the forming bond (N···C) distance. This critical
reaction coordinate undergoes a well-defined change during the
reaction from the reactant complex via the transition state to the
product.12

Voronoi Deformation Density. The atomic charge distribution
was analyzed by using the Voronoi Deformation Density (VDD)
method.25 The VDD method partitions the space into so-called
Voronoi cells, which are nonoverlapping regions of space that are
closer to nucleus A than to any other nucleus. The charge distribution
is determined by taking a fictitious promolecule as reference point, in
which the electron density is simply the superposition of the atomic
densities. The change in density in the Voronoi cell when going from
this promolecule to the final molecular density of the interacting
system is associated with the VDD atomic charge Q. The VDD atomic
charge QA of atom A is calculated according to eq 3.

Q r r r( ) ( ) dA
VDD

Voronoi cell of A promolecule∫ ρ ρ= − [ − ]
(3)

So, instead of computing the amount of charge contained in an atomic
volume, we compute the flow of charge from one atom to the other
upon formation of the molecule. The physical interpretation is
therefore straightforward. A positive atomic charge QA corresponds to
the loss of electrons, whereas a negative atomic charge QA is
associated with the gain of electrons in the Voronoi cell of atom A.
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