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a b s t r a c t

It is shown that for any choice of four different vertices x1, . . . , x4 in a 2-block G of order
p > 3, there is a hamiltonian cycle in G2 containing four different edges xiyi of E(G) for
certain vertices yi, i = 1, 2, 3, 4. This result is best possible.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

As for standard terminology, we refer to the book by Bondy and Murty, [2], and to the papers quoted in the references.
The square of a graph G, denoted G2, is the graph obtained from G by joining any two nonadjacent vertices which

ave a common neighbor, by an edge. Fairly recent development in hamiltonian graph theory has shown a resurgence
f interest in hamiltonian cycles and paths in the square of 2-connected graphs (which we call 2-blocks for short). In
articular, short proofs have been found for two results of the second author of the present paper, [10,11]. And more
ecently, in [1] the authors develop algorithms which are linear in |E(G)| and produce a hamiltonian cycle, a hamiltonian
path joining arbitrary vertices u and v respectively, in G2. Moreover, they develop an algorithm running in O(|V (G)|2) time
and producing cycles of arbitrary length from 3 to |V (G)|.

Also very recently it was shown in [3] and [8] that a 2-block has the F4 property; that is, given vertices x1, x2, x3, x4
in the 2-block G, there is a hamiltonian path in G2 joining x1 and x2 and traversing distinct edges x3y3 and x4y4 of G (see
Theorem 7). The proof of this result is very long and is based on techniques developed by Fleischner in [5–7] and by
Fleischner and Hobbs in [9]. It remains to be shown whether one can find a much shorter proof of this result. However,
this result will be of importance in the proof of the main result of the current paper.

We start with a definition.

Definition 1. A graph G is said to have the Hk property if for any given vertices x1, . . . , xk there is a hamiltonian cycle
in G2 containing distinct edges x1y1, . . . , xkyk of G.

We note in passing that G having the F4 property implies that G has theH3 property; clearly, choose x1, x2, x3 arbitrarily
and a different x4 adjacent to some x1 for i ∈ {1, 2, 3} in G, say i = 1. A hamiltonian path in G2 joining x1 and x4 and
containing edges x2y2 and x3y3 of G yields a hamiltonian cycle containing these two edges of G and x1x4 which lies also
in G.
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The main result of this paper is the following.

heorem 2. Given a 2-block G on at least four vertices, then G has the H4 property, and there are 2-blocks of arbitrary order
reater than 4 without the H5 property.

This theorem and the F4 property of 2-blocks are key to describe the most general block-cut vertex structure a graph G
may have in order to guarantee that G2 is hamiltonian, hamiltonian connected, respectively. This will be done in follow-up
papers.

Moreover Theorem 2 gives the positive answer to Conjecture 5.4 stated in [4] as an immediate corollary.

Corollary 3. Let G be a connected graph such that its block-cutvertex graph bc(G) is homeomorphic to a star in which the
center c corresponds to a block Bc of G. If Bc contains at most 4 cutvertices, then G2 is hamiltonian.

2. Preliminaries

However, before proving Theorem 2 we mention several concepts and results which we need to make use of, and we
prove a lemma.

A graph G is an edge-critical block, if κ(G) = 2 and κ(G − e) = 1 for any edge e of G. Let D(G) be the set of edges uv
here both dG(u) ≥ 3 and dG(v) ≥ 3. If D(G) = ∅, then every edge of G is incident to a vertex of degree 2; we call such a
raph a DT-graph.

heorem 4 ([6]). Let G be an edge-critical block. Then exactly one of the following two statements is true:

(1) G is a DT-block.
(2) There is an edge f in D(G) such that at least one of the endblocks of G − f is a DT-block.

The basic result about hamiltonicity of the square of a 2-block is given by the following theorem.

heorem 5 ([7]). Suppose v and w are two arbitrarily chosen vertices of a 2-block G. Then G2 contains a hamiltonian cycle C
uch that the edges of C incident to v are in G and at least one of the edges of C incident to w is in G. Furthermore, if v and
are adjacent in G, then these are three different edges.

Let bc(G) denote the block-cutvertex graph of G. Blocks corresponding to leaves of bc(G) are called endblocks. Note
hat a block in a graph G is either a 2-block or a bridge of G. The graph G is called blockchain if bc(G) is a path. Let G
e a blockchain. We denote its blocks B1, B2, . . . , Bk and cutvertices c1, c2, . . . , ck−1 such that ci ∈ V (Bi) ∩ V (Bi+1), for

i = 1, 2, . . . , k − 1. A blockchain G is called trivial, if E(bc(G)) = ∅, otherwise it is called non-trivial. Note that only B1
and Bk are endblocks of a non-trivial blockchain G. An inner block is a block of G containing exactly 2 cutvertices. An inner
vertex is a vertex in G which is not a cutvertex of G.

The first author proved in [4] the following theorem dealing hamiltonicity of the square of a blockchain graph.

Theorem 6 ([4]). Let G be a blockchain and let u1, u2 be arbitrary inner vertices which are contained in different endblocks
of G.

Then G2 contains a hamiltonian cycle C such that, for i = 1, 2,

• if ui is contained in a 2-block, then both edges of C incident with ui are in G, and
• if ui is not contained in a 2-block, then exactly one edge of C incident with ui is in G.

Let G be a connected graph. By a uv-path we mean a path from u to v in G. If a uv-path is hamiltonian, we call it a
uv-hamiltonian path. Let A = {x1, x2, . . . , xk} be a set of k (≥ 3) distinct vertices in G. An x1x2-hamiltonian path in G2

which contains k− 2 distinct edges xiyi ∈ E(G), i = 3, . . . , k, is said to be Fk. A graph G is said to have the Fk property if,
for any set A = {x1, x2, . . . , xk} ⊆ V (G), there is an Fk x1x2-hamiltonian path in G2.

Theorem 7 ([8]). Let G be a 2-block. Then G has the F4 property.

A graph G is said to have the strong F3 property if, for any set of 3 vertices {x1, x2, x3} in G, there is an x1x2-hamiltonian
path in G2 containing distinct edges x3z3, xizi ∈ E(G) for a given i ∈ {1, 2}. Such an x1x2-hamiltonian path in G2 is called
a strong F3 x1x2-hamiltonian path.

Theorem 8 ([8]). Every 2-block has the strong F3 property.

The following lemma is frequently used in the proofs below.

Lemma 9. Let G be a non-trivial blockchain. We choose

• c0 ∈ V (B1), ck ∈ V (Bk) which are not cutvertices;
• u ∈ V (B ) (if any) which is not a cutvertex and v ∈ V (B ) such that u ̸= v , u ̸= c and u ̸= c , for i = 1, 2, . . . , k.
i i i i i i 1 0 k k
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hen G2 contains a c0ck-hamiltonian path P such that there exist distinct edges uiu′

i viv
′

i ∈ E(Bi) ∩ E(P) (if ui exists),
= 1, 2, . . . , k.

roof. If Bi is 2-connected, then let Pi be an F4 ci−1ci-hamiltonian path in B2
i containing 2 distinct edges uiu′

i, viv
′

i ∈ E(Bi)
or vi /∈ {ci−1, ci} by Theorem 7; and let Pi be a strong F3 ci−1ci-hamiltonian path in B2

i containing 2 distinct edges
iu′

i, viv
′

i ∈ E(Bi) for vi ∈ {ci−1, ci} by Theorem 8, respectively.
If Bi = ci−1ci, then we set Pi = Bi. Note that in this case ui does not exist and vi ∈ {ci−1, ci}.
Then P = ∪

k
i=1Pi is a c0ck-hamiltonian path in G2 as required. □

The concept of EPS-graphs plays a central role in proofs of hamiltonicity in the square of a DT -graph (see [5]). We use
this concept also in one part of the proof of Theorem 2. Let G be a graph. An EPS-graph is a spanning connected subgraph
S of G which is the edge-disjoint union of an Eulerian graph E (which may be disconnected) and a linear forest P . For
S = E ∪ P , let dE(v), dP (v) denote the degree of v in E, P , respectively.

Fleischner and Hobbs introduced in [9] the concept of W -soundness of a cycle. Let W be a set of vertices of G. A cycle
K is called W -maximal if |V (K ′) ∩ W | ≤ |V (K ) ∩ W | for any cycle K ′ of G. Let K be a cycle of G and let W be a set of
vertices of G. A blockchain P of G − K is a W-separated K-to-K blockchain based on vertex x if a vertex of W is a cut
vertex of P , both endblocks B and B′ of P include vertices of K , V (B) ∩ V (K ) = {x}, no vertex of K is a cutvertex of P , and
(V (P) ∩ V (K )) − {x} ⊆ V (B′). For a given path p = v1, v2, . . . , vn−1, vn we let F (p) = v1, L(p) = vn.

Definition 10. A cycle K in G is W -sound if it is W -maximal, |W | = 5 and the following hold:

(1) |V (K ) ∩ W | ≥ 4; or
(2) |V (K ) ∩ W | = 3 and the following situation does not prevail; there are two W -separated K -to-K blockchains P and

Q of G−K based on a vertex w of W such that V (P)∩V (Q ) = {w} and if p is a shortest path in P from w to a vertex
of K different from w and q is the same for Q , then there is a subsequence w, w′, L(p), L(q), w′′, w of K where w′

and w′′ are in W − {w}; or
(3) |V (K ) ∩ W | = 2 and the following situation does not prevail; there are three W -separated K -to-K blockchains P1, P2

and P3 of G − K based on a single vertex a of V (K ) − W , such that V (Pi) ∩ V (Pj) = {a} whenever i and j are distinct
elements of {1, 2, 3}, and if pi is a shortest path in Pi from a to a vertex of K different from a for each i ∈ {1, 2, 3},
then there is a subsequence a, w′, L(p1), L(p2), L(p3), w′′, a of K where {w′, w′′

} = V (K ) ∩ W .

We observe that Definition 10 is basically the content of Lemma 1 in [9]. That is, said lemma guarantees that for every
choice W ⊆ V (G) with |W | = 5 in a 2-block G of order at least 5, there is a W -sound cycle in G.

Theorem 11 ([9]). Let G be a 2-block and W a set of five distinct vertices in G, and let K be a W-sound cycle in G. Then there
is an EPS-graph S = E ∪ P of G such that K ⊆ E and dP (w) ≤ 1 for every w ∈ W.

3. Proof of Theorem 2

Proof. First we prove that G has the H4 property. We proceed by contradiction supposing that |V (G)|+ |E(G)| is minimal.
It follows that G is an edge-critical block and in particular |V (G)| ≥ 5. We distinguish cases by the number of edges in
D(G). The reader is advised to draw figures where he/she deems it necessary to follow our case distinctions.
Case 1. |D(G)| > 0. By Theorem 4, let f = x′x ∈ D(G) be an edge where both dG(x′) ≥ 3 and dG(x) ≥ 3. Then G − f is a
blockchain and both endblocks B′, B of G − f are 2-blocks. Set X = {x1, x2, x3, x4}. Without loss of generality assume that
|X ∩ (V (B) − y)| ≤ 2 (otherwise we consider B′ instead of B); i.e., at most x1, x2 ∈ V (B) − y, say, where x, y ∈ V (B) and y
is a cutvertex of G − f . We distinguish the following 3 subcases.

Subcase 1.1: |X ∩ (V (B) − y)| = 2; i.e., x1, x2 ∈ V (B) − y.
Then B2 has an xy-hamiltonian path P1 containing different edges x1y1, x2y2 of E(G) for certain y1, y2 by Theorem 7 or by

Theorem 8 if x1 = x or x2 = x; and (G−B)2 has an xy-hamiltonian path P2 containing different edges x3y3, x4y4 of E(G) for
certain y3, y4 by Lemma 9. Now P1 ∪ P2 is a required hamiltonian cycle in G2, a contradiction. Note that x3, x4 ∈ V (B′)− y′

where y′
∈ V (B′) is a cutvertex of G− f , otherwise we can use B′ instead of B and x3 or x4 instead of x1 or x2 (see Subcase

1.2 or Subcase 1.3 below).
Subcase 1.2: |X ∩ (V (B) − y)| = 1; i.e., x1 ∈ V (B) − y and x2 /∈ V (B) − y.
(1.2.1) Assume that x2, x3, x4 are not inner vertices of G in the same block of G − B. We proceed very similar as in

Subcase 1.1; we use only the strong F3 property in B, and G− B is a non-trivial blockchain. Hence we can apply Lemma 9
except if x = x1, some xi = y for i ∈ {2, 3, 4}, say i = 2, and x3, x4 are inner vertices in the same endblock of G− B which
also contains x2.

If x = x1, x2 = y, and x3, x4 are inner vertices in the same endblock of G − B which also contains x2, then B2 has an
x2x1-hamiltonian path P1 containing different edges x2y2, uv of E(G) for certain y2, u, v by Theorem 8, and (G−B)2 has an
x2x1-hamiltonian path P2 containing different edges x1x′, x3y3, x4y4 of E(G) for certain y3, y4 by Lemma 9. Again, P1 ∪ P2
is a required hamiltonian cycle in G2, a contradiction.

(1.2.2) Assume that x , x , x are inner vertices of G in the same block B∗ of G − B.
2 3 4
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Clearly, B2 contains a hamiltonian cycle HB containing 3 different edges y′y, x′

1x1, x
′′x of E(B) for certain vertices y′, x′

1, x
′′

y Theorem 7 (starting with a corresponding F4 x′′x-hamiltonian path in B2) if x ̸= x1, and y′y, x′

1x, x
′′x of E(B) for certain

ertices y′, x′

1, x
′′ by Theorem 5 if x = x1.

Let G1 be the component of G − B∗
− xx′ containing B and y∗

= V (B∗) ∩ V (G1). Note that G1 is a trivial or non-trivial
lockchain.
(a) If y∗

= y, then G1 = B and we set HG1 = HB (see above).
(b) If y∗

̸= y, then either G1−B = y∗y or (G1−B)2 contains a hamiltonian cycle C containing edges y∗

1y
∗, y′′y of E(G1−B)

or certain y∗

1, y
′′ by applying Theorem 5 or Theorem 6.

Now we set

HG1 = (HB − y′y) ∪ y′y∗

and y∗

1 = y if G1 − B = y∗y; and

HG1 = (HB ∪ C − {y′y, y′′y}) ∪ y′y′′

if G1 − B ̸= y∗y.
Note that the edge y∗

1y
∗

∈ E(G1) is contained in HG1 in both cases.
Clearly, |V (B∗)|+|E(B∗)| < |V (G)|+|E(G)|. Hence (B∗)2 contains a hamiltonian cycle HB∗ containing four different edges

y∗

2y
∗, x2x′

2, x3x
′

3, x4x
′

4 of E(B∗) for certain vertices y∗

2, x
′

i , i = 2, 3, 4.
Let z ∈ V (B∗) be the cutvertex of G − x′x different from y∗.
(A) x′

= z. Then

(HG1 ∪ HB∗ − {y∗

2y
∗, y∗

1y
∗
}) ∪ {y∗

1y
∗

2}

is a required hamiltonian cycle in G2 containing four different edges xix′

i , of E(G), i = 1, 2, 3, 4, a contradiction.
(B) x′

̸= z
If dG−B∗ (z) = 1, then we set G2 = G − G1 − B∗

− z1z where z1 is the unique neighbor of z in G − B∗; otherwise we set
G2 = G − G1 − B∗. Note that G2 is a trivial or non-trivial blockchain and G2 = x′x is not possible because of dG(x′) > 2.

We apply Theorem 6 such that either (G2)2 contains a hamiltonian cycle HG2 with x′x ∈ E(HG2 ) if z /∈ V (G2), or (G2)2

contains a hamiltonian cycle H containing the edge x′x and different edges z1z, z2z of G1 for certain z1, z2 if z ∈ V (G2). In
the latter case we set HG2 = (H − {z1z, z2z}) ∪ z1z2. Then

(HG1 ∪ HG2 ∪ HB∗ − {y∗

2y
∗, y∗

1y
∗, x′x, x′′x}) ∪ {y∗

1y
∗

2, x
′′x′

}

is again a hamiltonian cycle in G2 containing four different edges xix′

i of E(G), i = 1, 2, 3, 4, a contradiction.
Subcase 1.3: |X ∩ (V (B) − y)| = 0; i.e., x1, x2 /∈ V (B) − y.
Let G1 be a graph which arises from G by replacing Bwith a path p of length 3, say p = x, a, b, y. Then |V (G1)|+|E(G1)| <

|V (G)| + |E(G)| since B is not a triangle because G is edge-critical. Hence (G1)2 contains a hamiltonian cycle H1 containing
four different edges xiyi of E(G1) for certain vertices yi, i = 1, 2, 3, 4, and as many edges as possible of G1.

In the following we shall proceed in a manner very similar to the proof in [6] that the square of a 2-block is hamiltonian.
However, in order to avoid total dependence of the reader on the knowledge or study of [6], we shall describe and partially
repeat the procedure employed in that paper. In particular, we shall quote the cases with the numbering of [6].

This yields the consideration of 13 cases on how the hamiltonian cycle H1 traverses vertices of the path p. As in [6],
Cases 3, Case 4, Case 12, and Case 13 are contradictory to the maximality of the number of edges of G1 belonging to
H1; and Case 6 can be reduced to Case 10, Case 8 to Case 7, Case 10 to Case 9 and Case 11 to Case 5. Note that by the
reductions we preserve the existence of the edges xiyi even if xi ∈ {x′, y} for i ∈ {1, 2, 3, 4}.

The remaining 5 cases are (using the labeling of vertices x′, x, a, b, y instead of x, w, a, b, v in [6]):
Case 1. H1 = . . . , x, a, b, y, . . .
Case 2. H1 = . . . , x, a, b, y′, . . .

Case 5. H1 = . . . , x′, a, b, x, . . .
Case 7. H1 = . . . , x′, a, y, . . . , y′, b, x
Case 9. H1 = . . . , x′, a, y, b, x . . .;

and y′y is an edge of G.
In order to extend H1 to H in G2 in these five cases with H having the required property, one can proceed in the

same way as it has been done in [6]. However, we deem it necessary to show explicitly that no problems arise under the
stronger condition of this theorem (similarly as in [7]).

Case 1. By Theorem 8, B2 has an xy-hamiltonian path P starting with an edge yy∗ of E(B) and containing an edge uv
of B for certain vertices u, v. Replace in H1 the path p with a hamiltonian path P and we get a hamiltonian cycle H as
required.

Case 2. Take P as in Case 1 and replace in H1 the path x, a, b, y′ with (P − yy∗) ∪ y′y∗ and again we get a hamiltonian
cycle H as required. Note that H contains all edges of G belonging to H .
1

4
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Case 5. By Theorem 5, B2 contains a hamiltonian cycle HB such that both edges of HB incident to y (say yy∗, yy∗∗) are
n B and at least one of the edges of HB incident to x (say xx∗) is in B. We set

H∗
= (HB − {yy∗, yy∗∗

}) ∪ y∗y∗∗

hich does not contain y, and replace in H1 the path x′, a, b, x with (H∗
− xx∗) ∪ x′x∗, thus obtaining a hamiltonian cycle

H in G2 which has the same behavior in all vertices of G1 − {a, b} ⊂ G as H1.
Case 7. Take HB as in Case 5 and replace in H1 the path x′, a, y with the path P1 ∪ x∗x′ where P1 ⊂ HB is the path from

y to x∗ and does not contain x; and replace in H1 the path y′, b, x with the path P2 ∪ y′t where t ∈ {y∗, y∗∗
} and P2 ⊂ HB

is the path from x to t and does not contain any of y, x∗. Again we get a hamiltonian cycle H as required.
Case 9. Take HB as in Case 5 and replace in H1 the path x′, a, y, b, x with (HB − xx∗)∪ x′x∗, thus obtaining a hamiltonian

cycle H in G2 which has the same behavior in all vertices of G1 − {a, b, y} ⊂ G as H1 and both edges of H incident to y
are in G.

In all cases we obtained a hamiltonian cycle H in G2 containing four different edges xix′

i , of E(G) (in most cases we
have x′

i = yi; see the first paragraph of this subcase 1.3), i = 1, 2, 3, 4, a contradiction.
Case 2. |D(G)| = 0. That is, G is a DT -graph.
(a) Suppose N(xi) ⊆ V2(G) for every i = 1, 2, 3, 4.

Set W ′
= {x1, x2, x3, x4} and let K be a W ′-maximal cycle in G. Observe that |V (K )| ≥ 4 since an edge-critical block on

at least 4 vertices cannot contain a triangle.
If |W ′

∩ V (K )| = 4, then we choose x5 arbitrary in V (G) − W ′. If |W ′
∩ V (K )| = 3, then we choose x5 arbitrary in

V (K ) − W ′. If |W ′
∩ V (K )| = 2, then we choose an arbitrary 2-valent vertex x5 in V (K ) − W ′ which exists because all

neighbors of xi are 2-valent.
We set W = W ′

∪ {x5}. Then K is W -sound in G unless |W ∩ V (K )| = 3 and forbidden situation (2) in Definition 10
arises. That is, without loss of generality x1, x2 ∈ V (K ) and there exist W -separated K -to-K blockchains P , Q based on
xi, i ∈ {1, 2}, P ∩ Q = xi, and paths p, q in P,Q , respectively, such that there is a subsequence xi, w′, L(p), L(q), w′′, xi,
where {w′, w′′

} = {x3−i, x5} and x3, x4 ∈ V (p) ∪ V (q). Then there is a cycle K ′ containing xi, x3, x4, a contradiction to the
W ′-maximality of K .

By Theorem 11, G contains an EPS-graph S = E ∪ P such that K ⊆ E and dP (w) ≤ 1 for every w ∈ W . If there is
no adjacent pair xi, xj for i, j ∈ {1, 2, 3, 4}, we use S and an algorithm in [5] to obtain a hamiltonian cycle in G2 with
the required properties, a contradiction. However, if there is an adjacent pair, say x1, x2, then dG(x1) = dG(x2) = 2 and
dP (x1) = dP (x2) = 0 and we can proceed with the cycle K containing x1, x2, x3 to obtain a required hamiltonian cycle in
G2 as before, a contradiction.
(b) Without loss of generality suppose that N(x4) ⊈ V2(G).

Hence degG(x4) = 2. Let P4 = y4x4z1...zk be a unique path in G such that dG(y4) > 2, dG(zk) > 2 and dG(zi) = 2, for
i = 1, 2, . . . , k − 1. We set G−

= G − {x4, z1, . . . , zk−1}, where z0 = x4 if k = 1.
(b1) Assume that G− is 2-connected.
If xi ∈ V (G−) − {y4, zk} for i = 1, 2, 3, then |V (G)| + |E(G)| > |V (G−)| + |E(G−)| and hence (G−)2 has a hamiltonian

cycle H− containing different edges xiyi, zkw4 ∈ E(G), i = 1, 2, 3. It is easy to see that we can extend H− to a hamiltonian
cycle H in G2 such that H contains edges xiyi, x4z1, for i = 1, 2, 3, a contradiction.

Suppose x3 /∈ V (G−)−{y4, zk}. If {{x1, x2, x3}∩ {y4, zk} ̸= ∅}, then without loss of generality x3 ∈ {y4, zk}. By Theorem 7
or Theorem 8, (G−)2 contains a y4zk-hamiltonian path P− and P− contains distinct edges xiyi of G if xi ∈ V (G−) for i = 1, 2.
Then P−

∪ P4 is a hamiltonian cycle in G2 with the required properties, a contradiction.
(b2) Assume that G− is not 2-connected.

Then G− is a non-trivial blockchain with y4, zk in distinct endblocks and y4, zk are not cutvertices.
Assume not all x1, x2, x3 are inner vertices in the same block. Then we apply Lemma 9 to get a y4zk-hamiltonian path

P− in (G−)2 with distinct edges xiyi ∈ E(G−), i = 1, 2, 3. Note than xi could be y4 or zk. Then again P−
∪P4 is a hamiltonian

cycle in G2 with the required properties, a contradiction.
Now assume that x1, x2, x3 are inner vertices in the same block B. Then there exists an end block B∗ of G− such

that xi /∈ V (B∗), i = 1, 2, 3. A graph G′ arises from G by the replacement of B∗ by a path p of length 3. Hence
|V (G)| + |E(G)| > |V (G′)| + |E(G′)| and we denote by H ′ a hamiltonian cycle in (G′)2 containing edges xiwi, i = 1, 2, 3, 4,
and as many edges of G′ as possible.

We proceed in the same manner as in Subcase 1.3 (note that in this case none of xi, i = 1, 2, 3, 4, is on p) to get a
hamiltonian cycle in G2 with required properties, a contradiction.

Finally we want to show that Theorem 2 is best possible, i.e., we construct an infinite family of graphs which do not
satisfy the H5 property. For this purpose start with an arbitrary 2-block G and fix different vertices x1, x2 ∈ V (G).

Define

H = G ∪ {y1, y2, . . . , yt; t ≥ 3} ∪ {xiyj : 1 ≤ i ≤ 2, 1 ≤ j ≤ t},

where {y1, . . . , yt} ∩ V (G) = ∅. Then H is a 2-block. However, H does not have the H5 property: indeed, there is no
hamiltonian cycle C in H2 containing edges of H incident to x1, x2, y1, y2, y3 because of the neighbors of y1, y2, y3 in H
which are x1 and x2 only; that is x1 or x2 would be incident to three edges of C ∩ H , which is impossible. □
5
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. Conclusion

We introduced the concept of the Hk property and proved that every 2-block has the H4 property but not the H5
roperty in general. Similarly in [8] it is proved that every 2-block has the F4 property but not the F5 property in general.

Moreover, a 2-block G having the Fk property implies that G has the Hk−1 property for k = 3, 4, . . .. Hence we conclude
that Theorems 2 and 7 are best possible with respect to hamiltonicity and hamiltonian connectedness in the square of a
2-block.
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