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A B S T R A C T

Mobile, small-scale refrigeration applications for last-mile deliveries have gained increased importance in
recent years. As they face disturbances and frequent door openings more extensively than long-distance
transport, reliable temperature information is crucial for control concepts to comply with temperature
regulations and increase efficiency. For desired ruggedness, sensors are typically integrated within the cooling
unit, yielding substantial deviations between actual air temperature in the cooling chamber and measured one
— particularly in periods of altered airflow conditions resulting from fan switching and the actual door opening
status. This article introduces and compares two hybrid, online estimation procedures to overcome this issue:
firstly, a Kalman-filter approach based on a simple lumped physical heat transfer model, and secondly, a gray-
box-model approach resulting from a realizable inversion of the physical model. Experimental investigations
of typical operating profiles provide 14 h of real-world data to parameterize (11.75 h data length), validate
(2.25 h data length), and compare both estimators. The proposed concepts are based on a sensor setup available
in state-of-the-art system architectures and provide satisfactory temperature estimates with more than 83 %
overall fit. As the algorithms provide comprehensive process insight independent of the actual operating
condition, sophisticated control schemes can be built upon the concept.
1. Introduction

Refrigerated road transport plays a crucial role in the global cold
chain. In total, the global refrigerated transport market amounted to
roughly 15 billion USD in 2019 and is estimated to increase up to 23
billion USD in 2027 [1]. A share of more than 40 % of it refers to the
road segment, indicating its paramount significance not just for supply
in particular but also for its impact in terms of wasted goods. Thereby,
a food loss of about 1.3 billion tons arise yearly, while a considerable
amount of it can be traced back to insufficient temperature conditions
during transport [2].

To inhibit or at least decrease waste of goods, it is essential to
keep cargo temperature within a specific temperature range, regardless
of any disturbances and in the face of significant influence by door
openings during loading and unloading [3,4]. Especially small-scale
refrigerated trucks are more exposed to disturbances and encounter
door openings more frequently than large applications during long-
distance supply. Due to increasing demand for home delivery in the
future, last-mile transportation and, therefore, small-scale refrigerated
trucks will rise in importance.

Hence, accurate control is necessary to attain sufficient tempera-
ture conditions [5–7]. Although the primary objective relates to the
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temperature of the goods, high expenses for appropriate measurement
equipment, required ruggedness, and desired flexibility in fast-paced,
small-scale transportation render actual cargo temperatures inacces-
sible in practical applications. Rather than that, temperature sensors
are usually safely mounted in the cooling unit itself. Therefore, the
temperature of the air within the cooling chamber substitutes for
the initially intended control variable. Many state-of-the-art systems
achieve a continuous and sufficiently distinctive air mixing in the
chamber by a constantly running fan, allowing temperature sensors
in the cooling unit to measure representative values. However, these
measurements show severe deviations from the real temperature inside
the cooling chamber if no such airflow is apparent [8,9]. Sophisticated
control strategies that also consider energy consumption tend to turn
off the fan and force the system to run in such operating modes
more regularly than standard control approaches. This is particularly
relevant if flexible secondary-loop refrigeration units [10] are used.
Unawareness of the actual temperature during those periods would
entail unreasonable control actions often captured by heuristic and,
therefore, suboptimal remedies [11,12].
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Nomenclature

Latin letters

𝑎 Eigenvalue
𝑨 System matrix
𝒃 Input vector
𝒄 Output vector
𝐶 Heat capacity
𝒅 Vector of continuous hybrid-estimator inputs
𝑓 State equation
𝑮 Input matrix for process noise
𝑖 Counter variable
𝑰2 2×2 identity matrix
𝑗 Counter variable
𝐽 Objective function
 Set of time steps constituting transition into mode 1
𝑘 Time step, normalized time = 𝑡∕𝑇s
𝑘𝐴 Heat transition coefficient
𝐾 Compact parameter of the physical model
𝑲kf Kalman-gain matrix
𝑙 Counter variable
 Set of time steps constituting transition into mode 3
𝑚 Operating mode
𝑛 Number of time steps constituting mode transition
𝑛𝑘 Number of samples in data set
𝑛 Number of training data sets
𝑛𝑉 Number of samples within both validation data sets
𝑷 Covariance matrix of estimation error
𝑄 Variance of process noise
𝑸 Covariance matrix of process noise
�̇� Heat flow
𝑟 Residual
𝑅 Variance of measurement noise
 Training data set
𝑡 Continuous time
𝑡𝑖 Continuous time at sampling instant 𝑖
𝑇 Time constant
𝑇s Sampling time
𝑢 Input
𝒖 Vector of Inputs
𝑣 Measurement noise
𝑤 Process noise
𝒘 Vector of process noise
𝑥 State
𝒙 State vector
𝑦 Output

Greek letters

𝜹 Vector of binary hybrid-estimator inputs
𝛥 Difference
𝜺 Vector of estimation error
𝜻 Parameter vector of gray-box model
𝜗 Temperature
𝜽 Parameter vector of physical model
𝜘 Parameter of gray-box model
𝛷 Set of performance parameters

Subscripts and superscripts

cc Cooling chamber
d Discrete time
door Door opening
fan Air chiller fan
gb Gray-box model
gly Glycol
hygb Hybrid gray-box-model approach
hykf Hybrid Kalman-filter approach
i23 Initialization in/transition into mode 2 or 3
in Inflowing position
init Initial
kf Kalman filter
meas Measured
out Outflowing position
t1 Transition into mode 1
t3 Transition into mode 3

Accents

�̃� Prediction of 𝑧
�̂� Correction/estimate of 𝑧
𝑧∗ Optimized value of 𝑧
�̄� Mean of 𝑧

Acronyms

EKF Extended Kalman filter
hygb Hybrid gray-box-model
hykf Hybrid Kalman-filter
RMSE Root-mean-square error

Mathematical notation

N Natural numbers
N0 Natural numbers including 0
R Real numbers
R≥0 Positive real numbers including 0
 Gaussian distribution
diag

[

𝑧1,… , 𝑧𝑛
]

Matrix with elements 𝑧1,… , 𝑧𝑛 on its diagonal
Var [𝒛] Covariance matrix of 𝒛
�̇� Time derivative of 𝑧 (continuous time system)
𝒛T Transpose of 𝒛
𝒁−1 Inverse of matrix 𝒁
This work presents and compares two model-based, online esti-
ation approaches to overcome this inaccessibility and to provide

dequate knowledge about the actual temperature, enabling energy-
ptimal control in all operating modes. The need to differentiate
2

between conditions based on binary inputs, i.e., the fan and the
door opening, renders the overall estimators hybrid [13] and re-
quires handling operating modes individually. Besides a Kalman-filter
approach [14] based on a physically motivated model, a gray-box-
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model approach [15] is additionally presented. Both rely on the same
simple sensor setup located inside the cooling unit and available in
the better part of state-of-the-art practical applications. Real-world
experimental data drive parametrization and validation of the over-
all concepts. The proposed estimation processes indicate satisfactory
temperature estimates and are easy to implement in already existing
microcontrollers. The lucid and computationally simple mathematical
background facilitates wide utilization even in low-cost applications.

Originating from process control, model-based estimation
approaches [16–20] have gained increased interest in the last decades
and have been utilized in numerous applications in a large number of
fields. However, its combination with a hybrid system model has only
been studied in recent years, predominantly by the pharmaceutical [21,
22] and chemical [23,24] sectors. Although model-based estimation
approaches are prevalent in process control, just little was done for
temperature estimation or thermodynamic systems in general.

An autoregressive exogenous model served in [25,26] to gain tem-
perature estimates of ceramic parts and an inaccessible measuring point
in a coffee machine, respectively. Compared with that, the modeling
approach proposed hereinafter is physically motivated and allows a
more comprehensive insight into the system dynamics. Besides the
established gray-box model being operated in the same feedforward
fashion as in the mentioned literature sources, the applied Kalman
filter differs by its natural feedback-based algorithm. While Beghi and
Cecchinato [27] also used a standard Kalman filter, their application
aims for a different estimated value, namely, the plant thermal load.
In addition to that, they used this value to feed an adaptive and
energy-efficient control approach. Despite the simplicity and easy-to-
implement character of the standard Kalman filter, the extended and
unscented version is utilized for model-based estimation more exten-
sively in the literature. Enhanced ability to handle nonlinear systems
by such approaches inevitably comes with increased complexity and
higher effort for design and maintenance. However, Fux et al. [28]
introduced an extended Kalman filter (EKF) that estimates model pa-
rameters and, therefore, allows to predict heat demands in buildings.
Similar to that is the estimation of the thermal load and infiltration
resistance in buildings by an EKF, shown in [29,30], respectively.
While those publications focused on estimating demands, not tem-
peratures, the presented work relies on a linear system description
and thus applies the classic Kalman methodology. By contrast, O’Neill
and Narayanan [31] proposed an EKF-based estimator for the actual
temperature in supermarket refrigeration systems based on a compre-
hensive analytical model. Unscented Kalman filters based on gray-box
models were utilized in [32,33] to provide estimates of building model
parameters to predict energy consumption subsequently. Compared
with what was done in literature, the hybrid architecture of the meth-
ods described in this work combined with the physically motivated
model and the aim to estimate actual temperate values stand out.

While this paper focuses on the air temperature inside cooling
chambers to serve high flexibility demanded in small-scale refriger-
ated trucks, some authors presented estimation methods to capture
cargo temperature directly. Raval et al. [34] proposed a white-box
model to estimate the temperature of oranges in closed rectangular
food packages during transient cooling. A similar setup with a single
product type and a closed shipping container is handled in [35] by
an artificial neural network, the Kriging method, and the capacitive
heat transfer method. Also, Emenike et al. [36] introduced a neural
network approach to gain worst-case in-cargo temperature estimates
using radio-frequency-identification-based sensing techniques. Without
additional measurement equipment and based on a white-box model
and continuous estimation of a characteristic time constant, Peder-
sen et al. [37] established an algorithm to estimate food temperature
in supermarket display cases. As all these methods either rely on a
single product type, a large variety of parameters necessary to know
beforehand, expensive and sensitive additional measurement setups,
3

or some combinations of these restrictions, they are not applicable
for the intended purpose of last-mile transportation. Handling many
different goods simultaneously and an amount of cargo varying with
time due to loading and unloading sequences renders estimation of food
temperature thereby impracticable.

Therefore, the importance of reliable estimates for air temperature
inside the cooling chamber during all operating modes is apparent.
Since state-of-the-art system architectures get along with simple mea-
surements close to the cooling unit, flexibility introduced by more
comprehensive control opportunities of secondary-loop refrigeration
units remains unused. The presented strategies offer a more vivid
process insight inevitably necessary to gain advantages regarding tem-
perature control and simultaneously increase efficiency. It is with this
so-gained knowledge about the actual temperature that sophisticated
control concepts [13] can unfold their full potential. Compared with
standard temperature sensors mounted close to the cooling unit, pro-
posed estimation approaches provide more accurate temperature infor-
mation close to the cargo in any operating condition. Thereby, such
enhanced data pave the way for control strategies to cover the ultimate
control target, the temperature of the goods, in a more appropriate
fashion. Better process insight allows diminishing safety margins in the
temperature control task compared with standard strategies, resulting
in higher flexibility and reduced energy input. Besides that, purely
heuristic control actions become needless as validated temperature data
are available throughout all operation modes. Since optimized inputs
may substitute them, efficiency is further improved. By providing an
estimate to the control law in every time step by proposed algorithms,
decision making relies on an improved data set and, therefore, yields
more efficient and more reliable control actions.

The remainder of the paper is organized as follows: First, Section 2
outlines the system architecture and the measurement problem in
detail. Introducing the physically motivated model in Section 3 is fol-
lowed by the overall hybrid estimator design in Section 4. The Kalman-
filter approach and the gray-box-model approach are described exten-
sively in Sections 5 and 6, respectively. Next, Section 7 summarizes the
experimental investigation, numerical results of the parametrization of
the hybrid estimator approaches, and chosen performance parameters.
Comprehensive validation with real measurement data and discussion
complete these considerations. Finally, a brief outlook and limitations
of the approaches are given in Section 8.

2. Detailed problem description

The considered system is a refrigerated truck with a small-scale
cooling chamber, see Fig. 1. The part of the cooling unit situated within
the chamber (detail A) contains an air–fluid heat exchanger and an
air fan used to improve heat transfer by inducing forced convection.
Evolved airflow conditions depend on whether the door is open or
closed and whether the fan is on or off. Please note that the given
setup precludes continuous fan speed change, rendering the related
input solely binary. For ease of readability, Table 1 assigns physically
meaningful operating modes to combinations of the binary system in-
puts, i.e., fan switch 𝑠fan and door opening 𝑠door, where 𝑠𝑖 ∈ {0, 1} , 𝑖 ∈
fan,door} holds.

Table 1
Classification of operating modes based on flow conditions depending on the fan switch
𝑠fan and the door opening event 𝑠door. While 0 indicates that the fan is off or the door
is closed, a value of 1 represents an active fan or an open door.

𝑠fan = 0 𝑠fan = 1

𝑠door = 0 Mode 3 Mode 1
𝑠door = 1 Mode 2

An active fan forces the airflow to evolve independently of a door
opening (mode 1). By contrast, a switched-off fan combined with
an open door yields an airflow pointing in the opposite direction
(mode 2). Please note that this is restricted to a positive temperature
gradient from inside to outside the cooling chamber [8,9]. Finally, local



Applied Thermal Engineering 208 (2022) 118147M. Fallmann et al.
Fig. 1. Schematic illustration of a refrigerated truck with a small-scale cooling
chamber, displaying vital temperature measurement points 𝜗, binary system inputs 𝑠,
and airflow conditions for different operating modes, indicated by thick arrows (see
Table 1 for mode classification). In mode 1, the dashed arrow indicates flow condition
in case of an open door. The airflow in operating mode 3 is internally driven by local
temperature differences and therefore neglected within this graph. The small arrow
above the fan in detail A indicates its flow direction if switched on.
Temperatures: air inside cooling chamber 𝜗cc, air at inflowing position 𝜗in, glycol inside
air chiller 𝜗gly, air at outflowing position 𝜗out.
Binary inputs: door opening 𝑠door, fan switch 𝑠fan.

temperature differences remain the main driving force if the door is
closed and the fan is off (mode 3). Therefore, resulting airflow is sen-
sitive to the initial temperature distribution and a general illustration
unenforceable.

The cooling unit mounted in the investigated refrigerated truck
possesses an extended structure compared with classic approaches, see
Fig. 2. Besides a standard cooling loop using propane as its coolant, it
comprises an additional so-called storage loop running with a water–
glycol mixture. This extension offers vast opportunities in general [10],
but also for sophisticated control schemes aiming towards temperature-
related objectives as well as higher efficiency.

Fig. 2. Basic structure of the cooling unit utilized in the investigated refrigeration
application. It consists of (left) a classic cooling loop using propane as its coolant and
(right) a storage loop filled with a water–glycol mixture. The schematic displays vital
temperature measurement points 𝜗 and the fan switch 𝑠fan. The small arrow above the
fan indicates its flow direction if switched on.
Temperatures: air at inflowing position 𝜗in, air at outflowing position 𝜗out, glycol flowing
into air chiller 𝜗in

gly, glycol inside air chiller 𝜗gly, glycol flowing outside air chiller 𝜗out
gly .
4

Although the main objective is to keep the cargo temperature in
a specific range, appropriate measurement data are rarely available
in real applications. A heuristic way to compensate for this lack of
information is to consider cargo temperatures indirectly by controlling
the temperature of the air inside the cooling chamber (𝜗cc ∈ R), Fig. 1.
Mounting a temperature sensor in such an exposed position is practi-
cally unreasonable. As real circumstances demand a cost-effective and
more robust way to track temperatures, only very few safely attached
sensors are available, which are inside or very close to the cooling unit
frame. In the given setup, temperature measurements are available for
air at the inflowing position (𝜗in ∈ R), air at the outflowing position
(𝜗out ∈ R), glycol flowing into the air chiller (𝜗in

gly ∈ R), and glycol
flowing out of the air chiller (𝜗out

gly ∈ R). Based on glycol measurements,
the temperature of the glycol inside the air chiller (𝜗gly ∈ R) can be
approximated using the arithmetic mean according to

𝜗gly = 1
2

(

𝜗in
gly + 𝜗out

gly

)

. (1)

Additionally, binary sensors provide values for the door opening 𝑠door
and the fan switch 𝑠fan.

A variety of state-of-the-art control approaches gets solely along
with measuring 𝜗in, e.g., [5–7]. As long as the air fan is running,
i.e., operating mode 1 is active, air flows in such a way to let 𝜗in be
a reasonable approximate for 𝜗cc, see schematic airflow in Fig. 1. By
contrast, if the fan is off, significantly different flow conditions evolve
(operating modes 2 and 3), resulting in a substantial deviation of 𝜗in
from 𝜗cc. Control approaches that use 𝜗in regardless of the current
operating mode lack knowledge about actual circumstances during
operating modes 2 and 3. Therefore, corresponding control actions are
either unreasonable or adapted heuristically [11,12]. Since standard re-
frigeration applications only turn off the air fan in rare events, e.g., dur-
ing door openings to reduce overall energy consumption, suboptimal
control actions within these periods are often accepted.

However, as small refrigerated trucks tend to face door openings
and therefore a switched-off fan more often than large ones, careful
consideration of these periods becomes more critical. In addition to
that, the exceptional architecture of the cooling unit with its storage
loop reveals additional opportunities to switch off the fan. Although
running the fan from time to time is required to prevent severe in-
homogeneities in the temperature distribution, a sophisticated control
scheme will drive the system into operating modes 2 and 3 more
frequently. Therefore, knowledge about 𝜗cc in all operating modes is
a necessary prerequisite. Only then, control algorithms can use the
flexibility of the cooling unit to its full extent and improve efficiency,
reduce wear, and keep track of temperature restrictions during the
entire operation.

3. Physical temperature model

As mentioned above, the air temperature inside the cooling cham-
ber 𝜗cc is inaccessible to direct measurement in real operation. There-
fore, appropriate estimates �̂�cc(𝑡;𝑚) ∈ R, written in continuous time
𝑡 ∈ R≥0, for all three operating modes 𝑚 ∈ {1, 2, 3} are needed.
Please note that explicitly stated mode dependencies of quantities allow
handling relationships for all modes by a single notation in an easy-to-
read manner. Although 𝑚 is time-variant, i.e., 𝑚 = 𝑚(𝑡), this dependency
is only considered implicitly for the sake of brevity. However, explicit
indication is done in some places to solve ambiguities. Hereinafter,
nomenclature considers that model parameters, states, and outputs
(partially) exhibit mode dependencies, while model inputs, true values,
and measured values are inherently independent of any change in 𝑚.

While flow conditions in operating mode 1 allow a simple approach
according to

�̂�cc(𝑡; 1) = 𝜗in(𝑡), (2)

airflows in operating modes 2 and 3 call for more detailed consider-
ations, see Fig. 1. For this purpose, a physically reasonable model for
the relationship between 𝜗cc, 𝜗gly, and 𝜗out in operating modes 2 and 3

is introduced in the following.
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3.1. Model description

The water–glycol mixture in the air chiller (mean temperature 𝜗gly)
and the air inside the cooling chamber (temperature 𝜗cc) possess sig-
nificantly higher heat capacities than the air volume close to the sensor
measuring 𝜗out, see Fig. 1. Based on that, a simple lumped model of the
given circumstances assumes 𝜗out to result from 𝜗gly and 𝜗cc, neglecting
a reverse influence, see Fig. 3.

As the considered measuring point for 𝜗cc is located inside the
cooling chamber, a noticeable difference between the temperature rise
at this very point and the doorway in case of an open door will occur. A
more comprehensive evaluation of the arising temperature distribution
would be possible by Computational Fluid Dynamics analysis [8,9].
However, on the one hand, it would be computationally too expensive
and, on the other hand, hard to incorporate into a control strategy
calling for a single temperature value. However, the methodology
presented in this work can be implemented for any specific measuring
point inside the cooling chamber and, therefore, offers the opportunity
to provide a more distributed insight by appropriately implementing
several estimators for different locations. This can be especially help-
ful if sensitive cargo is placed close to the door and must be kept
within a specific temperature range. Adding constraints in a sophis-
ticated control scheme may incorporate this additional model-based
information.

An energy balance describes this first-order model for modes 𝑚 ∈
{2, 3} according to

𝐶(𝑚)
𝑑 𝜗out(𝑡;𝑚)

𝑑𝑡
= �̇�gly(𝑡;𝑚) + �̇�cc(𝑡;𝑚), (3)

where 𝐶 ∈ R is the heat capacity of the air with temperature 𝜗out and
�̇�gly ∈ R and �̇�cc ∈ R are the heat flows through the corresponding
walls. As heat flows result from temperature differences between each
side of the walls, (3) can be rewritten as

𝐶(𝑚)
𝑑 𝜗out(𝑡;𝑚)

𝑑𝑡
= (𝑘𝐴)gly (𝑚)

[

𝜗gly(𝑡) − 𝜗out(𝑡)
]

+⋯

(𝑘𝐴)cc (𝑚)
[

𝜗cc(𝑡) − 𝜗out(𝑡)
]

(4)

with heat transition coefficients (𝑘𝐴)gly ∈ R≥0 and (𝑘𝐴)cc ∈ R≥0 of the
walls separating the water–glycol mixture and the air inside the cooling
chamber, respectively. The ideal heat transition, assumed within this
modeling approach, comprises conduction and convection only. Due
to the intended operation in the low-temperature regime, neglecting
heat transfer through radiation is reasonable. Furthermore, although
real circumstances may be better covered by a distributed rather than
a lumped approach, its simplicity and eventually attained fit justify
concentrating thermal masses in a single point and characterizing it
by a single temperature value. Combining unknown model parameters
yields the compact formulation
𝑑 𝜗out(𝑡;𝑚)

𝑑𝑡
= 𝐾gly(𝑚)

[

𝜗gly(𝑡) − 𝜗out(𝑡)
]

+⋯

𝐾cc(𝑚)
[

𝜗cc(𝑡) − 𝜗out(𝑡)
]

,
(5)

where 𝐾gly(𝑚) ∈ R≥0 and 𝐾cc(𝑚) ∈ R≥0 for 𝑚 ∈ {2, 3} denote the four
remaining unknown parameters.

Airflow induced by an open door in operating mode 2 renders the
influence of 𝜗gly negligibly small (Fig. 1). Therefore, associated heat
flow is omitted, yielding a reduced number of unknown parameters,
see (6).

�̇�gly(𝑡; 2) ≡ 0 ⇒ (𝑘𝐴)gly (2) = 0 ⇒ 𝐾gly(2) = 0 (6)

Parameter estimation methods, presented in Section 3.2, together
with the recorded measurement data used for identification, shown
in Fig. 9, yield appropriate model parameter estimates according to
Table 3.
5

Fig. 3. Simple thermodynamic model of the evolution of the air temperature 𝜗out dur-
ing operation in modes 2 and 3. Arrows represent heat flows �̇� through heat-conducting
walls, while shaded boundaries indicate adiabatic ones.

3.2. Parameter estimation

Parametrization requires transforming (5) into an appropriate stan-
dard state–space formulation. With the state 𝑥 ∈ R and the input vector
𝒖 ∈ R2, defined according to

𝑥(𝑡;𝑚) ∶= 𝜗out(𝑡;𝑚), 𝒖(𝑡) ∶=

[

𝜗gly(𝑡)

𝜗cc(𝑡)

]

, (7)

respectively, the state–space model for operating modes 𝑚 ∈ {2, 3} is
given by

�̇�(𝑡;𝑚) =
(

−𝐾gly(𝑚) −𝐾cc(𝑚)
)

𝑥(𝑡) +⋯
[

𝐾gly(𝑚) 𝐾cc(𝑚)
]

𝒖(𝑡), (8a)

𝑦(𝑡;𝑚) =𝑥(𝑡;𝑚) = 𝜗out(𝑡;𝑚), (8b)

where a dot placed above a variable indicates a time derivative and
𝑦 ∈ R denotes the model output.

Mode-wise aggregation of parameters into parameter vectors 𝜽(𝑚) ∈
R2 for 𝑚 ∈ {2, 3} according to

𝜽(𝑚) =
[

𝐾gly(𝑚) 𝐾cc(𝑚)
]T (9)

results in the compact state–space formulation (10), where 𝑓 ∶ R5 → R
abbreviates the state equation.

̇ (𝑡;𝑚) = 𝑓 (𝑥(𝑡;𝑚), 𝒖(𝑡);𝜽(𝑚)) (10a)

𝑦(𝑡;𝑚) = 𝑥(𝑡;𝑚) (10b)

Based on 𝑛 (𝑚) experimentally gained training data sets 𝑗 (𝑚), 𝑗 ∈
{

1,… , 𝑛 (𝑚)
}

including 𝑛𝑘(𝑗 (𝑚)) samples each, the optimization prob-
lem

𝜽∗(𝑚) = arg min
𝜽(𝑚)

𝐽
(

𝜽(𝑚)
)

(11)

with the objective function 𝐽 ∈ R according to

𝐽
(

𝜽(𝑚)
)

=
𝑛 (𝑚)
∑

𝑗=1

𝑛𝑘(𝑗 (𝑚))
∑

𝑖=1

[

𝑦(𝑡𝑖;𝑚) − 𝑦meas(𝑡𝑖)
]2

(12)

yields the optimized parameter vectors 𝜽∗(𝑚) for modes 𝑚 ∈ {2, 3}.
Thereby, solving the state–space model (10) with inputs, which are
given by the considered training data sets 𝑗 (𝑚), and a parameter vector
and subsequent sampling at sampling instances 𝑡𝑖 result in the sampled
simulated model output 𝑦(𝑚, 𝑡𝑖). Please note that the 𝜽-dependency of
𝑦(𝑚, 𝑡𝑖) is stated implicitly by its mode-dependency. Minimizing the
objective function (12) induces an estimated parameter vector that
minimizes the squared difference between the simulated 𝑦 and the ex-
perimentally measured output 𝑦meas [38,39]. This work used MATLAB
R2020a’s System Identification Toolbox [40] to solve the optimization
problem (11).
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3.3. Basic problem of estimating 𝜗cc

Rearranging the dynamic model equation (5) according to (13)
eveals that it lacks direct usage for estimating the temperature inside
he cooling chamber: the required time derivative renders the problem
oncausal.

cc(𝑡;𝑚) =
1

𝐾cc(𝑚)
𝑑 𝜗out(𝑡)

𝑑𝑡
+⋯

(

1 +
𝐾gly(𝑚)
𝐾cc(𝑚)

)

𝜗out(𝑡) −
𝐾gly(𝑚)
𝐾cc(𝑚)

𝜗gly(𝑡)
(13)

Transition into a discrete-time formulation and approximating the
derivative by finite backward differences, on the one hand, restore com-
putability but, on the other hand, increase its sensitivity to measure-
ment noise drastically. To overcome this issue, subsequently proposed
methods smooth out noise effects implicitly.

4. Hybrid estimator design

Since different (dynamic) relationships between actually measured
sensor values and the desired value for the air temperature inside
the cooling chamber characterize each of the three operating modes,
the overall estimator has to distinguish between different estimation
methods. Fulfilling this requirement yields a hybrid estimator scheme,
see Fig. 4, whereby here, the term hybrid denotes systems including
continuous and binary variables [13].

While every estimation method relies on (parts of) the vector of
continuous inputs 𝒅 ∈ R3, the vector of binary inputs 𝜹 ∈ {0, 1}2 deter-

ines which method is currently active. Input vectors are structured as
ollows:

(𝑘) =

⎡

⎢

⎢

⎢

⎣

𝜗in(𝑘)

𝜗out(𝑘)

𝜗gly(𝑘)

⎤

⎥

⎥

⎥

⎦

, 𝜹(𝑘) =

[

𝑠door(𝑘)

𝑠fan(𝑘)

]

. (14)

In order to serve a practical implementation in a microcontroller,
the overall estimator design is carried out in discrete time, with 𝑘 ∈ N0
denoting the current time step.

If the system is operating in mode 1, the discrete-time version of (2)
is applied. Therefore, the method for mode 1 results as follows:

�̂�cc(𝑘; 1) = 𝜗in(𝑘). (15)

Apart from that, methods for handling modes 2 and 3 rely on the
physical model (5). The following sections present two approaches to
solve the impracticality of using (13) to estimate 𝜗cc in those operating

Fig. 4. Simplified representation of the discrete-time hybrid estimator scheme, valid for
oth estimation approaches. While the vector of binary inputs 𝜹 selects the appropriate

estimation method for the current operating mode, the method itself uses parts of the
vector of continuous inputs 𝒅 to provide the estimate �̂�cc. For the sake of simplicity,
features to improve the performance in the short period after a transition from one
method to another are not depicted explicitly. Abbreviation 𝑘 denotes the current time
step.
6

t

modes. While the hybrid Kalman-filter (hykf) approach (Section 5)
explicitly incorporates the physical model (5) and its parametrization,
the hybrid gray-box-model (hygb) approach (Section 6) builds on a
filtered version of (13) and separately estimated parameters.

Since transitions between operating modes require time to form
the mode-characteristic air flows, both approaches comprise additional
features to improve performance during such short periods. They are
shown within the following sections but are neglected in Fig. 4 to
maintain clarity.

5. Kalman-filter approach

Kalman filtering [14] is a state-of-the-art solution for state estima-
tion, is applied in numerous practical applications, e.g., [27,41,42],
and is well-covered in application-oriented literature [16,43]. Its simple
structure further facilitates implementation and maintenance. Mode-
dependent model parameters 𝜽(𝑚) necessitate designing a separate filter
or each mode 𝑚 ∈ {2, 3}.

.1. Model description

To gain estimates �̂�cc based on model (5), the state vector for the
alman-filter model 𝒙kf ∈ R2 represents an appropriately augmented
ersion compared with (7):

kf(𝑡;𝑚) =

[

𝜗out(𝑡;𝑚)

𝜗cc(𝑡;𝑚)

]

. (16)

ence, the continuous-time state–space model results as

̇ kf(𝑡;𝑚) = 𝑨(𝑚)𝒙kf(𝑡;𝑚) + 𝒃(𝑚) 𝑢kf(𝑡) +𝑮𝒘(𝑡;𝑚) (17a)

𝑦kf(𝑡;𝑚) = 𝒄T 𝒙kf(𝑡;𝑚) + 𝑣(𝑡) (17b)

ith the model input 𝑢kf ∈ R, the vector of process noise 𝒘 ∈ R2, the
easurement noise 𝑣 ∈ R, the measurable model output 𝑦kf ∈ R, the

ystem matrix 𝑨 ∈ R2×2, the input vector 𝒃 ∈ R2, the input matrix for
rocess noise 𝑮 ∈ R2×2, and the output vector 𝒄 ∈ R2. While the model
nput is independent of the current mode 𝑚 and chosen according to

kf(𝑡) = 𝜗gly(𝑡), (18)

volution of the model output is mode-dependent, given as

kf(𝑡;𝑚) = 𝜗out(𝑡;𝑚). (19)

s in general, the considered system lacks detailed insight into the
ffects of process noises. Therefore, choosing

= 𝑰2 (20)

ith 𝑰2 denoting a 2 × 2 identity matrix is reasonable [43] and renders
calar components 𝑤out and 𝑤cc to solely act upon the dynamics of 𝜗out
nd 𝜗cc, respectively:

(𝑡;𝑚) =

[

𝑤out(𝑡;𝑚)

𝑤cc(𝑡;𝑚)

]

. (21)

lease note that noise processes are characterized in more detail in their
iscrete-time formulation, see (26) and (27). Reformulating model (5)
y augmenting the state vector – see (16) – yields system matrix, input
ector, and output vector to be given as

(𝑚) =

[

−𝐾cc(𝑚) −𝐾gly(𝑚) 𝐾cc(𝑚)

0 0

]

, (22)

(𝑚) =

[

𝐾gly(𝑚)

0

]

, 𝒄T =
[

1 0
]

. (23)

To enable a digital implementation, discretization of the continuous-

ime state–space model (17) is necessary. Using a sampling time 𝑇s and
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zero-order hold on the input 𝑢kf and the noise processes 𝒘 and 𝑣 yield
the discrete-time formulation denoted by

�̇�kf(𝑘;𝑚) = 𝑨d(𝑚)𝒙kf(𝑘;𝑚) + 𝒃d(𝑚) 𝑢kf(𝑘) +𝑮d 𝒘(𝑘;𝑚) (24a)

𝑦kf(𝑘;𝑚) = 𝒄T
d𝒙kf(𝑘;𝑚) + 𝑣(𝑘), (24b)

where subscript 𝑑 indicates discrete-time quantities. Although

𝒄T
d = 𝒄T (25)

naturally holds, consistent indexing is utilized to solve otherwise pos-
sible ambiguities.

In practical applications, a common and sensible assumption is to
model process noise and measurement noise being white, Gaussian
distributed, and zero-mean. So, the mathematical formulation ∀𝑘 ∈
N, 𝑚 ∈ {2, 3} is as follows:

𝒘(𝑘;𝑚) ∼  (𝟎,𝑸(𝑘;𝑚)) , (26a)

𝑣(𝑘) ∼  (0, 𝑅(𝑘)) , (26b)

where 𝑸 ∈ R2×2 and 𝑅 ∈ R denote covariances of process noise and
measurement noise, respectively. As measurement setup alone dictates
measurement noise, 𝑣 is independent of the current mode. By contrast,
system dynamics and, hence, model uncertainties differ from mode to
mode, calling for mode-dependent process noise.

Kalman filtering, in general, makes some further assumptions re-
garding noise processes [16]. Firstly, scalar process noises are uncorre-
lated, which means that

𝑸(𝑘;𝑚) = diag
[

𝑄out(𝑘;𝑚), 𝑄cc(𝑘;𝑚)
]

(27)

with 𝑄out ∈ R as the variance of 𝑤out and 𝑄cc ∈ R as the variance
of 𝑤cc holds. Secondly, noise processes 𝒘 and 𝑣 are uncorrelated as
well. This ensures the Kalman filter to be the optimal filter for such
systems described above. Although these requirements seem restrictive,
practical experience confirms real systems to fulfill them sufficiently.
However, even if noise processes would deviate from the assumed
Gaussian distribution, the Kalman filter would still be the optimal linear
filter.

5.2. Filter formulation

Kalman-filter formulation is well-known from literature [14,16,43]
and is, hereinafter, appropriately adapted for the given purpose. The
filter comprises two stages: prediction and correction, whereby both
are executed in every time step. A tilde (∼) over a variable indicates
predicted quantities, while corrected quantities exhibit a hat (∧) above.
By defining estimation errors 𝜺 ∈ R2 according to

�̃�(𝑘;𝑚) ∶= 𝒙kf(𝑘) − �̃�kf(𝑘;𝑚), (28a)

�̂�(𝑘;𝑚) ∶= 𝒙kf(𝑘) − �̂�kf(𝑘;𝑚) (28b)

with 𝒙kf(𝑘) ∈ R2 as the true state vector, related covariance matrices
𝑷 ∈ R2×2 are given by

�̃� (𝑘;𝑚) = Var [�̃�(𝑘;𝑚)] , (29a)

�̂� (𝑘;𝑚) = Var [�̂�(𝑘;𝑚)] . (29b)

Utilizing these definitions enables stating estimator equations com-
pactly. Predictions for the current time step rely on previously occurred
inputs and calculated state estimates, see (30).

�̃�kf(𝑘;𝑚) = 𝑨d(𝑚) �̂�kf(𝑘-1;𝑚) + 𝒃d(𝑚) 𝑢kf(𝑘-1) (30a)

�̃�kf(𝑘;𝑚) = 𝒄T
d �̃�kf(𝑘;𝑚) (30b)

�̃� (𝑘;𝑚) = 𝑨d(𝑚) �̂� (𝑘-1;𝑚)𝑨T
d(𝑚) +𝑮d 𝑸(𝑘-1;𝑚)𝑮T

d (30c)

Subsequently, corrected quantities originate from the difference
𝛥𝑦kf(𝑘;𝑚) ∈ R between prediction �̃�kf(𝑘;𝑚) and currently measured
value 𝑦kf(𝑘), given as

𝛥𝑦 (𝑘;𝑚) = 𝑦 (𝑘) − �̃� (𝑘;𝑚). (31)
7

kf kf kf
Then, the correction step can be written as follows:

�̂�kf(𝑘;𝑚) = �̃�kf(𝑘;𝑚) +𝑲kf(𝑘;𝑚)𝛥𝑦kf(𝑘;𝑚) (32a)

�̂�kf(𝑘;𝑚) = 𝒄T
d �̂�kf(𝑘;𝑚) (32b)

�̂� (𝑘;𝑚) =
[

𝑰2 −𝑲kf(𝑘;𝑚) 𝒄T
d
]

�̃� (𝑘;𝑚) (32c)

with the Kalman gain 𝑲kf ∈ R2 calculated according to

𝑲kf(𝑘;𝑚) = �̃� (𝑘;𝑚) 𝒄d
[

𝒄T
d �̃� (𝑘;𝑚) 𝒄d + 𝑅(𝑘)

]-1 . (33)

Finally, the desired estimate for the air temperature inside the
cooling chamber during operation in modes 𝑚 ∈ {2, 3} is given by

�̂�cc(𝑘;𝑚) =
[

0 1
]

�̂�kf(𝑘;𝑚). (34)

5.3. Filter existence and stability

While full state observability of the pair (𝑨d (𝑚) , 𝒄T
d) is sufficient

for the existence of a Kalman filter, full state controllability of the
pair

(

𝑨d (𝑚) ,𝑮d
)

and 𝑸(𝑘;𝑚) being positive definite ensure asymptotic
stability [16]. It is simple to show that the given setup meets both
conditions if 𝑸(𝑘;𝑚) is chosen appropriately.

5.4. Filter initialization

Every mode switch into, or an overall fresh start in, mode 2 or 3
triggers the associated Kalman filter to start working. An appropriate
initialization is indispensable and also vital to ensure high performance
of the overall estimator approach, as it takes previous estimates as well
as mode characteristics into account.

In order to facilitate readability throughout the following considera-
tion, initializing time steps are highlighted by the subscript ‘‘i23’’. More
mathematically, this can be written as

𝑘 = 𝑘i23

⇔

(𝑚 (𝑘) ∈ {2, 3}) ∧
[

(𝑚 (𝑘-1) ≠ 𝑚 (𝑘)) ∨ (𝑘 = 0)
]

,

(35)

where 𝑘 = 0 denotes the very first time step after booting.
At such a time step 𝑘i23, predicted values (�̃�kf and �̃� ) are either

inaccessible or at least unreasonable to calculate using (30a) and (30c).
Therefore, they have to be defined appropriately. The time-invariant
matrix �̃� init serves to initialize the covariance:

�̃� (𝑘i23;𝑚(𝑘i23)) = �̃� init(𝑚(𝑘i23)). (36)

By contrast, initializing the predicted state vector requires distinguish-
ing whether the hybrid estimator starts freshly (𝑘i23 = 0) or previously
obtained estimates are already available:

�̃�kf(𝑘i23;𝑚(𝑘i23)) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎣

𝜗out(0)

𝜗in(0)

⎤

⎥

⎥

⎦

if 𝑘i23 = 0

⎡

⎢

⎢

⎣

𝜗out(𝑘i23)

�̂�cc(𝑘i23;𝑚(𝑘i23-1))

⎤

⎥

⎥

⎦

otherwise,

(37)

where 𝜗out(0), 𝜗in(0), and 𝜗out(𝑘i23) denote current measurement values.
While the first state is, in fact, measurable and therefore simple to
initialize, the prediction of the second state is either approximated by
the estimate done in the previous time step or by the temperature of
the air at the inflowing position. Coming from an uncertain level of
knowledge at those initialization time steps, these are the best possible
assumptions based on physical considerations of the system.

And finally, based on (37), �̃�kf(𝑘i23;𝑚(𝑘i23)) results straightforward
from (30b). Thus, all necessary quantities are known by now, allowing
to continue estimation.
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5.5. Mode transitions

Turning on the fan evokes operating mode 1, see Fig. 1. However,
air flows require some time to evolve, yielding a transition period in
which (15) is an unsatisfactory estimate. While this is apparent from
experimental data for transitions into mode 1, transitions into other
modes happen without such a significant characteristic.

To improve overall performance, (15) is adapted during a certain
period (number of time steps 𝑛t1 ∈ N) after considered transitions.
Associated transition time steps are highlighted by the subscript ‘‘t1’’
nd defined as follows:

= 𝑘t1 ⇔ (𝑚 (𝑘) = 1) ∧ (𝑚 (𝑘-1) ≠ 𝑚 (𝑘)) . (38)

or all time steps 𝑗 ∈  given as

=
{

𝑘 ∣ 𝑘t1 ≤ 𝑘 ≤ 𝑘t1 + 𝑛t1 − 1
}

, (39)

discrete-time first-order low pass, see (40), with time constant 𝑇t1
ubstitutes the originally defined estimator (15) for mode 1.

̂cc(𝑗; 1) = �̂�cc(𝑗-1; 1) +
𝑇s
𝑇t1

[

𝜗in(𝑗-1) − �̂�cc(𝑗-1; 1)
]

(40)

owever, because previously estimated values are necessary for apply-
ng the low-pass strategy, (15) still covers booting in mode 1. Therefore,
38) neglects 𝑘t1 = 0 as a possible solution.

.6. Parameters

Parameters to influence the performance of the overall hykf ap-
roach can concisely be written as the set 𝛷hykf:

hykf =
{

𝑇s, 𝑅, 𝑸(2), 𝑸(3), �̃� init(2), �̃� init(3), 𝑛t1, 𝑇t1
}

. (41)

ote that real applications usually lack comprehensive insight into
he process, inhibiting reasonable definitions of time-variant noise pro-
esses. Therefore, time-dependency is neglected. Section 7.4 presents
he parameter values that are applied to the actually considered system.

.7. Flow chart

The overall hykf approach consists of three strands, one for each
ode, and additional procedures covering initialization and mode tran-

itions. To summarize all considerations mentioned above, Fig. 5 out-
ines process steps and their interactions lucidly and provides references
o relevant equations, facilitating implementation.

. Gray-box-model approach

Gray-box models denote a class of mathematical descriptions that
onsiders physical circumstances and appropriate adaptions resulting
rom iterative design and validation throughout the modeling pro-
edure [15]. Such an approach, in general, allows developing well-
itting models by extending moderate insight into system dynamics
y grasp gained from real measurement data. As these so-developed
odels provide more vivid analytical knowledge of process behavior

han black-box models [38], they improve numerous technical and
on-technical applications, e.g., [44,45].

Compared with the Kalman-filter approach comprising a prediction
nd a correction step, this approach provides a more direct way to es-
imate the air temperature inside the cooling chamber. It aims towards
simple discrete-time model directly usable for estimation.
8

Fig. 5. Flow chart of the hybrid Kalman-filter approach, including references to all
relevant equations.

6.1. Model description

Based on several adaptions of a discrete-time version of (13) and it-
erated identification and validation, the following physically motivated
model for modes 𝑚 ∈ {2, 3} was obtained:
𝜗cc(𝑘;𝑚) =𝜗cc(𝑘-1;𝑚) +⋯

𝑇s
𝑇gb(𝑚)

[

𝜘out,1(𝑚) 𝜗out(𝑘-1) +⋯

𝜘out,2(𝑚) 𝜗out(𝑘-2) +⋯

𝜘gly(𝑚) 𝜗gly(𝑘-1) − 𝜗cc(𝑘-1;𝑚)
]

,

(42)

where 𝑇gb ∈ R is the time constant of the first-order low pass and
out,1, 𝜘out,2, 𝜘gly ∈ R denote gains of model inputs. For both modes,
his yields eight unknown parameters in total. In mode 2, according to
lready previously mentioned circumstances (6), the influence of the
lycol temperature vanishes. This results in

gly(2) = 0 (43)

o hold and finally seven parameters to be determined.

.2. Parameter estimation

In order to perform standard parameter estimation techniques, it is
ensible to transform model Eq. (42) into its discrete-time state–space
ormulation

gb(𝑘+1;𝑚) = 𝑎gb(𝑚) 𝑥gb(𝑘;𝑚) + 𝒃T
gb(𝑚) 𝒖gb(𝑘) (44a)

𝑦gb(𝑘;𝑚) = 𝑥gb(𝑘;𝑚) = 𝜗cc(𝑘;𝑚) (44b)

ith the state 𝑥gb ∈ R and the vector of inputs 𝒖gb ∈ R3 according to

gb(𝑘;𝑚) ∶= 𝜗cc(𝑘;𝑚), 𝒖gb(𝑘) ∶=

⎡

⎢

⎢

⎢

𝜗out(𝑘)

𝜗out(𝑘-1)
⎤

⎥

⎥

⎥

, (45)
⎣
𝜗gly(𝑘) ⎦
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respectively, and the output 𝑦gb ∈ R. The eigenvalue 𝑎gb ∈ R and the
input vector 𝒃T

gb ∈ R3 are then given by (46a) and (46b), respectively.

𝑎gb(𝑚) =

[

1 −
𝑇s

𝑇gb(𝑚)

]

(46a)

T
gb(𝑚) =

𝑇s
𝑇gb(𝑚)

[

𝜘out,1(𝑚) 𝜘out,2(𝑚) 𝜘gly(𝑚)
]

(46b)

Comprising model parameters in a mode-wise fashion by parameter
ectors 𝜻(𝑚) ∈ R4 for 𝑚 ∈ {2, 3} according to

(𝑚) =
[

𝑇gb(𝑚) 𝜘out,1(𝑚) 𝜘out,2(𝑚) 𝜘gly(𝑚)
]T (47)

llows a compact state–space formulation as follows:

gb(𝑘+1;𝑚) = 𝑓gb
(

𝑥gb(𝑘;𝑚), 𝒖gb(𝑘), 𝜻(𝑚)
)

(48a)

𝑦gb(𝑘;𝑚) = 𝑥gb(𝑘;𝑚), (48b)

here 𝑓gb ∶ R8 → R denotes the state equation.
Analogous to the parameter estimation of the physical model (Sec-

ion 3.2) 𝑛 (𝑚) experimentally gained training data sets 𝑗 (𝑚), 𝑗 ∈
1,… , 𝑛 (𝑚)

}

including 𝑛𝑘(𝑗 (𝑚)) samples each constitute the experi-
ental foundation for the – here appropriately adapted – optimization
roblem
∗(𝑚) = arg min

𝜻(𝑚)
𝐽gb

(

𝜻(𝑚)
)

(49)

ith the objective function 𝐽gb ∈ R given as

gb
(

𝜻(𝑚)
)

=
𝑛 (𝑚)
∑

𝑗=1

𝑛𝑘(𝑗 (𝑚))
∑

𝑖=1

[

𝑦gb(𝑖;𝑚) − 𝑦meas(𝑖)
]2

(50)

and subject to

𝑇gb(𝑚) > 𝑇s∕2. (51)

Note that the 𝜻-dependency of 𝑦gb(𝑚, 𝑖) is stated implicitly by its mode-
dependency. Parameter estimation [38,39] is done identically to Sec-
tion 3.2 using MATLAB R2020a’s System Identification Toolbox [40]
and yields the optimal solutions 𝜻∗(𝑚) for modes 𝑚 ∈ {2, 3}.

In addition, restricting 𝑇gb according to (51) ensures that the eigen-
value 𝑎gb (46a) remains within the unit circle, providing asymptotic
stability of the parametrized estimator.

6.3. Estimator formulation

The model Eq. (42) together with the eventually identified param-
eter vectors 𝜻(𝑚) yield the discrete-time estimator equation for the
current time step 𝑘 and for modes 𝑚 ∈ {2, 3} as follows:

�̂�cc(𝑘;𝑚) = �̂�cc(𝑘-1;𝑚) +⋯
𝑇s

𝑇gb(𝑚)
[

𝜘out,1(𝑚) 𝜗out(𝑘-1) +⋯

𝜘out,2(𝑚) 𝜗out(𝑘-2) +⋯

𝜘gly(𝑚) 𝜗gly(𝑘-1) − �̂�cc(𝑘-1;𝑚)
]

.

(52)

6.4. Estimator initialization

Suppose booting at 𝑘 = 0 in operating mode 2 or 3, previous model
inputs and the previous estimate are unavailable. Hence, the very first
measured values replace previously unknown quantities according to
(53).

𝜗out(-2) = 𝜗out(0) (53a)

𝜗out(-1) = 𝜗out(0) (53b)

𝜗gly(-1) = 𝜗gly(0) (53c)

�̂�cc(-1;𝑚) = 𝜗in(0) (53d)
9

While (53a) to (53c) are intuitive choices, (53d) represents the phys-
ically best possible approximation in the face of complete uncertainty
of the past as it relies on the assumption that some sort of intermixing
of the air has previously happened by the fan or otherwise.

6.5. Mode transitions

As the airflow evolution in mode 1 needs some time independently
of the applied estimator approach, the same considerations for a tran-
sition into mode 1 as for the hykf approach hold here as well — see
Section 5.5 for detailed explanation.

Besides that, the hygb approach requires another adaption because
it lacks considering feedback during operation as the Kalman filter
naturally does. Due to its feed-forward structure, rapidly-changing
previous values would cause a severe performance decrease after tran-
sitioning into a mode with comparably slow dynamics (mode 3). There-
fore, a zero-order model reasonably replaces estimator formulation (52)
during a certain period (number of time steps 𝑛t3 ∈ R) after such a
transition. Formally written, with defining the time step in which a
transition into mode 3 occurs 𝑘t3 ∈ N according to

𝑘 = 𝑘t3 ⇔ (𝑚 (𝑘) = 3) ∧ (𝑚 (𝑘-1) ≠ 𝑚 (𝑘)) . (54)

the estimator (52) is replaced by the zero-order model

�̂�cc(𝑙; 3) = �̂�cc
(

𝑙-1;𝑚 (𝑙-1)
)

(55)

for all time steps 𝑙 ∈  given as

 =
{

𝑘 ∣ 𝑘t3 ≤ 𝑘 ≤ 𝑘t3 + 𝑛t3 − 1
}

. (56)

Please note that booting in mode 3 calls for an appropriate initialization
(Section 6.4) rather than this transition procedure. Therefore, (54)
neglects 𝑘t3 = 0 as a possible solution.

6.6. Parameters

Apart from model-related parameters 𝜻(𝑚), the performance of the
overall hygb approach depends on the set 𝛷hygb, given by

𝛷hygb =
{

𝑇s, 𝑛t1, 𝑇t1, 𝑛t3
}

(57)

Please note the decreased number of influencing factors compared
with the hykf approach (41), further emphasizing the simplicity of this
approach.

Section 7.5 summarizes the model and performance parameters
actually used for the considered system.

6.7. Flow chart

The overall hygb approach consists of three strands, one for each
mode, and additional procedures covering initialization and mode tran-
sitions. To summarize the considerations mentioned above, Fig. 6 out-
lines process steps and their interactions lucidly and provides references
to relevant equations, facilitating implementation.

7. Results and discussion

7.1. Experimental investigation

The experimental setup comprises a series-production truck adapted
in small series for refrigeration purposes and additional equipment,
allowing comprehensive investigations, see Fig. 7. The fan heater
mounted on the floor of the cooling chamber enables emulation of re-
producible heat flows but modifies the airflow conditions significantly.
Because the actual airflow is vital for the relationship between mea-
sured temperature values at different locations, conducted experiments
waive utilizing the fan heater to obtain data sets representative for real

operation.
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Fig. 6. Flow chart of the hybrid gray-box-model approach, including references to all
relevant equations.

To gain deeper insight into realistic circumstances, empty cardboard
boxes in a partially (Fig. 7 d) and completely filled setup (Fig. 7 e) simu-
late flow resistances. While their influence on temperature distribution
remains negligibly small due to their insignificant thermal mass, their
impact on the airflow is close to reality. Besides the parameters of
the cardboard boxes, Table 2 provides a comprehensive overview of
experimental conditions.

Table 2
Experimental conditions used for data acquisition.

Condition Value

Sampling time 10 s
Sensors for
𝜗in , 𝜗out , 𝜗in

gly , 𝜗
out
gly Dallas DS18S20 [46]

𝜗cc 3-wire Pt100 class B [47]
Accuracy for sensor

Dallas DS18S20 ±0.5 ◦C
3-wire Pt100 class B ±0.3 ◦C at 0 ◦C

Box
Dimensions 65 cm x 35 cm x 37 cm
Volume 84 liters

Filling degree
Empty (Fig. 7 c) 0 boxes
Partially filled (Fig. 7 d) 5 boxes
Completely filled (Fig. 7 e) 10 boxes

Door opening transition time
To open ≈6 s
To close ≈1.5 s

Changing the number of boxes inside the cooling chamber, i.e., al-
tering the filling degree, naturally comes with a door opening. Neces-
sary human interaction to carefully arrange the boxes in a reproducible
manner drastically limits data reliability and reproducibility during
these periods. Therefore, those data sections are neglected in the
following.
10
Fig. 7. Investigated refrigerated truck in (a) diagonal front view and (b) diagonal rear
view. Its cooling chamber is shown in an empty, a partially filled, and a completely
filled setup in (c)–(e), respectively. The fan heater, mounted on the floor of the
cooling chamber and apparent from (c–e), is off throughout the whole experimental
investigation within this work. Some areas of (a) and (b) are blurred for legal reasons.

Although door openings are handled manually, using a single op-
erator allows comparable conditions throughout the experiments. To
safely snap door wings, the transition time for opening is four times
longer than for closing (Table 2).

The two-part door is asymmetrically divided and unblocks the entire
cross section of the cooling chamber, see Fig. 8. Besides the dimensions
of the overall chamber, the schematic shows the position of the sen-
sor measuring 𝜗cc. Although its actual location is closer to the front
wall than graphically depicted in Fig. 1, the presented methodologies
apply to any arbitrarily chosen sensor position. However, preliminary
test runs with several additional sensors within the cooling chamber
confirmed operators’ empirical knowledge of using the shown sensor
position to obtain a representative measurement for the air temperature
inside the cooling chamber.

To solely gain system insight without grasping any possible control
dynamics, the setup was operated in a feedforward fashion during data
collection, i.e., it was not controlled to fulfill any specific control target.

Fig. 8. Schematic and dimensions of the investigated small-scale cooling chamber and
positioning of the sensor measuring the temperature 𝜗cc of the air inside the cooling
chamber.
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Thereby, the manipulated inputs were chosen to cover the input, state,
and output range to map system behavior in a way representative of
all kinds of operating conditions. The cooling load varied between 0 W
and the maximum output of the cooling unit of 1200 W throughout the
experiment.

Time-domain data for 𝜗cc, 𝜗in, 𝜗out, 𝜗in
gly, and 𝜗out

gly (see Figs. 1 and
2 for schematic sensor locations) are obtained by the setup described
above.

7.2. Measured results

Two measurement data sets (Fig. 9) representative for the in-
tended operating range of the investigated refrigerated system were
obtained. Both are 7 h long and contain all relevant measured quan-
tities, whereby, as an exception, 𝜗gly is calculated and results from
arithmetic mean (1) based on measured inflow and outflow temper-
atures. For the sake of simplicity, binary inputs are neglected in the
graphical display but are implicitly apparent from the operating modes
presented by different background colors.

Besides door openings (mode 2), different operating strategies re-
garding the combination of running/shutting down the cooling unit
during the fan is turned off are captured as well. While technical
circumstances require running the pump when the compressor is on,
turning on or off the fan is an independent input. Different system
behavior in those operating conditions is apparent from a decreasing
temperature 𝜗gly when the fan is off, and the compressor together with
the pump is still running. Compared with that, 𝜗gly rises – at least
slightly – if the compressor and pump are off during mode 2 or 3, see
Fig. 9b.

The second measurement data set (Fig. 9b) also includes a compar-
ison of three door-opening sequences carried out under equal system
inputs but different filling degrees of the cooling chamber within the
period from 0 to approximately 2.25 h. The differences between these
three sequences are sufficiently small from a qualitative and quantita-
tive perspective to justify the assumption to neglect the filling degree as
an actual input of the estimator schemes. This experimental observation
renders estimator reliability more robust because the filling degree is,
in any case, difficult to access in practical applications. Although using
11
standard containers together with a tracking system – realized either
manually by the operator or automatically by, e.g., a camera system
– would provide a more vivid insight, associated costs, personnel
expenses, and reduced flexibility regarding transported goods prevent
such systems from a broad application in the discussed small-scale
refrigerated trucks.

While the better part of the measurement data serves for
parametrization and, therefore, training, some sections are exclusively
designated for validating the hybrid estimator concepts, see Data Set
I and Data Set II shown in Fig. 9. With this allocation, parameter
estimation for mode 2 relies on 5 and for mode 3 on 13 partial data
sets. By contrast, overall validation data comprise 2 partial data sets
with mode 2 and 6 with mode 3.

Furthermore, the partitioning is chosen in such a way as to keep
validation data within the working range covered by training data,
see Fig. 10. While deviations between 𝜗cc and 𝜗in in mode 2 and 3
(Figs. 10 c,d) point out the need for an appropriate dynamic estimator,
relations in mode 1 (Fig. 10 b) confirm the simple approach (2) and
eventually its discrete-time counterpart (15) to be a sensible estimation
strategy within this operating condition. However, a few data points
deviate from the 45◦ line. Because they are attributed to the short
periods after a switch into mode 1, mode transition (40) guarantees
reducing these unintended deviations and improves performance.

7.3. Physical model

Applying the proposed parameter estimation approach (Section 3.2)
to experimentally-gained training data yields estimated parameter val-
ues for the physical model (5), see Table 3. Please note that estimated
parameters are always stated by their estimated mean and estimated
standard deviation within this work.

With the continuous-time eigenvalue 𝑎(𝑚) according to

𝑎(𝑚) = −
(

𝐾gly(𝑚) +𝐾cc(𝑚)
)

, (58)

one can immediately identify mode 2 to possess faster dynamics com-
Fig. 9. Measurement data sets (a) and (b) acquired by utilizing the proposed experimental setup. Sections labeled as Data set I and Data set II are used for validation, while the
remaining data are used for training. Appropriate labels indicate periods with a (partly) filled cooling chamber according to Fig. 7(d) and (e). Due to the exposed sensor setup
in the experimental investigation, human interactions during loading and unloading of the cooling chamber drastically limit data reliability and reproducibility in those periods.
Therefore, associated measurement data are excluded and graphically marked by dashed vertical lines.
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Fig. 10. Relation between air temperature inside the cooling chamber 𝜗cc and air
temperature at the inflow position 𝜗in, depicted for (a) the overall measurement data
and (b–d) each mode separately. Coloring indicates partitioning into training and
validation data.

pared with mode 3. This is in accordance with the intuitive understand-
ing that forced convection facilitates heat exchange.

Table 3
(Estimated) parameter values of the physical model.

Parameter (Estimated) value Unit

𝐾gly(2) 0a s−1
𝐾cc(2) 10.7 ± 0.1 10−3s−1

𝐾gly(3) 0.890 ± 0.037 10−3s−1
𝐾cc(3) 2.17 ± 0.16 10−3s−1

aExact, not estimated — see (6).

7.4. Settings of the hybrid Kalman-filter approach

Besides the parameter vectors of the physical model 𝜽(𝑚), 𝑚 ∈ {2, 3}
ith the elements according to Section 7.3, the hykf approach requires

o additionally define the set of performance parameters 𝛷hykf, see (41).
hile Table 4 summarizes its scalar quantities, associated matrices are

iven by (59).
The variance of measurement noise 𝑅 results from sensor charac-

eristics, and craving high performance on validation data dictates the
arameters for transition into mode 1 (𝑛t1, 𝑇t1).

𝑸(2) =

[

0.01 0

0 2

]

(◦C)2s−2 (59a)

𝑸(3) =
[

0.15 0
0 10

]

(◦C)2s−2 (59b)

̃ init(2) = �̃� init(3) =

[

1 0

0 1

]

(◦C)2 (59c)

As the solely temperature-driven flow evolution in mode 3 is related
o higher model uncertainties compared with the mainly externally
12
driven flow in mode 2, the covariance matrix of process noise 𝑸(3)
possesses significantly higher diagonal elements than 𝑸(2). Because
there is no sensible reason for different certainty levels of the estimates
immediately after a switch into mode 2 or 3, respectively, the initial
covariance matrices of the estimation error related to prediction �̃� init(2)
and �̃� init(3) are identical for both operating modes. Absolute values
of the elements in (59) are chosen empirically to serve high overall
performance.

Table 4
Values for the scalar performance parameters of the hybrid Kalman-filter approach.

Parameter Value Unit

𝑇s 10a s
𝑅 0.1 (◦C)2
𝑛t1 6 steps
𝑇t1 30 s

aAccording to experimental setup — see Table 2.

7.5. Settings of the hybrid gray-box-model approach

To fully specify the hygb approach, model-related parameter vectors
𝜻(𝑚) for 𝑚 ∈ {2, 3} - see (47) - and the vector of performance parameters
𝛷hygb - see (57) - have to be defined. Table 5 presents the estimated and
chosen values.

Although the hygb approach exhibits more model-related param-
eters than the hykf approach, significantly fewer performance-related
parameters render this overall method simpler. Furthermore, applying
the simple restriction (51) during parameter estimation already ensures
asymptotic stability, while it requires a more detailed examination to
verify it for a Kalman filter — see Section 5.3.

Since the hygb and the hykf approach differ from each other only in
mode 2 and 3, parameters for transition into mode 1 remain identical.
Additionally, the hygb approach includes a supplemental method to
handle transitions into mode 3, whereby the related parameter 𝑛t3
results empirically from analyzing overall performance for different
values.

Table 5
Values for the model-related and performance parameters of the hybrid gray-box-model
approach.

Parameter (Estimated) value Unit

𝑇gb(2) 33.4 ± 14.4 s
𝜘out,1(2) 13.5 ± 1.3 1
𝜘out,2(2) −12.6 ± 1.3 1
𝜘gly(2) 0a 1

𝑇gb(3) 72.2 ± 11.2 s
𝜘out,1(3) 42.4 ± 2.5 1
𝜘out,2(3) −41.0 ± 2.5 1
𝜘gly(3) −0.469 ± 0.014 1

𝑇s 10b s
𝑛t1 6 steps
𝑇t1 30 s
𝑛t3 3 steps

aExact, not estimated — see (43).
bAccording to experimental setup — see Table 2.

7.6. Validation of hybrid estimators

Assessments of the parametrized hybrid estimator schemes rely on
the two validation data sets I and II, highlighted in Fig. 9. While
the time-domain comparison (Fig. 11) offers a more vivid insight into
the origin of emerging deviations, a lineup of quantitative measures
(Fig. 12) provides a lucid view to assessing mode-wise and overall

performance.
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Fig. 11. Time-domain comparison of the performances of the hybrid estimators on (a) validation data set I and (b) validation data set II (Fig. 9 shows the affiliation of the validation
data sets to the overall measurement data). Upper diagrams compare measurements 𝜗cc of the air temperature inside the cooling chamber with the estimates �̂�cc resulting from
the two hybrid estimator approaches, while lower diagrams show associated residuals 𝑟.
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In addition to the comparison of the estimation results with the
easured value �̂�cc, related residuals 𝑟𝑖 ∈ R, 𝑖 ∈ {hygb,hykf} according

to:

𝑟𝑖(𝑘) ∶= 𝜗cc(𝑘) − �̂�cc,i(𝑘) (60)

indicate deviations clearly and allow identifying simply whether a
certain approach over- or underestimates within particular periods.
Quantitative overall and mode-wise (𝑚 ∈ {1, 2, 3}) comparison is, on
the one hand, conducted by the root-mean-square error (RMSE) [48],
according to

RMSE𝑖(𝑚) ∶=

√

√

√

√

√

1
𝑛𝑉 (𝑚)

𝑛𝑉 (𝑚)
∑

𝑗=1
𝑟2𝑖 (𝑗) (61)

with 𝑛𝑉 (𝑚) as the number of samples within mode 𝑚 and both valida-
tion data sets, given as

𝑛𝑉 (𝑚) ∶= 𝑛𝑘(I(𝑚)) + 𝑛𝑘(II(𝑚)). (62)

n the other hand, a relative measure of the performance of ap-
roach 𝑖 is given by a value based on the normalized root-mean-square

Fig. 12. Quantitative comparison of the performances of the hybrid estimators on the
ombined validation data, comprising data sets I and II according to Figs. 9 and 11.
erformance values (RMSE and Fit) are separately presented for each operating mode
s well as for the overall operation.
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error [48], the Fit, according to

Fit𝑖(𝑚) ∶= 1 −

√

√

√

√

√

∑𝑛𝑉 (𝑚)
𝑗=1 𝑟2𝑖 (𝑗)

∑𝑛𝑉 (𝑚)
𝑗=1

(

𝜗cc(𝑗) − �̄�cc(𝑚)
)

(63)

ith the mean �̄�cc given as

̄cc(𝑚) =
1

𝑛𝑉 (𝑚)

𝑛𝑉 (𝑚)
∑

𝑗=1
𝜗cc(𝑗). (64)

As handling operating mode 1 is identical in both estimation ap-
proaches, the quality of results is almost the same. Very slight differ-
ences, see mode 1 in Fig. 12, result from different initial conditions after
switching back into mode 1. This is also apparent from the time-domain
comparison presented in Fig. 11. Furthermore, peaks in the residuals
directly after a switch back into mode 1 stem from the initially vestigial
airflow directly after switching on the fan. Transition handling (40)
reduces these deviations to a reasonable level.

During operating mode 2, both approaches indicate the least satis-
factory performance compared with all other modes, see Fig. 12. The
time-domain comparison indicates a delay that can be traced back
to the comparably long sampling time with respect to the system
dynamics in mode 2. Because of that, the exact time of door openings
is inaccessible and captured delayed. Increasing the sampling rate is,
therefore, highly recommended, would overcome this issue, and yield
higher performance.

The most considerable absolute deviations arise after switching from
mode 2 into mode 3 (Fig. 11) and result from the most significant
change in the dynamics – from fast to slow. However, temperature
deviations remain within a practicable range and decay rapidly over
time. Noticeable differences in performance between both estimation
approaches occur in mode 3 if a door opening happened beforehand.
They result from slightly different initial conditions after switching
from mode 2 into mode 3. Due to the comparably slower dynamics in
mode 3, differences take longer to decay but eventually vanish.

All in all, although there are slight differences in all three modes,
overall performances are practically identical to each other and show
not only satisfactory results for the intended purpose but also compared
with other temperature estimation approaches from literature [31,35].
Considering the uncertainty of measured values as a white noise process
(see sensor accuracy in Table 2), prediction accuracy is not system-

atically affected. Nonetheless, it is worth pointing out that prediction
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value, apparent in Fig. 12, is very close to the measured value to a
certain extent. Additionally, in the residual plots of Fig. 11, comparing
the predicted values with the range of sensor accuracy shows that
deviations are mostly within this range. Note that the region of sensor
accuracy is also depicted in the related temperature plots but remains
barely visible as the plotted lines almost cover it. These comparisons
furthermore indicate the modeling approach and estimation methods
built upon that to be reasonable for the intended purpose.

However, operation in refrigerated trucks with much lower temper-
atures than discussed here may entail further research issues. As ice
formation on the air chiller severely influences heat transfer, changes
in system dynamics are highly conceivable. Therefore, more extensive
experimental investigations with representative buildups of ice are
favorable.

Compared with the experimental setup in this work, the thermal
capacities of the cargo are not negligible in practical applications. Thus,
heat transitions between cargo and air inside the cooling chamber
influence local airflow and temperature close to the cargo. If the airflow
is solely driven by natural convection (mode 3), the quality of the
estimators might be reduced in the case of cargo types with excellent
heat transfer and a severe temperature difference to the surrounding
air. For such special applications, individual experiments are advisable
to adapt the proposed algorithms appropriately.

As sensitive cargo may need more detailed insight into the tempera-
ture distribution, further research is needed to investigate the possibil-
ity of designing several estimators for different locations. Nonetheless,
due to a vast number of primarily unknown parameters and initial
temperature distributions of the cargo itself, the package, and many
others, such attempts may only be promising for harshly restricting
applications.

8. Conclusion

This work presents two model-based online strategies for estimating
the air temperature close to the cargo in mobile, small-scale cooling
chambers. In the face of frequent door openings and an extended, flex-
ible architecture of the cooling unit, turning off the fan is more common
than in typical state-of-the-art refrigeration applications. The proposed
strategies overcome lack of knowledge about the inner air temperature
in such periods by using available local temperature measurements
within the cooling unit together with a simple lumped thermodynamic
model. Experimentally-gained measurement data (total length: 14 h)
obtained with a real-world refrigerated truck serve for parameterizing
(data length: 11.75 h) the model and validating (data length: 2.25 h)
both estimation approaches.

Both the Kalman-filter and the gray-box-model approach show
satisfying results throughout all operating conditions. The overall fit
to validation data is 83.4% and 83.1%, respectively. Although the

alman-filter approach uses fewer model-related parameters, it re-
uires a higher number of performance-related parameters than the
ray-box-model approach. However, increased complexity comes along
ith enhanced flexibility and, therefore, a slightly better overall fit.
onetheless, simplicity of the gray-box-model approach in design,
perating, and maintenance facilitates its application vastly. The self-
egulating property of the Kalman-filter approach is emulated within
he more straightforward gray-box-model approach by implementing
n additional method to handle transitions between different operating
odes. Though complexities of the approaches differ from each other,

tandard microcontrollers can readily handle the computational burden
f both. Based on the almost identical performance, straightforward de-
ign and simple maintenance of the gray-box-model approach outweigh
he flexibility of the Kalman-filter approach in practical applications.
herefore, it is recommended to test the gray-box-model approach in
specific application in the first place and only switch to the more

omplex Kalman-filter approach if extended settings are essential for
he overall performance.
14
Being aware of the temperature in periods characterized by a
witched-off fan offers a wide range of benefits not just for clas-
ic but rather sophisticated control strategies. Utilizing the so-gained
dditional knowledge promises control schemes to improve overall
fficiency and keep better track of given temperature restrictions
hroughout the whole operation. Hence, applying the proposed estima-
ion approaches render heuristic and, in the best case, only suboptimal
ontrol actions during periods of otherwise uncertain temperature
nformation unnecessary. Therefore, these methods constitute a cor-
erstone for applying comprehensive control strategies to the outlined
lexible refrigeration units to finally decrease the amount of wasted
oods, increase shelf-life, and lower economic and environmental costs
n total. In light of the high number of refrigerated trucks worldwide,
he potential impact of applying these methodologies is apparent.

Although the proposed methodologies only provide estimates for the
ir temperature close to the cargo, they significantly improve decision-
aking for control approaches compared with the uncertainty during
eriods with a switched-off fan in current applications.
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