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Savitzky—Golay (SG) filtering, based on local least-squares fitting of the e
data by polynomials, is a popular method for smoothing data and calculations of ; Yoo
) — Savitzky-Golay &
derivatives of noisy data. At frequencies above the cutoff, SG filters have poor noise | — \odified sinc ™\,

suppression; this unnecessarily reduces the signal-to-noise ratio, especially when

calculating derivatives of the data. In addition, SG filtering near the boundaries of the [°¢ T e
data range is prone to artifacts, which are especially strong when using SG filters for noRY o
calculating derivatives of the data. We show how these disadvantages can be avoided
while keeping the advantageous properties of SG filters. We present two classes of finite
impulse response (FIR) filters with substantially improved frequency response: (i) SG
filters with fitting weights in the shape of a window function and (ii) convolution
kernels based on the sinc function with a Gaussian-like window function and additional
corrections for improving the frequency response in the passband (modified sinc
kernel). Compared with standard SG filters, the only price to pay for the improvement
is a moderate increase in the kernel size. Smoothing at the boundaries of the data can be improved with a non-FIR method, the
Whittaker—Henderson smoother, or by linear extrapolation of the data, followed by convolution with a modified sinc kernel, and we
show that the latter is preferable in most cases. We provide computer programs and equations for the smoothing parameters of these
smoothers when used as plug-in replacements for SG filters and describe how to choose smoothing parameters to preserve peak
heights in spectra.
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filters preserve peaks and their heights better than many other
filters with a similar cutoff frequency (see section 3.1).

Since their introduction more than half a century ago,1 ) )
SG filters have an unsatisfactory frequency response in the

Savitzky—Golay (SG) filters have been popular in many fields

of data processing; ranging from spectra in analytical
chemistry”~* via geosciences’ to medicine.”” SG filters are
usually applied to equidistant data points and are based on
fitting a polynomial of given degree n to the data in a (usually
symmetric) neighborhood k — m...k + m of each data point k
(this range contains 2m + 1 data points). For smoothing the
data, each data point is replaced by the value of the fit
polynomial at this point k;" alternatively, a derivative of the
polynomial can be used to obtain a smoothed derivative. As
this process is a linear filter and takes a limited number of
points as the input, SG smoothing is a finite impulse response
(FIR) filter. Therefore, it can be implemented as a convolution
with a suitable kernel." The SG kernels can be calculated
numerically” or from analytical formulas.'”"" The same applies
to SG filters for the calculation of derivatives. In the frequency
domain, SG smoothing filters have a flat passband and a rather
steep cutoff, with the steepness increasing with the degree of
the fit polynomial.” For simplicity, we will simply write “degree
of the filter” for the degree of the fit polynomial used in the
following. (We use the word “degree”, not “order”, as order
often refers to the length of the kernel of an FIR filter.) The
flat passband and steep cutoff leads to an advantageous
property of SG filters when smoothing spectra: SG smoothing
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stopband, though: high-frequency noise is not efficiently
suppressed. The attenuation above the cutoff frequency, at
the first sidelobe of the frequency response, is only —11 to
—13 dB (amplitude attenuation to about 1/4);" see Figure 1b.
The higher sidelobes have less amplitude, but the amplitude
decay is only about 1/f The poor stopband suppression is
almost independent of the kernel half-width m (m determines
the cutoff frequency); see Figure S3. We will show that the
insufficient attenuation in the stopband poses a problem,
especially if the derivative of the data is of interest. This
property of SG filters makes their use for determining higher
derivatives impractical. The reason for this unsatisfactory
suppression of high frequencies becomes intuitively clear when
looking at the convolution kernel of an SG filter, shown in
Figure la, for a 6th degree SG filter with large m (where the

December 3, 2021
February 4, 2022
February 7, 2022
February 18, 2022

U

https://doi.org/10.1021/acsmeasuresciau.1c00054
ACS Meas. Sci. Au 2022, 2, 185-196


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Schmid"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Rath"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ulrike+Diebold"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsmeasuresciau.1c00054&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.1c00054?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.1c00054?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.1c00054?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.1c00054?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmeasuresciau.1c00054/suppl_file/tg1c00054_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.1c00054?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/amachv/2/2?ref=pdf
https://pubs.acs.org/toc/amachv/2/2?ref=pdf
https://pubs.acs.org/toc/amachv/2/2?ref=pdf
https://pubs.acs.org/toc/amachv/2/2?ref=pdf
pubs.acs.org/measureau?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsmeasuresciau.1c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/measureau?ref=pdf
https://pubs.acs.org/measureau?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/

(a) (b) 1 . . ; : 0
— SG -11.8dB
0.04 1071k SGW -30.2dB 4-20
MS -71.7dB
E g102¢ -40
S 0.02 2 @
— Qo e
2 £ 102
;':’ 1073 ¢ -60
0.00
104 ¢ A WH 4-80
I 1 1 10—5 memh 1 1 1
-50 0 50 0 0.1 0.2 0.3 0.4 0.5

kernel point index

normalized frequency f/f,

Figure 1. Kernels and frequency response of the different filter types. Comparison of an n = 6 (6th degree) SG filter and other smoothing filters
with similar frequency response in the passband: SG with Hann-square fitting weights (SGW), modified sinc kernel (MS), and Whittaker—
Henderson (WH). The half-widths m of the kernels (4 value for WH) were chosen for a similar cutoff f ;45 in the frequency domain. (a)
Convolution kernels of these filters (response to a unit impulse for WH); a sinc function without windowing is shown for comparison. The inset
shows a magnified region. (b) Frequency response of the filters; £, is the sampling frequency. Except for WH, the amplitude of the first sidelobe is
indicated for each filter. To avoid cluttering, the minima between the SG sidelobes have been truncated; there, the frequency response reaches zero.
For other degrees n, see Figure 2 and Figures S1 and S2 in the Supporting Information.

kernel, though consisting of discrete points, can be considered
an almost continuous function).

The SG kernel (red curve) is discontinuous at —m and m;
there is a sudden jump from a rather large value to zero. In
addition, the kernel shows undesirably rapid oscillations near
the end points. This becomes obvious when comparing with a
sinc function, that is, a kernel with an ideally sharp cutoff from
1 to O at the same cutoff frequency (thin gray line): the last
positive half-wave of the SG kernel in Figure la has a width
that is only about half of what it should be (the half-wave of
the sinc kernel), and the negative excursion toward the
discontinuity is extremely steep. Therefore, it is obvious that
the SG kernel contains strong Fourier components at
frequencies above the cutoff frequency (the cutoff corresponds
to the wavelength of the wiggles of the sinc function).
Convolution with a kernel will multiply the frequency
spectrum of the data with that of the kernel; therefore,
smoothing with a SG filter does not suppress the high-
frequency Fourier components of the data as much as one
would desire.

When reading the literature about SG filters, one could get
the impression that the unsatisfactory suppression of
frequencies above the cutoff is the price to pay for the flat
frequency response in the 8passbancl, and that the room for
improvements is limited.”'> Most recent developments
regarding SG filters focus on adaptive SG filtering and
adjusting the filter parameters to best fit the signal and noise
of a given data set,””'® not on improving the filter. In this
paper, we show that a flat passband can still be achieved while
the stopband is strongly attenuated. We present two new
approaches and one known solution for this problem and
discuss the respective merits and disadvantages: (i) We show
that choosing suitable weights for the fit can substantially
improve the stopband attenuation of SG filters by removing
the discontinuity at the ends of the kernel. (ii) A convolution
kernel based on a sinc function with a Gaussian-like window
has excellent suppression in the stopband. (iii) SG smoothing
can also be replaced by the Whittaker—Henderson smoothing
algorithm.'*™'® We analyze the near-boundary behavior of
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these methods, their noise suppression, and their suitability for
calculating derivatives. Filter kernels (unit impulse responses)
and the corresponding frequency responses of these types are
also shown in Figure 1 (“SGW” for Savitzky—Golay with
weights, “MS” for modified sinc kernel, and “WH” for
Whittaker—Henderson).

A simple way of improving the SG filters is applying weights w
when fitting to reduce the influence of the data points at the
periphery of the k — m...k + m interval on the fit. Astonishingly,
this is rarely mentioned in the literature,'”'® and to our
knowledge, there has been no in-depth study of this possibility.
Essentially all window functions'” used for kernel construction
and Fourier transforms are suitable as weights, as long as they
do not contain negative values. As a rule of thumb, window
functions with smoothness of high derivatives and good
sidelobe suppression in the Fourier domain also provide low
sidelobes when used as SGW weights. For n = 6 and
sufficiently large m, we obtain first sidelobe amplitudes of
—22.0, —21.1, —30.2, and —39.2dB for the Gaussian-based
window discussed in section 2.2 with @ = 2, the Hann, Hann-
square (also known as cos* window) and Hann-cube (cos®)
windows, respectively (see ref 19 for the cos-based window
functions). In the following, we will use the Hann-square
(cos*) function for the weights. Figure 1 shows that the SGW
kernel (blue) is continuous at the ends (as are its lowest three
derivatives), and that suppression of the stopband is
substantially improved. For achieving a cutoff frequency
comparable to the SG filter, the kernel size required for the
SGW filter is about 30—70% larger (depending on n), which is
a moderate price to pay for the improvement. In the passband,
the SGW and SG filters have almost identical frequency
response; for degree n, both have an initial 1 — ¢f"*?
transmission” where c is a constant.

In contrast to traditional SG filters (and the MS kernels
described below), there are no simple algebraic equations for
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the kernel functions of the SGW filters. Nevertheless, it is easy
to construct these kernels by starting with (modified) Gram—
Schmidt orthogonalization to create a set of n + 1 orthonormal
polynomials p;(i) of degree j = 0, 1,..n. These polynomials
fulfill

2 v () = 5

i=—m

(1)

For a constant weight function, orthonormalization would
result in Chebyshev’s “discrete orthogonal polynomials”, which
can be used to construct the traditional SG kernels.'" The
kernel coefficients a; can be obtained via

a;= 2, D wp()p(0)

j=0 i=—m

2)

Except at the boundaries (see below), where the sum over i
does not run over the full —m...m range, it is sufficient to use
only polynomials of even degree j; the contributions of the odd
polynomials vanish if the window function has even symmetry.

The sinc function sin x/x has a rectangular Fourier transform,
that is, a perfectly flat passband, and a sharp transition to zero
response in the stopband. Due to its infinite extension and
slow 1/x decay, it is not directly usable as a convolution kernel;
for application as a kernel, it has to be multiplied with a
suitable window function w.'” Gaussian windows have the
advantage of having the minimum time-bandwidth product
(for the mean-square time and bandwidth values, see ref 19),
and they also show fast decay. Multiplication of the kernel
corresponds to convolution in the Fourier domain. When
multiplying a sinc function with a Gaussian window, we get an
amplitude decay corresponding to a complementary error
function (erfc) instead of a sharp frequency cutoff. A Gaussian
window does not have a finite width, however. Truncating it to
get a finite kernel (FIR filter) would cause a discontinuity,
which increases the high-frequency Fourier components.
Modifications of the Gaussian window for minimizing the
kernel size are known from ref 20. For our application, we put
emphasis on optimizing the stopband suppression; we take a
different (though related) approach. We modify the Gaussian
window by adding two out-of-window Gaussians and an offset
in such a way that, at the end points of the window, the sum
has not only zero amplitude but also an almost-zero derivative
(supporting Figure S4). We also choose the sinc function such
that the end points of the window coincide with a zero of the
sinc function. The kernel and its first derivative are exactly zero
at the end points, and its second derivative is extremely close
to zero.”' This results in the following kernel function a:

+4 +4
a; = A X wy(x) X sin(n ﬂx)/(n ﬂx)
2

2 (3)
with the window function
w(x) = exp(—ax”)
+ exp(—alx + 2)*) + exp(—a(x — 2)%)
— 2exp(—a) — exp(—9a) (4)
where
x=i/(m+1) (s)
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is zero in the center of the kernel and x = +1 at the first point
outside the kernel, that is, where both the sinc and the window
function reach a value of zero (i runs from —m to m). The
index n must be even and determines how many wiggles of the
sinc function the kernel contains. For n = 2, we have one
minimum and one maximum at each side; for n = 4, also the
next minimum is included, etc. The MS kernels have n + 2
inner zeros (i.e., not counting the zero at each end). As the MS
kernels are wider than the comparable SG and SGW kernels (n
inner zeros), the MS kernels can achieve better stopband
suppression (see below). For the Gaussians in eq 4, «a
determines the width of the Gaussians and thus the steepness
of the cutoff in the frequency domain (the erfc function
mentioned above); we chose @ = 4 for a steepness similar to
that of the SG or SGW filters with the same n. Finally, the
normalization factor A must be chosen such that the sum over

the kernel coeflicients fulfills

(6)

For n > 6, the kernels described by eq 3 are not perfect in
the passband, however. We find up to =~0.13% (0.01dB)
overshoot for n > 6. This may be tolerable in most cases, but it
is not as perfect as the flat passband of the SG filters. The
reason for the imperfect passband lies in an imbalance of the
side maxima and minima of the sinc function, caused by the
window and truncation. We can improve the passband
response by adding small correction terms, replacing eq 3 with

,(n+4 )(n+4 )
sin| x|/ X
2 2

+ z K}.(")x sin((2j + I/)ﬂx)]

a; = A X w(x) X

(7)

where v = 1 for odd n/2, i.e., n = 6 or 10 and v = 2 otherwise
(n = 8). Like the sinc function, the correction terms in the
second line of eq 7 are zero at the edge of the kernel (x = + 1),
so they do not compromise the continuity of the kernel and its
derivatives at the edge; this is required for good attenuation in
the stopband. We have determined suitable values of the
correction coeflicients K'j(") forn =6, 8, and 10, and m > n/2 +
2 by minimizing a weighted sum of the square deviations from
an ideal flatband response. We found that these optimum K](”)
values can be fitted by

()
bi

(n) _ _(n)
K’'=a + —7
(C](n) _ m)3

j j
(8)
The coefficients aj("), b}.("), and c}.(") found by our minimization
procedure are listed in Table 1. With these corrections, we
obtain a flat frequency response in the passband with negligible
overshoot (<3.5 X 107, corresponding to <0.00003 dB).

We name the filters based on these kernels of eq 7 “modified
sinc kernels” (MS); their frequency response with n = 2, 4, and
8 is shown in Figure 2; logarithmic plots are in Figure 1b and
supporting Figure S2. The stopband rejection of the MS
kernels is excellent, with the first sidelobe below 3 X 107*
(=70 dB). The performance of the MS kernels is also much
better than that of the Lanczos kernels, which are popular for
resampling in image processing.”” The Lanczos kernels have
the first sidelobe slightly above —40 dB and about 1% waviness
in the passband. The MS kernels also have lower sidelobes
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Table 1. Coefficients in Equation 8

n 6 8 8 10 10

j 0 0 1 0 1
a®™ 000172 000440 000615 000118  0.00367
bf") 0.02437 0.08821 0.02472 0.04219 0.12780
o 164375 235938 3.63594 274688 277031

“Which yield the correction terms for eq 7, to ensure a flat passband
of the modified sinc kernels (for n < 4, no such correction is needed).

than the SGW kernels presented in section 2.1, at the cost of
somewhat larger kernel size (about twice the kernel size of SG
filters with the same cutoff frequency).

We also constructed modified sinc kernels with smaller sizes.
Their stopband suppression is still substantially improved
compared to the non-MS filters and good enough for almost all
applications. These kernels, named “MS1”, are described in the
Supporting Information. Finally, we should mention that the
MS and MS1 kernels presented here use integer steps for the
parameter m, which controls the smoothness. This is usually
sufficient. (Due to the larger kernel size, MS is more fine-
grained than for traditional SG filters.) If desired, it is possible
to construct the same type of filters with a noninteger value
corresponding to the zero at the end of the kernel, i.e,, the x =
+1 points of eqs 4 and 7.

Whittaker—Henderson smoothing minimizes the functional

Y (=) + 4, (AP2)]
i i 9

where y are the data, z is the smoothed function, and APz is the
pth derivative of z, which is evaluated numerically."*~'® The
sums over i run over all data points. (For the pth numeric
derivative, the number of points is reduced by p.) Taking the
pth derivative as an indication of smoothness, a penalty is
imposed on nonsmooth functions, with higher values of A
increasing the penalty and therefore leading to smoother
output.”” This method has been introduced several times, and
it was generalized as smoothing splines since the 1960s”* and
more recently popularized as “a perfect smoother”.'> WH
smoothing is not an FIR filter; solving eq 9 for the smoothed
function z leads to a matrix equation with a band-diagonal
matrix that can be solved in O(N) time for N data points. For
high degrees p and strong smoothing (very high values of 1),
corresponding to large kernels for FIR filters, the WH

smoother as implemented in ref 15 and the Java program in
the Supporting Information suffers from numeric noise,
however.”> For most practical applications, these high 4 values
are not required.

Far from the boundaries of the data set, WH smoothin%
behaves similar to an FIR filter (with a very large kernel),”
with the response to the unit impulse corresponding to the
kernel (Figure 1). In this region, the frequency response of
WH smoothing becomes

H(w) = !
14+ A2 = 2 cos w)? (10)
with
w = 2af/f, (11)

where f, is the sampling frequency.”” If a given cutoff frequency
f_3ap is desired, where the response decreases to 1/ J2 , the
smoothing parameter A can be obtained from eq 10:

V2 -1

(2= 2cos w_yp) (12)

It follows from eq 10 that WH smoothing leads to a 1 — ¢f*
response in the f — 0 limit. Comparison with the 1 — ¢f**
response of the SG and SGW filters shows that the low-
frequency response has the same functional form if

p=1+n/2 (13)

Figures 1b and 2 show that WH smoothing with this choice of
p yields an overall frequency response similar to that of the
other filters of the corresponding degree n (also beyond the
low-frequency limit). For n = 2 and 4 (p = 2 and 3), the WH
attenuation in the stopband is somewhat weaker than that for
the SGW and MS filters (Figure S2) . For n = 6 and 8 (and the
corresponding p = 4, 5), the stopband attenuation of WH
smoothing is still weaker than that for the MS convolution
filter. (The SGW filter has a weaker stopband attenuation than
MS.) Due to the very fast decay of the response with
frequency, the signal in the stopband will be dominated by the
frequencies close to the cutoff for both the WH and MS
smoothing methods. Thus, the overall stopband rejection of
WH smoothing is somewhat lower than that of the
corresponding MS filters.

1.0 . T T ] T
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0.4
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0.0
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Figure 2. Frequency response of the filters with different degree n = 2,4, and 8. For the traditional SG filters, the kernel half-width was chosen as m
= 50. The half-width m of the other kernels and A for the WH filter were chosen to obtain the same cutoff frequency f_;45 as the respective SG filter.

https://doi.org/10.1021/acsmeasuresciau.1c00054
ACS Meas. Sci. Au 2022, 2, 185—-196


https://pubs.acs.org/doi/suppl/10.1021/acsmeasuresciau.1c00054/suppl_file/tg1c00054_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmeasuresciau.1c00054/suppl_file/tg1c00054_si_002.zip
https://pubs.acs.org/doi/suppl/10.1021/acsmeasuresciau.1c00054/suppl_file/tg1c00054_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.1c00054?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.1c00054?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.1c00054?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.1c00054?fig=fig2&ref=pdf
pubs.acs.org/measureau?ref=pdf
https://doi.org/10.1021/acsmeasuresciau.1c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

We provide readers with plug-in replacements for traditional
Savitzky—Golay filters. For ready use, filter parameters need to
give frequency characteristics similar to those of SG filtering
(except for the poor stopband rejection of SG, of course, which
our filters remedy). As discussed above, the frequency response
of the SGW and MS filters is similar to that of SG if the degree
n is the same. Thus, one can simply use the n value of the SG
filter that should be replaced. For WH smoothing, the p
parameter must be chosen according to eq 13. What remains is
obtaining equal bandwidth f ;45. An approximate equation for
2f_sa/f; of the SG filters for m > 25 was given in ref 8. (Note
that in that work, the frequency is defined with respect to the
Nyquist frequency £,/2, not with respect to f..) By least-squares
fitting, we have obtained the following equation, which has
sufficient accuracy for all m values:

b=Law/k
1
T 6352(m + 1/2)/(n + 1.379) — (0.513 + 0.316n)/(m + 1/2)
(14)
For WH smoothing, the appropriate 4 value is then given by eq

12. For the SGW and MS filters, least-squares fitting gives us
the appropriate m values

Mgaw = (0.509 + 0.1922n — 0.001485n) /b_ 4 — 1
(13)

and

myis = (0.745 + 0.249n) /b_y g5 — 1 (16)

These values should be rounded to the nearest integer to
obtain the kernel half-width m that can be used for these filters.
The filter parameters for Figures 1 and 2 have been obtained
with these equations.

We should also mention that the alternatives to SG filtering
discussed so far (SGW, MS, and WH) are not the only ones.
Another possibility of obtaining a flat response in the passband
and good suppression in the stopband is “sharpening” of a filter
with a less sharp cutoff by linear combinations of single and
multiple applications of the filter.”**’ This method works well
if the filter it is based on has a reasonable stopband
attenuation, better than that of traditional SG filters.
Sharpening can be also based on convolution with a standard
window function'” like the Hann or Hann-square window and
obtain a frequency response comparable to that of the SG
alternatives discussed here. By increasing the passband flatness,
sharpening of a low-degree filter (e.g., SGW or MS with n = 2)
can yield filter characteristics corresponding to a higher degree.
We do not discuss this method in detail, as we could not find
any advantage of sharpening over the filters discussed in the
sections above. Neither would sharpening provide a solution
for the near-boundary values discussed next.

Convolution with a kernel is only defined for the interior of the
data series, not within a neighborhood of the kernel half-width
m from the left and right boundaries. Especially for smoothing
spectra with a finite length (given by the instrument), it is
often desirable (or even required) to have smoothed data up to
the boundaries of the input data. Conceptually, the SG filter
seems well-suited for filtering the data near the boundaries:
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One can simply use the polynomial fit over the 2m + 1
neighborhood closest to the boundary for calculating the near-
boundary values.”® This method is also used in the Matlab and
GNU Octave sgolayfilt function.

Compared to points in the interior of the data series,
information is missing for calculating the smoothed values near
or at the boundaries. On the one hand, this leads to a weaker
suppression of noise than in the interior. On the other hand,
artifacts may appear near the boundaries. In the following, we
present test cases: as the input, we assume a Gaussian peak at
or near the boundary. The smoothing parameters are chosen
such that the Gaussian peak, when placed in the interior of the
data, would be attenuated to 90% of its original height by
smoothing. (We call this “90% peak height fidelity”. See
section 3.1 for choosing the filter parameters to accomplish
this.) This can be considered strong smoothing, which may be
required for very noisy data, but not oversmoothing. An
example of such a smoothing operation with a traditional SG
filter is shown in Figure 3a. The input is a Gaussian with a full
width at half-maximum (fwhm) of 20 (black curve), with the
input data having 49 data points left of the peak. (At the right
side, the data extend far enough to avoid any problems.) The
SG-filtered curve shows a slight undershoot at the right side
and an attenuation of the peak height, which would be the
same for an equivalent Gaussian in the interior of the data. At
the left side, in the region where the kernel reaches the
boundary (since the boundary is at —50 and m = 28, this is for
points below —22), the filtered curve does not follow the input
and shows strong ringing artifacts.

Figure 3b shows the same for three different positions of the
data boundary (red, blue, and gray). For the blue curve, where
the input data reach —33 (i.e., 33 data points left of the peak
and no input data in the blue shaded region), the behavior
close to the boundary is undesirable and must be considered
an artifact. The same procedure was applied for all possible
positions of the left boundary of the data; the filtered curve was
calculated for each of these cases. The end points of all these
curves (including the red, blue, and gray ones) are plotted as
red circles. Whereas the red and blue curves were chosen to
show the most extreme cases of near-boundary artifacts, most
other positions of the boundary also lead to unexpected,
substantial artifacts unless the distance between the boundary
and the center of the Gaussian is larger than about 60 points
(this is more than the full width of the kernel, 2m + 1 = 57 in
the present case).

As mentioned above, the treatment of the near-boundary
data for the traditional SG filters is conceptually simple
(polynomial fit to the 2m + 1 data values next to the
boundary). For the SGW filters, the situation is not so
straightforward. Simply shifting the weight function w would
lead to weak smoothing at the boundary because w gets
partially moved out of the range where data are available. Then
the number of data points contributing to the end point would
be almost half of what it is for interior points. Therefore, in
analogy to the traditional SG, we choose to stretch the SGW
weight function by a scale factor s, such that its sum over the
range of valid data remains the same. Details of this procedure
are described in the Supporting Information. With this choice
of the weight function near the boundaries, the near-boundary
artifacts of the SGW-smoothed data are lower than that with
traditional SG smoothing; nevertheless, strong artifacts appear
for some boundary positions. This can be seen in Figure 3c,
which plots the end points of the filtered data for all positions
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Figure 3. Filtering of a Gaussian peak near a boundary of the data. (a)
Results of filtering a Gaussian peak by a traditional Savitzky—Golay
(SG) filter (n = 4, m = 28), when the leftmost point of the input data
is at —49. The SG-filtered data show strong ringing near the
boundary. (b) Same as (a), with the data boundaries at three selected
positions, marked by shaded areas with the same color as the
respective curves [red, blue and gray; the red curve is the same as in
(a)]. The red circles are the end points of the filtered data for all
boundary positions of the input data. (c) End points of the filtered
data for all boundary positions of the input data as in (b) but also
including different filtering methods: Savitzky—Golay with Hann-
square weights (SGW), the modified sinc kernel with linear
extrapolation of the data (MS), and Whittaker—Henderson
smoothing (WH). All filter parameters have been chosen such that
the Gaussian would be smoothed to 90% of its peak height when not
close to the boundary [gray curve in (c); this curve only weakly
depends on the smoothing method; here, it is shown for MS
convolution].
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of the left boundary for different smoothing methods. Figure 3
is for filters of degree n = 4, but similar artifacts also arise for
other degrees (supporting Figure SS). For higher degrees n, the
smoothed data better follow the input when the data boundary
is inside the Gaussian peak. However, due to the larger kernel
size, the artifacts reach boundary positions even further from
the peak than for low n.

The WH smoothing method does not need any special
treatment of near-boundary points; eq 9 is defined up to the
boundaries of the data. (The numeric differentiation reduces
the number of summands in the penalty term to N — p for N
data points, but the filtered output y remains well-defined at all
points.) Figures 3c and SS also show the end points for
smoothing with the WH method. (As for all filters, the end
points show the near-boundary artifacts most clearly.) The
artifacts are substantially reduced compared to the SG and
SGW methods.

For convolution with the MS kernel up to the end, we have
to extend the input data. One could mirror the input data at
the boundary, but this would enforce the first derivative of the
smoothed curve to vanish at the mirror position and create
artifacts if the boundary is in a region where the slope of the
data is nonzero. We have found that linear extrapolation of the
data is a suitable method (extrapolation with a second-order
polynomial is much worse). For the least-squares line fit, we
use weights that decrease with increasing distance i from the
boundary:

, mi(n + 3)

wg (i) = cos B 1 1)

(17)

if the argument of the cosine function is less than 7/2; wg = 0
for higher arguments. This is one side of a Hann window
function; for f# = 1, it reaches zero close to the position of the
first zero of the sinc function in the convolution kernel.

Of course, similar to filtering of interior points, also at the
boundaries, there is a trade-off between noise suppression and
fidelity in following the input data; the f parameter allows us
to put more emphasis on one or the other for near-boundary
points. Larger values of f increase the data range used for the
linear regression and thus better suppress the noise, but the
extrapolated curve will not necessarily reflect the trend of the
data points close to the boundary. Therefore, also the
smoothed curve will not nicely follow the shape of the input.
We choose f# such that the noise suppression at the boundaries
is comparable to or better than that of the corresponding SGW
or WH filters:

B =0.70 + 0.14 X exp(—0.6(n — 4)) (18)
The result is a good compromise: At the lowest degree, n = 2,
the WH and MS filters show almost the same noise near the
boundaries and have comparably low artifacts. For the higher
degrees, the artifacts in the near-boundary region of the MS-
filtered data are much less than for the other filters (see Figure
3c and Figure SS). Nevertheless, the noise suppression near
the boundaries is better than that of the SGW or WH filters
(see section 3.1). This extrapolation method can also be
applied to other FIR filters like the SGW. We focus on the MS
kernels due to their better stopband rejection.

The problem of artifacts at the boundaries is not limited to
Gaussian peaks. As shown in the Supporting Information, the
same occurs for smoothing Lorentzian peaks when the
smoothing parameters are chosen such that the peak height
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Figure 4. Filtering of a series of Gaussian peaks with successively smaller widths. The input without superimposed noise is red in (b—f); the
corresponding filtered curves are blue. The input with added noise is in panel (a), and the corresponding filtered curves are black in (b—f). The
smoothing filters applied are (b) traditional Savitzky—Golay, (c) Savitzky—Golay with Hann-square weights, (d) convolution with a modified sinc
kernel, (e) Whittaker—Henderson smoothing, and (f) convolution with a Gaussian; all of these have a similar cutoff frequency. The noisy input
curve (a) was obtained by adding Gaussian-distributed noise with a standard deviation of 1/8 of the peak height; filtering of the noisy data (black)
is shown only up to point 900 to avoid cluttering. Note the poor suppression of high-frequency noise and the phase inversion of the traditional SG
filter.
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gets attenuated by smoothing. All qualitative observations
discussed above also apply for Lorentzian peaks. One should
expect artifacts at the boundaries in all cases where the
smoothed curve would not perfectly follow the input for
interior points, or, in other words, when the input signal
contains frequency components where the filter’s frequency
response differs from unity.

One of the attractive properties of SG filters can be seen in
Figure 4, which can be considered an archetypal example of SG
filtering.”

With SG smoothing and the other filters discussed here, the
heights of narrow peaks (in the range of data points 650—950
in this figure) are better preserved than with many other
smoothing filters with similar bandwidth, e.g., convolution with
a Gaussian. Figure 4b also demonstrates some of the
shortcomings of traditional SG filters. Suppression of high-
frequency noise (small wiggles) is unsatisfactory; this becomes
obvious when comparing the black line in Figure 4b with
panels c—e, where the output is much smoother. With high
input frequencies (narrow peaks above data point 1050), peak
inversion occurs in some regions. This is related to the odd
sidelobes of the frequency response (Figure 1b), where the
gain has a negative value. This problem has been noted
previously, but the solution suggested in that work’ was very
similar to convolution with a Gaussian, sacrificing the good
preservation of peak heights and the flat passband and sharp
cutoff in the frequency domain.

Upon visual inspection, the noise suppression of the SGW
filter with the Hann-square weight function is almost as good
as convolution with the MS kernel and WH smoothing (Figure
4c—e). Nevertheless, in the high-frequency response (above
data point 1100), the SGW still shows phase inversion, though
with much lower amplitude than the traditional SG filter
(arrows). These artifacts come from the sidelobes in the
frequency response (Figure 1b); they would be lower when
choosing a weight function with better sidelobe suppression,
such as the cube of the Hann function (not shown). The MS
smoothed signal in Figure 4d shows only weak out-of-phase
wiggles above data point 1100; these are mostly ringing
artifacts caused by neighboring peaks and related to the sharp
frequency cutoff. The WH filter has a more gradual cutoff in
the stopband; thus, the ringing remains invisible in this plot.
The ringing is comparable for the MS and WH filters (see the
inset in Figure 1), but there are no regions where the
amplitude of the WH filtered signal sharply drops to zero in
Figure 4. The noise suppression of the SGW, MS, and WH
filters is better than that of convolution with a Gaussian. At the
same time, SGW, MS and WH provide better peak height
fidelity below data point 1000.

Figure Sa provides a comparison of the noise suppression
with different smoothing methods and n values. This figure was
calculated for a Gaussian with fwhm = 20 and 90% peak height
fidelity, which is the setup as in Figure 3. The noise gains, i.e.,
the ratio between the output and input root-mean-square
noise, were calculated for white noise. For interior points (full
bars), all filter types yield similar results, with the noise of the
traditional SG filters above that of the others. Only for n = 2,
the MS1 kernel provides slightly less noise suppression than
SGW, MS, and WH because its cutoff in the frequency domain
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Figure S. White noise gain of the filters for different degrees n. As in
Figure 3, the smoothing parameters have been set such that the peak
of a Gaussian with fwhm = 20 is attenuated to 90% of its original
height. (a) For smoothing of data, the white noise gains are shown for
interior points (full bars) and points at the boundary of the data
(lighter colors). (b) White noise gains of the derivative calculated
numerically. For boundary points, the results strongly depend on the
sequence, whether the differentiated data are smoothed (lightest
colors) or the smoothed data are differentiated (lower noise). The
MS1 kernels are similar to MS and described in the Supporting
Information.

is less sharp. Comparing different filter degrees, n = 4 shows a
small improvement (reduced noise gain) over n = 2, but there
is no further improvement for higher n. At the boundary
points, the noise is 2—3 times higher and increases with n. For
n > 4, our linear extrapolation method followed by
convolution with the MS kernel provides the lowest noise.
Figure 6 provides information beyond the test case of
smoothing an fwhm = 20 peak with 90% peak height fidelity.
As a measure of white noise gain, we define the noise
bandwidth as the integral over the power spectrum of the
kernel, with the full bandwidth corresponding to the Nyquist
frequency f,/2. Then, the white noise gain is proportional to
the square root of this bandwidth. Increasing the bandwidth
causes less attenuation of a peak with a given fwhm; sharper
peaks (lower fwhm) require higher bandwidth. If we take the
product of the noise bandwidth and the fwhm as the abscissa,
we can plot the peak height fidelity as a function of this
product, largely independent of the specific bandwidth or
fwhm value. Figure 6 then provides a figure of merit of the
various filters: If a given peak height fidelity is required (e.g,
90% of the original height), the leftmost curve has the lowest
noise bandwidth for white noise; that is, it best suppresses the
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Figure 6. Impact of filtering on the height of a Gaussian peak with a
given full width at half-maximum (fwhm). For a given peak height
fidelity (i.e., relative peak height after filtering), the classical SG filter
and convolution with a Gaussian (except for strong attenuation of the
input) require a larger noise bandwidth, i.e., weaker suppression of
noise. The curves for the n = 6 MS and p = 4 WH smoothers are
almost identical and cannot be distinguished in the plot. The
calculations were done with the filters of Figure 1, but the results
normalized as in this plot depend only weakly on the extent of
smoothing (the m or A value).

noise. The gray curve shows that convolution with a Gaussian
kernel performs worst (except when the peaks are strongly
attenuated to less than 80% of their original height). The MS
and WH filters are almost equal (the difference is less than the
line width in Figure 6) and best, and the SGW comes very
close. The traditional SG filter is worse than our filters because
of the poor attenuation of high-frequency noise (see above).
For MS filters with n = 6 (or WH with the corresponding p =
4), improving the peak height fidelity from 90 to 99% requires
increasing the bandwidth by a factor of 1.7, which corresponds

to a\/r — 1 £ 30% increase in white noise gain.

As shown in Figure Sa, the noise suppression of n = 2 filters
is slightly weaker than that of higher degrees n, due to the
more gradual cutoff in the frequency domain. The “+” symbols
in Figure 6 show that this is more pronounced if very high
fidelity of the peak heights is desired. For 90% peak height
fidelity (the test case of Figure S), there is no advantage in
using higher degrees than n = 4 (or the corresponding p = 3 for
WH); that is, there is no benefit of a steeper cutoff in the
frequency domain. For interior points, the white noise gain
does not decrease for n > 4, whereas the noise at the
boundaries increases, and the range where artifacts occur also
grows. If a higher fidelity is required, such as preserving the
height of a given Gaussian with 99% (rather than 90%) fidelity,
increasing n from 4 to 6 would provide a small decrease of the
white noise gain for interior points (by ~3% for MS and WH).
Still, the noise at the boundaries would increase by ~3 and 8%
for MS and WH, respectively. We do not see any value in using
higher degrees than n = 6 (p = 4 for WH) for signals that
consist of Gaussian peaks. Higher degrees are justified only for
signals that inherently have a very sharp cutoff in the frequency
domain. In that case, a similarly sharp cutoff of the filter could
better separate signal and noise, but the handling of near-
boundary data becomes more problematic.

For practical use of the MS or SGW filters, the user has to
determine the half-width m of the kernel required to preserve
the peak height with a given fidelity. This has been done
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previously for the traditional SG filters;*>** here, we present
how this can be accomplished for the SGW, WH, and MS
filters. For degrees 2 < n < 10, we find that the m value for a
given peak height attenuation can be expressed as

m=FX(a+bn+clnn) — 1 (19)

where m should be rounded to the nearest integer. Here, F is
the full width at half-maximum of the peak. The coefficients a—
¢ are given in Table 2 for peak height fidelity values of 90, 95,
98, and 99%.

Table 2. Parameters for Equations 19 and 20

method fidelity (%) a b c
SGW 90 0.8512 0.2565 0.1999
95 0.5993 0.2163 0.1924
98 0.3769 0.1850 0.1789
929 0.2578 0.1701 0.1643
MS 920 1.2354 0.4060 0.1015
95 0.8874 0.3402 0.1290
98 0.5739 0.2881 0.1495
29 0.4013 0.2642 0.1470
‘WH 90 1.7168 —0.0173 0.0697
95 1.2647 —0.0243 0.1687
98 0.8842 —0.0286 0.2471
929 0.6827 —0.0296 0.2842

“These parameters are used for calculating the filter parameters that
result in a decrease of the peak height of a Gaussian peak to 90, 95,
98, and 99% of its original value. The table is valid for m > n/2 + 2 in
the case of the MS filters and m > n/2 + 1 for SGW.

For WH smoothing, a similar equation can be used:
2z
Fx (a+ bn+ clnn)

@_ =

3dB (20)
with n = 2(p — 1) and the WH parameters (from a least-
squares fit for 2 < p < S) in Table 2. Then eq 12 can be used
to determine the A smoothing parameter.

Smoothing is often applied when the data are to be
differentiated. Differentiation amplifies the high-frequency
components, and one of the main applications of SG filtering
lies in smoothing followed by taking the derivative.* Since SG
filters are based on a polynomial fit, the derivative can be
calculated analytically, making SG filtering popular for this
application. It has been noted previously'” that essentially the
same can be accomplished by SG filtering followed by numeric
differentiation, with a slight improvement of noise suppression
when calculating the derivative of the filtered data z as (z;,; —
2;_1)/2. The slightly improved noise suppression is mainly due
to the difference between the frequency response of analytic
differentiation (multiplication with @) and that of the
numerical derivative (multiplication with sin @ when taking
the sampling frequency as f, = 1). The latter reduces the effect
of the high-frequency sidelobes of the SG filter (at the Nyquist
frequency, sinw = sinz = 0). In the present work, we use
numerical differentiation by simply taking z;,, — z; which is
closer to analytic differentiation than the method mentioned
above. This numerical method may be unsuitable for some
applications because it causes a shift by 1/2 data point; then
the above method'” must be used. For most purposes, the
difference between the differentiation methods is irrelevant
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(except for differences in the noise suppression of the
traditional SG filters).

Figure Sb compares the noise gain of the different
smoothing methods with this setup and for filter parameters
leading to a peak height fidelity of 90% at fwhm = 20. For
interior points (full bars), the noise suppression of the filters
with good stopband suppression is better by a factor of 2
compared with that of the traditional SG. For lower bandwidth
(stronger smoothing, as permitted for larger fwhm), the
difference would be even more pronounced. As an example of
filtering and differentiating real experimental data, Figure S7
demonstrates the poor noise suppression of the SG filter for
smoothing an infrared spectrum; it also shows that SG filtering
performs even worse when higher derivatives should be
calculated.

For interior points, filtering and (numerical) differentiation
are convolution operations, thus commutative, and the result
does not depend on which of these operations is performed
first. This is not the case for near-boundary points. For analysis
of the near-boundary behavior, we use essentially the same test
case as in section 2.6, a Gaussian peak near or at the boundary
of the data. As differentiation enhances high-frequency
components, which are selectively attenuated by the filters,
we now set the filter parameters such that filtering reduces the
height of the Gaussian to 95% of its original value, not 90%.
This attenuates the peaks of the derivative to about 90%.
Results of filtering and differentiating a near-boundary
Gaussian (fwhm = 20) are shown in Figure 7.

The red curve in Figure 7a shows the result of smoothing
with the traditional SG filter if the boundary of the input data
is at —26. At the boundary, the deviation between the
smoothed and differentiated curve (red) and the derivative of
the Gaussian (black) must be considered unacceptable. The
same is true when the left boundary is at —41 (pink curve). SG
filtering followed by numerical differentiation can also show a
discontinuity at a distance of m from the boundary (red
arrow). This discontinuity would disappear when using
analytic differentiation, but then the deviations from the
differentiated Gaussian are even slightly larger at the end
points. As in Figure 3, the red circles show the end points of
the smoothed and differentiated data for all positions of the
boundary. Obviously, for traditional SG filtering, these end
points are far from the expected values for many positions of
the boundary, not only for the extreme cases marked by the
red and pink curves. Figure 7a shows that SGW is hardly any
better. Therefore, we consider both the SG and SGW filters
unusable for smoothing and differentiating near the bounda-
ries. WH is clearly better, and the best behavior is observed for
MS convolution with linear extrapolation of the data (dark
gray squares). Yet also here, the end points deviate from the
derivative of the input.

Figure 7b shows the alternative sequence. First taking the
derivative and then smoothing yields better fidelity of the
processed curves. SG filtering again performs worst, closely
followed by SGW, and MS performs best. At first glance, this
sequence may seem preferable; the smoothed curves preserve
the position of the zero derivative at the peak maximum before
differentiation. However, as expected from the usual trade-off
between fidelity and noise suppression, the price to pay for the
better near-boundary performance of taking the derivative first
is much poorer noise suppression at the boundaries (see Figure
Sb). For the WH smoother, the reason is obvious: with a
penalty on the second derivative (p = 2), the second derivative
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Figure 7. Filtering and differentiation of a Gaussian peak near a
boundary. (a) Filtering of a Gaussian (fwhm = 20), followed by
numeric differentiation. The filter parameters were set for a peak
height fidelity of 95% for the Gaussian. This leads to attenuation of
the peaks of the derivative to ~#90% (gray curve, mostly hidden by the
pink curve). When the left boundary of the input data is at the
position marked by the red or pink shaded area, filtering with a
traditional SG filter and differentiation leads to the red and pink
curve, respectively. The end points of the filtered and differentiated
curves for all positions of the boundary are shown as red circles for
the SG filter and in other colors for the other filters. (b) Same as in
(a) but with first differentiating followed by smoothing with the same
parameters as in (a). All data for filters of degree n = 4 (corresponding
to p = 3 for WH). Kernel half-widths m are 22, 34, and 38 for SG,
SGW, and MS, respectively.

of the smoothed data at the boundary will be very low. There
are no input data at the outside that would demand a nonzero
value of the second derivative (calculating the second
derivative requires data left and right of that point). After
differentiation, a penalty on the second derivative corresponds
to a penalty on the first derivative, which limits the data values
at the boundary (red curves in Figure S6). When first taking
the derivative, then differentiating, the penalty is on the second
derivative, and the first derivative is unconstrained, leading to
overshoot at the boundaries (cyan curves in Figure S6).
Essentially the same is true for higher degrees: a constraint on
a lower derivative means a stronger limitation for the
overshoot at the boundaries. For SG-based filters, the
explanation is essentially the same: the tendency to overshoot
at the boundaries increases with the degree of polynomials in a
polynomial fit. Differentiation of the filtered data is like
lowering the degree of the polynomial fit.
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The increase of noise when first taking the derivative, then
smoothing, depends on the cutoff frequency of the filters. For
weak smoothing (e.g., for preserving narrow peaks; peak height
fidelity 90% for fwhm = S), the increase of the noise is less than
a factor of 2 (but the noise gain at the boundary is still a factor
of ~S above the noise gain for the interior). For strong
smoothing, the discrepancy between the differentiation first
and smoothing first increases. This means that the “derivative
first, then smoothing” method is not useful for strong
smoothing because of insufficient noise suppression near the
boundaries. The near-boundary artifacts of MS smoothing
followed by numerical differentiation (Figure 7a) are the lesser
evil.

The trade-off between fidelity and noise suppression does
not necessarily apply when comparing different smoothing
methods. When smoothing first, then taking the derivative,
Figure 7a shows that the MS method clearly provides the best
fidelity at the end points; at the same time, for n > 4, this
method has the best noise suppression of all (see Figure Sb).
On the other hand, the noise suppression of the traditional SG
filter is worst for both interior points and at the boundaries in
all cases except one (n = 2 and “derivative then smooth”);
nevertheless, its filtered curves show the worst artifacts near the
boundaries. Thus, there are methods that perform better when
smoothing near-boundary data, in terms of both artifacts and
noise suppression, and others that are worse. The traditional
SG filter is clearly worst, and for n > 4, the MS filter performs
best. At n = 2, MS and WH are almost equal, with MS
providing only slightly better noise for the derivatives. In this
case, the choice may depend on convenience of implementa-
tion.

In summary, we have presented and analyzed three types of
smoothing filters superior to traditional SG smoothing. All of
these filters provide much better suppression of high
frequencies, which is especially important if the derivative of
the data is of interest. Adding weights to the polynomial fit in
SG filtering (SGW) leads to a substantial improvement. Still,
the two other methods discussed here, convolution with a
modified sinc kernel and Whittaker—Henderson smoothing,
outperform the SGW filters. For the interior of the data, the
frequency response and noise suppression of the MS and WH
filters are similar. WH smoothing handles near-boundary
values in a natural way. Nevertheless, MS convolution
combined with linear extrapolation of the data provides
substantially better results near the boundaries for degrees n >
4, that is, fewer artifacts and better noise suppression for the
derivative. MS convolution also has the advantage of being
numerically more stable than the WH method, irrespective of
the smoothing parameters (at the expense of higher computing
time for MS convolution with large kernels). The WH method
is superior to traditional SG smoothing and was named “a

perfect smoother”."®

Our analysis shows that improvements
beyond WH smoothing are possible, and we consider
convolution with the MS kernels, together with linear
extrapolation at the boundaries, the best method currently

available.
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