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Predictive energy management systems (EMS) enable industrial plants to participate in the modern power
market and reduce energy cost. In this paper, a novel modular model predictive EMS specifically designed
for industrial thermal batch processes is presented. The EMS consists of a two-layer mixed-integer model
predictive controller and an online load predictor, and thus solves the main challenges of EMS in industry
- high implementation costs and the possible reduction of production reliability. The modular formulation
of the optimization problem enables system integrators to implement the EMS without time-consuming
modelling tasks and elaborate parameter tuning. The online load predictor estimates the typical pulse-like
heat loads of batch processes ensuring both - reliable production and maximal flexibility of the power
demand. The utilization of real-time data provides additional robustness against uncertainties caused by
human operators. The performance of the EMS is evaluated in a case study of an existing food plant.
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1. Introduction

Decarbonisation of factories is a key measure to fight climate
change as the industrial sector accounts for 29% of global final
energy consumption (IEA, 2019). To increase the pressure on in-
dustry to reduce energy consumption, emission trading is intro-
duced, for example through the EU Emissions Trading System. In
addition, the electricity market has been liberalized to promote
flexible electricity consumption and allow for a higher share of
renewable energy in the power grid. A predictive energy man-
agement system (EMS) is necessary for industrial plants to par-
ticipate and profit from this modern power market. The goal of
an EMS is to operate energy supply systems (ESS) optimally in
terms of energy costs, energy efficiency, machine wear and CO,-
emissions, while complying with operating limits ensuring produc-
tion safety. Today, only few factories employ an EMS, but EMSs
are attracting increased interest (Siirola and Edgar, 2012) and are
the subject of intense research in various areas like microgrids
(Zia et al., 2018), fuel cells (Teng et al., 2020), urban energy sys-
tems (Moser et al., 2020; Powell et al., 2016), heating, ventilation
and air conditioning (HVAC) (Rawlings et al., 2018; Dullinger et al.,
2018; Touretzky and Baldea, 2014; Risbeck et al., 2020), homes

* Corresponding author.
E-mail address: florian.fuhrmann@tuwien.ac.at (F. Fuhrmann).

https://doi.org/10.1016/j.compchemeng.2022.107830

(Shareef et al., 2018; Touretzky and Baldea, 2016), and powertrains
(Biswas and Emadi, 2019).

Due to the modern power market EMSs are becoming more
widely used in large industrial plants (Petek et al., 2018). Nev-
ertheless, there are still obstacles to the widespread application
of EMSs in industry in general and in batch production pro-
cesses in particular. May et al. (2017) provided an overview of
the state of the art in EMS for the manufacturing sector, stating
the potential negative impact on production performance as the
main barrier to their adoption. The production performance is
reduced in case the EMS violates process constraints in an effort
to increase energy efficiency. Model predictive control (MPC) is
a suitable method to overcome this barrier. It can incorporate
economic and operational objectives - in the form of a flexible
cost function addressing multiple goals - while respecting vari-
ous technical, regulatory, and process constraints (Dengiz et al.,
2021). Prediction accuracy is critical to the performance and
reliability of MPC. Srinivasan et al. (2003) detect uncertainty
as the main bottleneck in using optimization based methods
at the industrial level. Incorrect predictions can lead to the
violation of critical constraints which can affect the quality of
end-products (Thombre et al.,, 2020). Due to this fact, the EMSs
are often operated overly conservatively (Shareef et al., 2018;
Touretzky and Baldea, 2016), reducing the flexibilities and thereby
economic benefits of EMSs. Different approaches to tackle the
challenges of conservative EMSs for systems with uncertainty have
been presented: Thombre et al. (2020) employ multivariate data
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Nomenclature

Abbreviations

BC batch consumer

cop coefficient of performance

EMM energy management in manufacturing
EMS energy management system

ESS energy supply system
HLC higher-level control

HP heat pump

HS heat source

HT heat treatment

HVAC  heating ventilation and air conditioning
LLC low-level control

MILP mixed-integer linear programing
MPC model predictive control
OLP online load predictor
RU ramp-up

RD ramp-down

SoC state of charge

SU start-up

SD shut-down

TES thermal energy storage
Symbols

o, B linearization coefficients
€fix fix loss

€s0C loss proportional to SOC
n compressor efficiency

P density

AT temperature difference
AN time-step shift

m mass flow

C cost coefficient vector in €
c cost factor in e.g. € MWh
cp mass-specific heat coefficient
n number of time-steps
Np prediction horizon

p pressure

p power consumption

Q heat

RU ramp up

RD ramp down

S slack variable

t time

ts sampling time

T temperature

U plant input

u operation condition

% start-up integer

% volume

w shut-down integer
Indexes

avg average

C charge

D discharge

full full load

in incoming mass flow

j running index

k current time step

lhs left hand side

lim limit

min minimum value

max maximum value
out outgoing mass flow
part partial load

rhs right hand side

sink heat sink of the heat pump
source  heat source of the heat pump

Further nomenclature

X scalar variable

X vector variable

X time derivative of X
X estimate of X

analysis on historical industrial data to implement a multistage
nonlinear MPC scheme based on a scenario-tree formulation.
Moretti et al. (2020) use an affine adjustable robust formulation
for the optimization problem.

These methods require intense data processing and are of sig-
nificant complexity, hindering their implementation in factories. To
reduce complexity and increase the robustness against prediction
errors, a combination of optimization-based and (meta-)heuristic
approaches of EMS can be used (Dengiz et al., 2019). These (meta-
Jheuristic EMSs are naturally only valid for their specific area of
application. Implementing an EMS is especially challenging for
batch processes. Therein, the energy demand is peak-shaped and
exceeds the maximum energy supply rate during certain processes.
Only predictive measures can prevent bottlenecks in the energy
supply for batch processes and thereby ensure production relia-
bility. Further, batch processes are typically semi-automated which
causes uncertainties in the load predictions. No methods address-
ing these specific problem characteristics in a modular fashion
could be found in available literature. This represents a significant
research gap for an EMS structure which ensures production safety
for batch processes.

The second big barrier of implementing EMSs in producing in-
dustry are the high implementation costs. Model-based EMSs rely
on a system model which considers all significant system dynam-
ics and constraints of the plant. The modelling process is highly
challenging and typically requires expert knowledge. ESSs of pro-
duction sites are often grown structures which hinders a stan-
dardized integration of EMSs (Fluch et al., 2017). Additionally, ESSs
are continuously changed for example due to the expansion of
production or the incorporation of renewable energy sources. To
avoid the repetition of the modeling process after each modifica-
tion, the system has to be structured in a modular, easily adapt-
able way. According to Isaksson et al. (2018), the modeling effort
is the most important issue of MPC from an industrial perspec-
tive, and cost-efficient formulation and maintenance of the models
is crucial. Modular mixed-integer linear programming (MILP) for-
mulations of the system model have proven to be easily adapt-
able and simple to implement (Moser et al, 2020). The MILP-
formulation has a further benefit: ESS consist of multiple compo-
nents with switching behavior (heat pumps, gas boilers, etc.). Inte-
ger variables are the method of choice to model switching behavior
- therefore, MILP is an efficient choice for this optimization prob-
lem. On the other hand, MILP requires non-linear effects to be lin-
earized. The most evident nonlinearity in thermal energy systems
is the mixture of fluids with different temperatures. Thermal batch
processes typically have different required temperature levels and
thereby varying demand temperatures. Moser et al. (2020) pre-
sented a modular MILP-based EMS for urban multi-energy sys-
tems. The pulse-like heat demand of batch processes and the high
uncertainty of load predictions are major differences between ur-
ban ESSs and industrial ESSs. Therefore a research gap concern-
ing a modular MILP-formulation of ESSs for thermal batch pro-
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cesses and the incorporation of the occurring nonlinearities is
evident.

Recently scheduling for energy management is in focus of
research (Touretzky and Baldea, 2014; Risbeck et al., 2020;
Touretzky and Baldea, 2016; Santander and Baldea, 2021;
Beykal et al., 2022; Schafer et al, 2020). Santander and Baldea
presented a EMS for batch processes including scheduling of the
production (Santander and Baldea, 2021). Beykal et al. (2022) sug-
gest a two-layer architecture for integrating planning and schedul-
ing problems under demand uncertainty. Touretzky and Baldea
(2014, 2016) introduce a hierarchical economic MPC combining
scheduling and control in the context of buildings with thermal
energy storage. Risbeck et al. (2020) present a real-time capable
MILP formulation for EMS with scheduling for HVAC. Scheduling
increases the flexibility of ESS as heat demand can be synchro-
nized with times with small electricity costs. Further, scheduling
helps to prevent infeasibilities as unenforceable production sched-
ules are avoided. However the implementation of scheduling
in manufacturing plants demands cost-intense adaptions of the
logistics and production system. On-demand production and the
lack of acceptance by human operators can impede the implemen-
tation of scheduling. For instance, the food factory used as a case
study in this paper cannot execute fully automated scheduling
due to logistical reasons. Therefore, and as it is the goal of this
paper to present lightweight EMS with little implementation
effort, scheduling was not included in the EMS. This paper aims
to close the aforementioned research gaps concerning EMSs for
thermal batch processes. Therefore a modular EMS, consisting of
a two-layer model predictive controller (MPC) and an online load
predictor (OLP), is introduced in this paper. The two-layer MPC
allows an efficient separation of the optimization goals production
reliability and operation optimization. The higher-level controller
(HLC) considers the predicted energy prices, CO,-certificates,
and machine wear to calculate optimal trajectories, while the
lower-layer controller (LLC) reacts to disturbances and ensures
production reliability

In the current paper the optimization problem is formulated as
a modular - component-based - MILP to enable fast implementa-
tion and easy adaptability. The given formulation of the mixed-
integer linear program allows a straightforward parameterization
from datasheets, enabling system integrators to implement and
configure the energy management system without time-consuming
modelling tasks and elaborate parameter tuning. The OLP uti-
lizes the production schedule to estimate the heat load of future
heat treatments (HT), reacts to measured deviations of the ac-
tual heat load and defines the time-dependent minimal state of
charge SOC,,;, online in every time step. These three functional-
ities ensure process reliability while simultaneously maximizing
the flexibility of the EMS. Furthermore, the formulation of the
SOC,,;, avoids the typical nonlinearities in the MILP-formulation of
thermal batch processes. The performance of the EMS is demon-
strated for the use case of a food production plant. The EMS
is compared against the installed baseline controller in simu-
lations. The system models utilized for the simulation are de-
tailed nonlinear models and validated by industrial measurement
data.

The manuscript presents a model predictive energy manage-
ment system for industrial batch processes that ensures production
reliability and optimal operation.

The main contributions presented in this paper are:

* A novel energy management system structure consisting of a
two layer model predictive controller and an online load pre-
dictor for batch processes is presented.
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o A modular formulation of the arising mixed-integer linear pro-
gram is suggested which enables a fast implementation and
simple parameterization of the energy management system.
An online load predictor for thermal batch processes ensures
robustness of the energy management system against uncer-
tainties caused by the discontinuous nature of batch processes
and uncertainties of the production schedule.

The performance of the novel energy management system is
demonstrated in a case study based on the validated model of
an existing food factory utilizing real industrial measurement
data.

The remainder of the paper is structured as follows. In
Section 2, the problem statement is given. In Section 3, the novel
EMS is presented, and the design of the simulation study is de-
scribed. In Section 4 the industrial use case is provided.

2. Problem statement

In this section, first, the considered energy supply systems’
(ESS) structure and its properties in factories with batch produc-
tion are described. After that, the premises of the load predic-
tion are defined. Then, the optimization problem is outlined, and
the main challenges in implementing an EMS in factories are dis-
cussed.

2.1. Structure of the energy supply systems

The factory processes considered in this publication are batch
processes, where in contrast to continues processes a certain
amount of products is produced in a timeframe. This induces
- often energy intense - start-up and shut-down processes for
each batch. A typical example for energy intensive batch processes
are heat treatments. During a heat treatment products undergo
specific temperature trajectories to alter their physical or chemi-
cal properties (e.g., annealing, tempering or pasteurization). Heat
treatments start with a heating phase, where the treated material
is brought from the initial temperature Ty to the desired temper-
ature level T,,4. Therefore, the heating phases induce short pulse-
like heat loads, as displayed in Fig. 1. Delayed or incomplete heat-
ing phases caused by insufficient heat supply may affect product
quality and cause economic losses. As the demand peaks typi-
cally exceed the maximum energy supply rate during these pro-
cess steps, ESS for batch factories include at least one buffer stor-
age. Fig. 2 displays the resulting ESS structure for heat supply sys-
tems, which is considered in this paper. Essential components are
a heat source (HS), a thermal energy storage (TES), and N batch-
type heat consumers (BC) with temperatures Tgc, (n=1,2,..,N).
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Fig. 1. Typical pulse-like heat loads of a batch consumer (BC) and the prediction
compared to the maximum heat production of the heat source (HS). Adapted from
(Matthew et al., 2020).



F. Fuhrmann, A. Schirrer and M. Kozek

QHS QBC,sum

HS

Qs

TES

Fig. 2. Structure of energy supply systems for thermal batch processes consisting
of a heat source (HS), a thermal energy storage (TES) and N batch consumers (BC).
Adapted from (Matthew et al., 2020).

The sum of the heat loads Qg sum is the disturbance affecting the
heat stored in the TES, Qrgs, which is controlled utilizing the heat
supply unit*\primes heat flow Qys as the manipulated variable.

2.2. Load prediction

The prediction accuracy is critical for the performance and re-
liability of an MPC because wrong predictions can lead to the vi-
olation of critical constraints affecting the quality of end-products
(Thombre et al., 2020). For example an under-estimated heat de-
mand can result in a temperature constraint being violated dur-
ing heat treatment. The too low temperature can lead to a reduced
shelf life of food or undesirable material properties of hardened
steel. To predict thermal loads caused by batch processes, the heat
demand Qpcsym and the associated demand temperature Tpemand
have to be predicted based on the production schedule. The pro-
duction schedule includes the starting temperature Toyrm,, end
temperature T.nq yr.m, and starting times o, (Mm=1,2, .., M) of all
M heat treatments. In factories, the actual production process usu-
ally diverges from the production schedule because processes are
not fully automated, and the duration of process steps depends on
hardly predictable factors like educt quality or operator availability.
Therefore, the starting time of the heat treatments, ty yr ;. deviates
with a maximum process dependent deviation Aty yt max. The pre-
diction error of the integral heat amount needed for a HT AQyt max
is usually negligible as it is dependent on the well-known param-
eters starting temperature Tyt g, end temperature Tyt epg pm. and
heat capacity of the product Cyr . In the case study, the robust-
ness of the suggested EMS against these deviations will be tested
and the energy cost caused by different Atstaremax values will be
quantified for different control strategies.

2.3. Optimization problem

The goal of EMS is to operate energy supply systems (ESS) opti-
mally in terms of energy costs, energy efficiency and machine wear
while maintaining operating limits in the interest of production
reliability. The critical constraint ensuring production reliability is
that for each heat treatment, the desired heat flow QBc,m must be
available with the minimum temperature of T, ,q. The heat sup-
ply unit introduces additional constraints of minimal partial load,
maximum load, and minimal stop time. To reduce wear and avoid
an ineffective transient operation, the heat source should not be
operated less than a desired minimal continuous operation time
tup, desired*

The power, gas, and fuel consumption of the ESS determine the
energy costs. Due to decarbonization, fluctuating power prices be-
come the main drivers of energy costs. To fully exploit the flexibil-
ity of the power market, a minimal prediction horizon of one day
is needed to utilize the day-ahead market. Furthermore, the billing
of power consumption is usually based on records at 15 min inter-
vals. Therefore, a sampling time below 15 min is needed to effec-
tively react to disturbances on the power consumption. Batch pro-
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cesses induce short, intense loads and thereby demand a sampling
time of few minutes.

Bottlenecks in the energy supply cause a product quality re-
duction, resulting in economic losses that are magnitudes higher
than the energy costs of the product. Therefore, production safety
is not seen as a cost factor but instead modelled as a constraint.
Since thermal batch processes are usually semi-automated, the
EMS must be robust to heat load uncertainties, as described in
Section 2.2.

Bemporad and Morari (1999) describe a control system as ro-
bust if stability is maintained and performance indicators are met
for a specified range of model deviations and noise signals. In this
publication, the designed control structure is not obtained by clas-
sical approaches of robust control design. Instead robustness with
respect to specific application aspects is realized by appropriate
design decisions. In particularly, the robustness against the uncer-
tain noise signal heat demand QBC,sum is discussed. The range of
noise signals is specified by the maximum process dependent devi-
ation Afp yr,max and a prediction error of the integral heat amount
needed for a HT AQyr max- The considered ESS are stable as the
controlled system state Qgs is physically limited by the minimum
operation temperature T,;; and maximum operation temperature
Tmax as described in Section 3.1.3. The relevant performance in-
dicator for the system is that the heat flow Qgc, must be avail-
able with the minimum temperature of T,; .n4. The presented EMS
aims to ensure the quality indicator and avoiding overly conserva-
tive reactions causing high energy cost or machine wear.

To enable a fast and efficient implementation, it is desirable
that all model and control parameters are standard component pa-
rameters known to the plant operator. This also enhances the ac-
ceptance of the method by the plant operators. Further changes
in the desired behavior shall be easily executable. Summing up,
the implementation and maintenance of the control system shall
be as intuitive as possible so that no control engineering expert is
needed. Implementation cost and running costs need to be com-
pensated by energy cost reduction.

3. Methods

The EMS consists of three components: the higher-level con-
troller (HLC), the lower-level controller (LLC) - both utilizing MILP
optimization - and the online load predictor (OLP), as displayed in
Fig. 3. This section will first introduce the simple parameterizable
formulation of the arising two-layer mixed-integer linear program.
Then the OLP ensuring reliable production, robustness against un-
certainties of the production schedule and maximal flexibility of
the power demand is presented.

3.1. Higher-level and lower-level controller (HLC, LLC)

In this subsection, the architecture of the structure of the op-
timization problem is introduced, then the optimization models
are introduced component-wise and finally the assembling of the
plant-wide optimization problem is discussed.

Energy management system - EMS

Optimal Plant I Thermal batch process Control

| trajectories inputs rariabl
|| HLC | » e 2 I Ees
I i Load prediction * |
I oLp | i Measurements
e ——————— —

Fig. 3. Architecture of the energy management system (EMS) including the higher
level controller (HLC), the lower level controller (LLC) and the online load predictor
(OLP).
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3.1.1. Optimization structure

The basic idea of separating the optimization problem into HLC
and LLC is to execute the economic optimization with the HLC
while ensuring production safety with the LLC. Furthermore, the
separation allows to increase the robustness to uncertainties in the
load prediction by setting the boundary conditions accordingly.

The robustness of the control system against the uncertainties
in starting time Afg gyt max and integral heat amount AQyr max IS
increased by:

e Adapting the heat load prediction as described in
Section 3.2.2 according to possible uncertainties in starting
time AtO,HT.max-

 Considering safety buffer AQ,qpysx When calculating SOC;, to
ensure robustness to AQurmax and mitigate the effect of un-
certainties on EMS performance as described in Section 3.2.3.

The HLC and the LLC are model predictive controllers utiliz-
ing a mixed-integer linear programming (MILP) formulation. The
MILP-optimization problem is defined by given inputs, a set of con-
straints and an objective function. The presented EMS is based on
a modular - component-wise - formulation of the optimization
problem similar to Moser et al. (2020). The modular framework
enables efficient implementation and adaption of the EMS.

The two-layer structure of the EMS is necessary due to the high
calculation effort caused by the requirements for the prediction
horizon. The prediction horizon Np should be defined long enough
to fully exploit the power market but no longer to avoid unnec-
essary calculation effort. Typically, the prediction horizon is spec-
ified with 24 h because of the day-ahead power market. Further-
more, the optimization interval cannot be longer than few minutes
to enable a control of the 15 min power consumption, which is
the time basis of the billing of power consumption and to ensure
production safety. In the two-layer concept, the HLC considers the
long-term effects with a prediction horizon Npyc of 24 h with a
large sampling time t; y;c of 15 min. The LLC considers the short-
term effects, with a prediction horizon Np ;¢ of 1.5 h with a short
sampling time fsy;c of 1 min. Without the two-layer concept, the
number of binary variables would impede the real-time applica-
bility of the optimization. There are other solutions to reduce the
computational burden of long forecast horizons caused by time-
varying electricity prices, e.g., adaptive grid algorithms, but they
have so far only been used for scheduling and the performance is
highly influenced by operational constraints (e.g., ramp constraints)
(Schafer et al., 2020).

The two optimization layers both consider the same constraints
and inputs. For both controllers, the initial condition of the heat
source Uy, the initial state of charge SOC,, the heat demand
Q.Bcvdemand and the power costs Cpower are inputs. The HLC differs
from the LLC in terms of cost weights, optimization parameters
and the considered minimal state of charge SOC,,,. The differ-
ently chosen SOC.,;, constraints ensure, robustness to uncertain-
ties in the load prediction and mitigate the effect of uncertainties
on EMS performance. Aggressive reactions of the EMS to deviations
of the SOC to its prediction are only executed when the production
safety is endangered. The detailed definition of SOCmin is given in
Section 3.2.3.

To enable a fast and convenient implementation, a component-
wise formulation of the optimization problem is used. Each com-
ponent model consists of constraints defining the operation lim-
its of a component and objective function terms for the optimiza-
tion. The constraints and objectives are adjustable through a set
of parameters and weights, respectively. The parameters and the
weight factors are defined so that they can be easily read out of
datasheets or defined by the operator without intense data analysis
or control knowledge. Constraints that can, but should not be vio-
lated, are defined as soft constraints to ensure optimization robust-

Computers and Chemical Engineering 163 (2022) 107830

QS measured == ===~ Qus.LLc
® Qusmre e Cpower
T T T T — 100

. —t <
= 0.1t ) =
= | 1 1 o e - =
po W
= c
- . aatees '.-uouvu" i .— t] -
(o] o o V@
Z 0.05k [
& 0.05 g
K ®
= 3

0 o &

0 Npapc
timestep k

Npop

Fig. 4. Measured and predicted heat flow of the heat source Qus and the power
price Cpower-

ness. The individual components are connected by so-called nodes
that represent the required mass and energy balances. The modu-
lar component-wise definition of the optimization problem - from
now on referred to as optimization models - enables a fast imple-
mentation to arbitrary energy supply systems. Optimization mod-
els can easily be extended with additional effects, and adaptions of
the energy supply systems can be incorporated with minor mod-
elling effort.

Fig. 4 shows an example of optimal trajectories calculated by
the controller. The optimal trajectory of the plant input predicted
by the HLC Qyspic is shown by as dots, the predicted trajectory
of the LLC QHS'LLC as dashed line, the measured heat flow of the
past time-steps as solid line and the flexible power price used in
the optimization as green dotted line. Furthermore, the prediction
horizons Np yc and Np ;¢ are indicated. The switching behavior of
the heat pump and the desired usage in times of low energy prices
are evident.

In the following, the constraints and objectives are defined
component-wise for heat pumps (as heat source), thermal energy
storages and batch consumers. Finally, the global optimizer con-
figuration is given. The optimization framework could easily be
adapted and extended with further components like latent heat
storages or gas vessels. Further, each component model could eas-
ily be extended with additional effects like heat loss. The con-
straints and objectives are formulated with the toolbox YALMIP
(Lofberg, 2004).

3.1.2. Heat pump model

The heat pump (HP) transfers thermal energy from a cooler
heat source to a warmer heat sink using the refrigeration cycle.
The heat flows are calculated as follows:

QHP.sinl( = (hHP.sink,out - hHP,sink,in) . msink (1)

QHP.source = (hHP,source,out - hHP.source,in) . msource (2)

The mass-specific enthalpy of the sink inflow hgjpy i, sink out-
flow Agink out» Source inflow hggyrce in, and source outflow hggyree out
are calculated using the "CoolProps" physical property database
(Bell et al., 2014).

The coefficient of performance COP is calculated as Carnot effi-
ciency for full-load operation as given in (3) and calculated identi-
cally for minimal partial load:

Tp sink.out + ATHp sink full

COPyyy =
THP.sink,out + ATHP.sink.full - THP,source,out + ATI-II’,source.fulI

* TTHP full»

3)

where nyp g is the compressor efficiency at full load, ATyp gink funl
is the temperature difference between HP working fluid and sink



F. Fuhrmann, A. Schirrer and M. Kozek

fluid at full load and Typ_gjnk out the outlet temperature of the sink
fluid. The same definitions are valid for the HP source. For all fur-
ther operation points, a linearly interpolated COP is used to calcu-
late the power demand:

COP = aucop + PBeop - M (4)
QHP,sink,max
H—lP _ Up sink + Q-.HP,sink’ (5)
Qcop Beop

where acop and Bcop are linearization coefficients, QHpvsinkvmax is
the maximum sink heat flow, Pyp is the power consumption of the
HP, and uyp is an integer variable indicating operating (uyp = 1) or
standstill (uyp = 0) condition. Furthermore, the following inequali-
ties restrict the operating range to reasonable boundaries.

0=< QHP,source

0 < QHP,sinl(

0 < tityp source

0 = mHP,sink

0 =< PHP,sink (6)

The energy balance is given as:

QHP,sink = QHP,source + PHP (7)

Eq. (8) connects the plant input Uyp with the sink heat flow
Qup sink utilizing the scalar maximum sink heat flow Qup gink max-

Upp = < rsink (8)

The following introduction of the binary variables uyp, vyp and
wyp is needed for operation constraints given in (10)-(16), e.g.,
minimum downtime. The binary decision variable uyp indicates
the operation condition, vyp the start-up and wyp the shutdown-
events.

Vip +wWip < 1
Vhpk — Whp k = Unpk — UHp k-1 (9)

Constraint (10) ensures the minimum uptime ngy time-steps.
Many components of energy supply systems demand minimal du-
rations of operation conditions due to safety or wear reduction.
Heat-pumps usually demand a minimal standstill duration of sev-
eral minutes.

Np+Nmax—Tsy

VHp t=j,.. j+ngy < UHP.t=jing (10)
J=1+Nmax—nsy

In words, the condition requires that the sum of all startup
events in the period of ngy steps must be either O if the com-
ponent is shut down at the end of the period, or a maximum of
1 if the component is in operation at the end of the period. This
must be valid for all possible periods in the prediction horizon Np.
In the same way constraint (11) ensures the minimum standstill
time-steps ngp.

Np+Mmax—Nsp

Whp = jtngp—1 < 1 — WHp t—jing (11)
J=1+Nmax—nsp

The maximum heat flow at the heat sink Q‘Hpvsink.max, maxi-
mum heat flow after start-up Q'Hpvsinkysulim and before shutdown
Qup_sink sptim are ensured by constraint (12). Large energy supply
units like gas turbines usually cannot operate with full power di-
rectly after start-up.
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- (QHP,sink,max - QHP,sink.SDlim : [WHP,t=k+l ..... k+Np> 0]) (]2)

The vector indicating shutdown-events wyp is extended with a
0 to obtain dimension equality.
The initial condition is defined in (13):
Upp ¢—k = UHp,0
Unp.t—k = Unpo (13)
The minimal partial load is ensured in (14) utilizing the binary
variable uyp to enable shutdown events. Minimal part loads are
typical among others for turbines and combined heat and power
plants.
Quip sink = Qup sink min * UHP.c—k . k-Np (14)

The ramp constraint is defined in (15). Especially large energy
supply units have restricted ramp limits due to wear and safety
reasons.

Unp.t—k.... keNy — Unp t=k—1,.. ktNo—1
< RUnp - Unp t—k.... k+Np

. QHP,sink,Sl_Jlim “ VHP k... k-+Np (15)

QHP,sink,max

Ubp t—ks1.... keNo+1 — Ubp ek, et Np
< RDyp - Wpp t—k. . kN

QHp.sink,sDlim * WHP,t=k.....k+Np (16)
QHP,sink,max

Where RUyp and RDyp are parameters defining the slope of the
ramp. The second term of the right hand side is needed to enable
higher changes in the utilization at start-up or shut-down events.

The objective function of the heat pump is given in (17) where
C are cost vectors with length Np and ts is the sampling time. The
cost function considers costs of the electric power Cpower, COSts of
changes in the utilization to ensure a smooth operation of the heat
pump Cxy, costs to penalize starting maneuvers Csy and shut down
events Csp and, costs for deviation of the utilization from the cal-
culated trajectory Ci.

Gp = Cpower + CAU +Gsu +Csp + Ctraj
k-+Np

ts
Cpower = E cpower,j : Pj . 60 : Cpowerfactor
Jj=k

k+Np—1

> abs(Up i1 — Unp j) + abs(Upp— — Unp.0) - CaU factor
j=k

Cau =

k+Np
Cu =) V- Csufactor
=k

k+Np
Cp = Z W j - Csp factor
Jj=k
k+Np
Ctraj = Z abS(UHP,j - UHP.traj) . Ctraj,factor (17)
j=k

Note that absolute values in the objective function have to be
reformulated to retain linearity. One linearization method is dis-
played in (18) (Matthew et al., 2020).

X <X

X <X (18)

abs(X) =X & {
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The parameters which have to be defined for the heat pump
model are listed in Appendix A (Table 6) and are basic component
parameters usually known by plant operators. The cost factors ¢
are further discussed in Section 3.1.5.

3.1.3. Thermal energy storage model

The following constraints (19-23) define the operation limits of
sensible thermal energy storage (TES) with sampling time t. First
the maximum and minimum stored sensible heat is defined utiliz-
ing the maximum operation temperature Tpax and minimum oper-
ation temperature Tp;,.

Qres.max = Tmax-¢p -V - p
Qres,min = Tmin-Cp-V - p (19)

Where ¢p is the mass specific heat coefficient V the Volume of the
tank and p the density of the storage fluid. The specific-heat co-
efficient cp is calculated using the "CoolProps" physical property
database (Bell et al., 2014).

The Eqgs. (20) and (21) define the course of the heat stored in
the TES considering the SOC dependent losses with parameter €ggc,
the fix losses with parameter €y;,, and the charging and discharg-
ing heat flows, respectively.

t t
Qs j—k = Qes,o - (1 — &soc - 675) — Efix - %

. t. . t.
+ Qres,c ek - é — Qresp ek - 6%) (20)

ts ts
Ques jkr 1, detNe = QTES, jok,.. ket No—1 - (1 — &soc @) ~ & 5

. t . t
+ QES,Cjmkt 1,0kt Np 6%) — Q1ES,D, jkt 1,0 k4Np 6%) (21)

In (22) the state of charge (SOC) of the TES is defined. The SOC
is defined between 0 - where the storage temperature Trgs = Tpin
and therefore no heat can be discharged from the TES - and 1,
where Trgs = Tmax and therefore the TES cannot be charged further.

Qres — Qres,min (22)

SOC =
Qres max — Qres,min

To ensure production safety, the online load predictor (OLP) de-
fines a maximal SOC SOCn.x and a minimal SOC SOC,;,. Although
violations of these constraints should be avoided at all costs, they
can occur, for example, in the case of prediction errors. These vio-
lations could lead to the infeasibility of the optimization problem.
To avoid infeasibilities during optimization the constraint is imple-
mented as a soft constraint. Violations of soft constraints trigger
costs multiple magnitudes higher than all other cost terms. As a
result, all measures are taken to avoid or minimize violations.

SOC — Stgs < SOCnax
SOC + Stgs < SOCpyip
$>0 (23)

Cres = StEs - Cs factor (24)

The slack constraint is the only contribution of the TES to the
objective function (24) where cs g0 i the slack cost factor and
Stes the slack variable.

The parameters which have to be defined for the TES model are
listed in Appendix A (Table 7) and are basic component parameters
usually known by plant operators.
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3.14. Batch consumer model
The batch consumer (BC) is defined by the enthalpy balance
and the imposed heat demand (24).

QBC = (hBC.Out - hBC,Out) . ch
QBC = QBC‘demand
titgc > 0 (25)

The mass-specific enthalpy of the inflow hpcj, and outflow
hpcout are calculated using the "CoolProps" physical property
database (Bell et al., 2014). The BC does not affect the objective
function. The parameters which have to be defined for the BC
model are listed in Appendix A (Table 8) and are basic component
parameters usually known by plant operators.

The BC optimization model considers no heat loss or conver-
sion rate as it maps all significant effects of the use case presented
in Section 4. Additional effects like heat losses or conversion rates
could easily be implemented in the model similar to the TES or HP
model.

3.1.5. Nodes

Nodes represent the required mass and energy balances to con-
nect the single components. To increase numerical stability, these
nodes are implemented as soft constraints triggering a warning in
case of balance residuals higher than numerical deviations caused
by the optimization. For the examined use case, the overall en-
thalpy balance (26) is sufficient to connect all components:

4
Qurp sink + Qresp + Sins = Y Qsc.m + Qres.c + Sins

m=1
Sips > 0
Sips > 0, (26)

where Sy, and S5 are slack variables. The slack constraint (27) is
the only contribution to the cost function where cg ¢t is the slack
cost factor.

CNodes = (Slhs + Srhs) . CS,factor (27)

3.1.6. Assembling of the constraints and objectives

For holistic optimal control of the ESS, the constraints and ob-
jectives of the components and nodes have to be combined to one
single MILP. Due to the component-wise structure and the con-
nection nodes, the overall optimization problem is given by the
summation of all component cost functions and stacking of all
component constraints. This minimizes the implementation effort.
Changes in the ESS, such as the installation of a photovoltaic sys-
tem or an expansion of production can be incorporated into the
EMS with little effort. For each component the respective compo-
nent constraints and objectives have to be added to the optimiza-
tion and the nodes adapted accordingly.

A remaining implementation effort is the correct choice of the
weight factors ¢ and optimization parameters listed in Table 1. To
define parameters efficiently, the following rules have been found
useful:

o To obtain an optimization problem formulation which is simple

to interpret and plausible to adjust in the individual objective

weightings, an a-priori normalization of the different objective

terms in mandatory.

Monetary factors are intuitive for plant operators, and the

power price is defined externally. Therefore, the power price

Cpower €an be used for normalization.

o Start-up and shut-down costs should include potential wear
and tear from these events, as well as labor costs and additional
fuel costs.
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Table 1
Weight factors and optimization parameters which need to be defined for each con-
troller.

Weights Description

Cpower, factor Electric power cost weight to reduce power costs

CAU factor Cost weight to smoothen the utilization of the HP

Csu.factor Cost weight to consider costs triggered by start-up events
Csp factor Cost weight to consider costs triggered by shut-down events
Ctraj factor Cost weight to penalize deviations from a given trajectory
Cslack Cost weight to avoid critical operation conditions

Opt. Params. Description

Np Prediction horizon of the optimizer

ts Sampling time in min

o For many components, the definition of a minimal uptime or
downtime as constraints (see (10) and (11)) is sufficient.

The slack cost should be orders of magnitude higher than all
other cost terms.

To fully exploit the flexibility of the power market, a minimal
prediction horizon of one day is needed to utilize the day-
ahead market.

The billing of power consumption is usually based on records
at 15 min intervals. Therefore, a sampling time below 15 min is
needed to effectively react to disturbances on the power con-
sumption.

Detailed rules for the optimal weighting of the cost function are
currently investigated by the authors.

3.2. Online load predictor

The online load predictor utilizes the production schedule to
estimate the heat load of future heat treatments (HT), reacts to
measured deviations of the actual heat load and defines the time-
dependent minimal state of charge SOC;, online in every sin-
gle time step. These three functionalities are described in the fol-
lowing Sections. They ensure process reliability while simultane-
ously maximizing the flexibility of the EMS. Further, the formula-
tion of the SOC,,;, avoids the typical nonlinearities in the MILP-
formulation of thermal batch processes system. In Fig. 5 the cal-
culated SOC,,;, is visualized and Fig. 6 shows estimated and mea-
sured heat loads of five heat treatments.

3.2.1. Heat load estimation

The utilized estimation method for pulse-like heat loads is pre-
sented in Fuhrmann et al. (2020). The method can be implemented
in a straightforward way because historical data from few mea-
surement points are sufficient for parameterization and it is ro-
bust against measurement noise. The method estimates the total
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Fig. 5. Measured and predicted state of charge (SOC) of the thermal energy storage
and the critical state of charge SOC;.
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Fig. 6. Measured and predicted heat load of all batch consumers Qg sum. Adapted
from (Matthew et al., 2020).

heat load of the batch consumers QBC,sum by estimating the heat

load of each single HT QHT‘m. The resulting heat load prediction is
shown in Fig. 6. During operation, the method needs the estimated
starting temperature THT,o_m and end temperature THT,end,m of the
HT, which are typically part of the production schedule as they are
crucial for a successful HT. Furthermore, the planned starting time
fo.ur.mis necessary for the prediction of the total heat load of the

batch consumers Qpc gum-

3.2.2. Prediction error compensation

Heat loads caused by batch processes typically show two kinds
of deviations from the predicted heat load: deviations of the start-
ing time of the HT ty yr , caused by the manual starting procedure
and deviations of the time course of the heat flow Qg¢ ¢ym caused
by deviating heat conductivity of the products. In contrast, the pre-
diction error of the integral heat amount needed for a HT Qur
is usually negligible as it is dependent on the well-known param-
eters starting temperature Tyy g m, €nd temperature Ty engm. and
heat capacity of the product Cyr ;. These circumstances are uti-
lized by the online heat load predictor, which executes three cor-
rection measures.

The first measure is actually a prevention measure. The esti-
mated starting time of all HT fo gt is shifted forward by a max-
imum starting time deviation Atsarr.max to the earliest possible
start of the HT. Together with the later introduced SOC.;,, this
ensures that the heat supply is sufficient at all possible starting
times. Thereby, the control system is robust against time shifts
in the production schedule smaller than Attt max- The parameter
Atstart.max can either be defined by the plant operator or calculated
from historical measurement data.

While the first measure avoids bottlenecks caused by HT start-
ing sooner than expected, the second measure counteracts delays
of HT. The heat load predictor shifts the heat load prediction of a

HT QHT,m backward by one time-step in case the HT does not start
at its predicted starting time fo yr -

Thirdly, the prediction of the heat flow trajectory is corrected at
each time step. The integrated difference between measured and
predicted heat flow is distributed to the remaining load prediction
utilizing:

ks .
‘Z Qurm, j— Qurm,j

J=tur0m

tHT,end -k
(28)

where k is the current time step.
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3.2.3. Calculation of SOCpin

The online load predictor (OLP) calculates a time variant mini-
mal state of charge SOC,,;, for energy storages which is incorpo-
rated as constraint to the MPC. The SOC.;, is recalculated each
time-step allowing a fast and optimal reaction to disturbances.
This ensures process reliability while simultaneously maximizing
the flexibility of the EMS. Further the formulation of the SOC;,
as enthalpy level instead of temperature allows a consideration of
different demand temperatures and avoids the typical nonlinear-
ities of the system. The purpose of the SOC,, is to avoid bot-
tlenecks in the heat supply. Bottlenecks in the heat supply oc-
cur when the temperature difference at the heat exchanger of the
batch consumers ATpcj, is too small to provide the necessary heat
flow within the heat-exchanger. To avoid bottlenecks, the SOC;, is
defined as follows:

(THT,max,end + ATBC,desirecl) . Cp V- P + AQ.robust - QTES.min

SOC,i, =
min Ques,max — Qres min

(29)

where Tyr maxenda 1S the vector with the length Np consisting of
the maximum end temperature of a HT Tyr eng.n OCCurring at each
time-step up to the control horizon, ATpc gesired 1S the desired min-
imal temperature difference at the heat exchangers and AQypyust
is a safety margin to increase robustness against prediction er-
rors. The robustness of the EMS is limited to realizable production
schedules. The EMS cannot prevent a violation of SOC,;, when the
heat demand is higher than the ESS can provide. This could only
be avoided by a scheduling algorithm. Due to the high implemen-
tation cost and low acceptance of scheduling in some manufactur-
ing plants the EMS presented in this manuscript does not include
a scheduling algorithm but assumes the production schedule to be
given.

Given a realizable production schedule the EMS is robust for all
prediction errors smaller than AQypust- The SOC,,;, is calculated
separately for each optimizer with different values for AQypust,
where AQopyst.yic is always larger than AQopystic. This differ-
ence mitigates the effect of uncertainties on EMS performance. Re-
actions of the EMS uncertainties are only executed when the pro-
duction safety is endangered. In both HLC and LLC, the SOC;, is
implemented as a slack constraint to avoid infeasibility in case of
constraint violations.

The SOC,,;, ensures maximum flexibility of the optimization as
no minimal state of charge is demanded when no HT is active
while ensuring robustness against uncertainties in the integral heat
demand smaller than AQqpyst-

There are two challenges which can cause an undershooting of
SOC,,;,. First, a production schedule can be unenforceable when it
demands a heat load which is too high to be provided by the given
ESS. Including scheduling to the EMS would systematically exclude
the possibility of infeasible production schedules. The EMS pro-

Constant
heat
source
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posed in this paper can detect unenforceable production schedules
by checking for violations of SOC,,;, in the SOC prediction. When a
significant violation is detected the EMS can display a warning to
the operator.

The second reason for an undershooting of the SOC,,;, are large
prediction errors of the heat loads. By including a safety margin
AQopust and by using the heat load prediction method presented
in Fuhrmann et al. (2020) the likelihood of infeasibilities is de-
creased.

To avoid mathematical infeasibilities in the optimizer the
SOC,,,;, constraints are implemented as soft constraints. Thereby
the MPC minimizes unpreventable violations of SOCy;,-

4. Case study of an industrial food plant

The presented methods can be used for the optimal predictive
control of the energy supply for all kinds of thermal batch pro-
cesses (e.g. annealing, tempering, pasteurization). Also, every type
of heat source can be integrated into the optimization with the
according optimization model. In the case study presented in this
section, an industrial food plant is considered. The plant manufac-
tures meat products that undergo specific temperature trajectories
to alter the flavor and structure of the meat and extend the expira-
tion date. These heat treatments are typical batch processes. There-
fore, the use case is suitable to study the performance of EMS, and
the results can be easily transferred to other batch processes. The
performance of the novel EMS is compared to the installed base-
line controller in a simulation study. Therefore, simulation models
of the industrial plant were developed and validated by industrial
measurement data.

The simulation study was executed utilizing Matlab-Simulink®
as co-simulation platform. The EMS was implemented as Matlab-
Function-block, the optimization problems were defined utiliz-
ing YALMIP, and Gurobi® was used as a solver (Lofberg, 2004;
Gurobi, 2018).

4.1. Simulation model

The structure of the plant and the installed sensors are dis-
played in Fig. 7. A list of all sensors can be found in Table 9 in
the Appendix. The plant is comprised of a constant heat source, a
heat pump (HP) as heat source, a thermal energy storage (TES) and
four batch consumers (BC). The constant heat source - a continu-
ous heat recovery system - has no effect on the energy manage-
ment and is thus neglected in the optimization problem.

The simulation model considers additional effects and nonlin-
earities compared to the optimization models and consists of mul-
tiple component models. The TES model considers nonlinear mix-
ing effects and free convection and was developed utilizing Mat-
lab®. The simulation model of the BC takes nonlinear temperature-
gradient-dependent effects into account. The heat-pump model

: Batch consumer - BC
() | Maximum heat demand: 1.367 MW

Fig. 7. Structure and sensors of the food production plant considered in the use case consisting of a constant heat source, a heat pump (HP), a thermal energy storage (TES)
and four batch consumer (BC). The sensors measure temperature (T), volume flow (F), frequency (S), or valve position (G).
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Fig. 8. The top graph displays the measured state of charge (SOC) from real measurement data and the simulated SOC calculated utilizing the simulation model. The lower

graph displays the relative error of the simulated SOC. Adapted from Gurobi (2018).

was built using Dymola, considering underlying controllers and a
model of the vapor-compression cycle. Furthermore, the hystere-
sis controller utilized in the real industrial plant was replicated for
the simulations and serves as a baseline. Simulink was chosen as a
co-simulation platform.

The simulation model of the energy system was validated
with measurement data from the industrial use case as part of
a diploma thesis (Sack, 2021). To illustrate the model accuracy,
Fig. 8 shows the measured and modelled state of charge (SOC) and
the relative model error for ten production days. The SOC of the
thermal storage is the most informative measurement for model
validation as it integrates all possible errors and displays possible
trends. The measured heat demand of the BC was used as sin-
gle input in this simulation study. The HP utilization was simu-
lated using the hysteresis controller model. It is evident that short-
term deviations occur during transient events, but the model over-
all shows sufficient accuracy to quantify the EMS performance.

4.2. Design of the case study

To achieve qualitative and quantitative valid results of the EMS
performance, a simulation duration of one month, including 102
heat treatments, was chosen. The production schedule, heat load
and weather data were taken from actual industrial measurement
data. The EMS is compared with two other controllers: First, the
original hysteresis controller, which is currently used in the in-
dustrial plant. Second, an optimized hysteresis controller with op-
timized parameters to avoid bottlenecks in the heat supply. The
weights of the cost function were determined according to the
specifications of the industrial plant operator, taking into account
the rules presented in Section 3.1.5. The goal was to maximize
cost reduction Cpeyerreg While keeping the number of short starts
Ngy short Within the admissible bound of one per day. To demon-
strate the potential effect of different weights, the simulation was
repeated with a strongly increased weight on start-up operations
Csu.factor- All optimization parameters of the controllers can be
found in Appendix A (Table 5).

The control performance assessment is done utilizing the en-
ergy costs reduction Cpyperreq and the number of heat treatments
affected by bottlenecks in the heat supply nyr ffecteq fOr every con-
trol method.

To investigate the robustness of the control method and the
performance of the online load predictor (OLP), the simulation is
repeated with different load predictions. First, in the case of per-
fect information (PI) the applied heat load QBc,sum is used as per-

10

Table 2
Performance indicators used in the simulation study.
Parameter Description
Chower.red Power cost reduction compared to the hysteresis control
Nsy_short Number of start-ups shorter than tgy gesired
NSy short Number of shut-downs shorter than tsp gesired
AUhp.mean Average change of plant input Uyp

fect load prediction. In the further experiments, the prediction
model presented in Section 3.2 is utilized for load prediction. To
further investigate the robustness against prediction errors of the
starting time of the heat treatments, ¢y yr,, was altered using ran-
dom time shifts:

tO.m = tO,m +t- ceil(ANShift,max : U(—l, l)) (30)

where U(—1,1) is a uniform distribution in the interval [-1, 1]
and ANgpife max 1S the maximal deviation of the starting time. As
a maximum time deviation of 30 min is usual in the considered
industrial use case, ANgpift max Was altered between 0 and 30 in
the simulations.

In Appendix A, the optimization parameters used in the simula-
tion study are listed. Table 2 gives descriptions of the performance
indicators used to quantify the performance of the controller in the
simulation study.

4.3. Results of the case study

The simulation study allows a qualitative and quantitative as-
sessment of the performance of the proposed EMS for batch fac-
tories. The results are shown in Table 3. The hysteresis controller
with safe settings avoids potentially unacceptable affected heat
treatments in trade-off to 0.3% higher energy cost. The suggested
two-layer EMS can successfully prevent bottlenecks in the heat
supply, while simultaneously reducing power costs by 9% com-

Table 3
Comparison of different control strategies.
CPower,red NHT affected Nsy Nsy short
Hysteresis Control
Installed - 7 73 0
Safe settings -0.3% 0 74
EMS 9.0% 0 85 17
EMS (Csy factor - 100) 3.52% 0 44
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Table 4
Performance of the EMS with activated and deactivated OLP for different load pre-
dictions (PI: perfect information).

OoLP Pred. Chower.red YT affected Nsy N5y short
on PI 9,0% 0 85 2

At =0 9,0% 0 85 2

At =10 9,0% 0 91 6

At =30 8,5% 0 106 24
off PI 53% 0 234 155

At =0 53% 0 234 155

At =10 4,65% 0 236 162

At =30 4,22% 0 240 165

pared to the installed hysteresis controller. The number of start-
ups of the HP nyp gy increased by only 16%. In case fewer start-
ups are desired, the weights of the cost function can easily be
adapted accordingly. This was demonstrated with a strongly in-
creased weight on start-up operations Cgy factor» Where the cost re-
duction Cpoyer req decreased to 3.52% but also the number of start-
up operations was reduced by 66% compared to the hysteresis con-
troller.

Next, the performance of the online load predictor is analyzed.
The results of simulations with activated and deactivated OLP and
for different load predictions are given in Table 4. The results show
that the OLP increases the performance of the EMS significantly
in all cases. Only 0.5% of the energy consumption are lost for the
maximum deviation of starting times At = 30 min, the number of
start-ups ngy is increased by 25.7%. Deviations in the heat load
QBc,sum from the prediction are neglected by the EMS because of
the knowledge of the certain integral heat amount of a heat treat-
ment Qur. Thereby the operation of the HP remains more steady.
The number of short start-ups of the HP ngy g0 increases strongly
but remains a magnitude smaller than without OLP. These start-
ups are especially disadvantageous as a HP is inefficient during
start-up maneuvers.

Without OLP, the benefit of the EMS is decreased strongly. Even
in the case of perfect information (PI), the model errors of the op-
timization models leads to an unsteady and inefficient operation
of the HP. Furthermore, it is striking, that in both cases - with
and without the OLP - the performance of the EMS is nearly equal
for the case PI where the measurement data is used for heat load
prediction and the case At =0 where the model is used for heat
load prediction. This shows that the heat load model developed
in Fuhrmann et al. (2020) is very accurate and suitable for distur-
bance prediction.

5. Conclusions

In this paper, a novel energy management system (EMS) for
thermal batch production processes using an online load predictor
(OLP) is proposed and characterized. The formulation of the arising
mixed-integer linear program presented in this paper enables sys-
tem integrators to implement an EMS for batch processes with lit-
tle effort spent on modelling tasks and parameter tuning. Further-
more, the EMS avoids bottlenecks in the energy supply and thereby
tackles the two major obstacles of EMS in industry - implementa-
tion cost and reduction of production reliability. By implementing
the EMS, existing control structures for energy supply systems can
be retrofitted to meet modern requirements like demand side con-
trol. The straightforward implementation is especially striking for
small factories without access to control experts. The method uti-
lizes the expert knowledge of the plant operators to increase per-
formance and acceptance and focuses on the balance between ef-
fort and performance.

1
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The presented case study based on validated simulation mod-
els of the plant clearly shows the benefits of the novel EMS. The
results can be easily transferred to other thermal batch processes
(e.g. annealing, tempering, pasteurization), since the typical char-
acteristics of batch processes are strongly pronounced in the con-
sidered plant.

Still there are drawbacks to the presented EMS. The implemen-
tation costs are higher compared to heuristic solutions. On the
other hand the EMS has decisive advantages. First, for complex
energy supply systems, heuristics are not straightforward to im-
plement, while the modular structure of the EMS enables a fast
and convenient extension or adaption to arbitrary energy supply
systems. Furthermore, the formulation allows the consideration of
multiple predictions like electricity price, weather and production
schedule as well as multiple objectives.

Further research is currently carried out with the presented
EMS. The EMS is applied to larger and more complex energy sup-
ply systems, including steam systems and cooling circuits. To fur-
ther facilitate the implementation of the EMS, rules for the weight-
ing of the cost function and setting of optimization parameters are
elaborated. Also the robustness of the optimization against failures
of sensors of components is currently being increased to allow an
implementation of the EMS at the industrial plant.
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Appendix A. Parameters of the EMS

Parameters of the EMS.

Table 5
Weights and optimization parameters (opt.par.) of the
and lower-level control (LLC).

higher-level control (HLC)

Weights Description HLC LLC
Cpower,factor Power cost weight 1 0

CdU factor AU cost weight 0,62 0

Csu factor Start-up cost weight 20,7 0

CsD factor Shutdown cost weight 20,7 0

Ctraj factor Trajectory cost weight 0 69
Cslack Slack cost weight 69000 69000
Opt. Par. Description HLC LLC
Np Prediction horizon 96 60

ts sampling time in min 15 1
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Table 6
Parameters of the heat pump model.
Parameter Value Description
QHpvsink'min 0.2 Minimum part load heat flow at heat sink in
MW
Q'Hpvsinkvmax 0.5 Maximum heat flow at heat sink in MW
RUyp 10 Maximum ramp-up rate in %
RDyp 10 Maximum ramp down rate in %
NHpsu 15 Minimum uptime in steps
NHpSD 15 Minimum downtime in steps
TIHP,max 15 Maximum length of logic constraints to
facilitate notation of constraints
QHp)sinkASU“m 0.2 Maximum heat generation after
start-up/before shutdown in MW
QHpvsinkVSD“m 0.5 Maximum heat generation before shutdown
in MW
Thpsink out 393.15 Outlet temperature at sink in K
Tupsink.in 433.15 Inlet temperature at sink in K
Thp source,out 353.15 Outlet temperature at source in K
Tupsource.in 363.15 inlet temperature at source in K
ATyp sink full 10 Temperature difference between HP working
fluid and sink fluid at full load in K
ATyp sink part 5 Temperature difference between HP working
fluid and sink fluid at full load in K
ATip source.full 10 Temperature difference between HP working
fluid and source fluid at full load in K
AThp source,part 5 Temperature difference between HP working
fluid and source fluid at part load in K
THP,part 0.7 Compressor efficiency at part load
P full 0.8 Compressor efficiency at full load
PHP.sink 3.1e5 Operating pressure at heat sink in Pascal
DHP.source 1-1e5 Operating pressure at heat sink in Pascal
Table 7
Parameters of the storage model.
Parameter Value Description
T1Es,max 373.15 Maximum temperature in K
T1Es,min 273.15 Minimum temperature in K
N1ES.C 1 Charging efficiency
")TES.D 1 Discharging efficiency
ETES,S0C 5 Loss proportional to SOC per hour in h!
ETES fix 15 Fix loss per hour in MWh/h
SOCmax 100 Maximum state of charge in %
[ 4196 - 1e°® Specific heat capacity in MJ/kgK
V1Es 12.7 Volume in m?
PTES 971.8 Density in kg/m?
Table 8
Parameters of the batch consumer model.
Parameter Value Description
Tpcout 353.15 Inlet temperature in K
Tecin 363.15 Outlet temperature in K
Dsc 3.1e5 Operating pressure in Pascal
Table 9
List of all measurement points of the use case.
Component Type Description
HP S Frequency of the compressor
HP T Source inflow temperature
HP G Source mixture valve position
HP T Source outflow temperature
HP F Mass-flow in the source
HP T Sink inflow temperature
HP G Sink mixture valve position
HP T Sink outflow temperature
HP F Mass-flow in the sink
TES T Temperature measurements in five different heights
- F Mass-flow from the TES to the BC
- T T of the water from the TES to the BC
- T T of the water from the BC to the TES
BC T Temperatures of the four BC
BC Q Heat flows transferred to the four BC
BC G Valve positions of the four BC
BC T Temperatures of the inflow to the BC.
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