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ABSTRACT Microgrids and multi-microgrids are commonly installed to fulfill rising flexibility needs
and to boost the system resilience by advanced fault mitigation capabilities. On top of a complex control
architecture, proactive resilient scheduling optimizes the operation of such grids in advance. Although
several scheduling algorithms include measures to limit the effects of faults, the impact of proactive
scheduling on the system resilience is not widely assessed. This work presents an advanced simulation-
based assessment method that includes an extended power flow formulation to consider low-level control
and device capabilities even in islanded mode. A case study assesses resilience gains and costs of proactive
scheduling based on multiple algorithms and an extensive set of operating conditions. It turned out that even
on a suitable test grid that is specifically designed to challenge scheduling algorithms, a large share of the
faults can already be handled by low-level controls without the need of considering them in scheduling.
However, the remaining share of unhandled faults can be well influenced by advanced proactive scheduling
algorithms and an appropriate resilience constraint formulation. Given the evaluation results, it can be
supported that in less critical applications, scheduling focuses on economic aspects only without considering
fault mitigation. Nevertheless, a detailed assessment is needed to justify the algorithmic choice and to
improve the quality of resilient algorithms. The presented method adds a tool that can efficiently assess
the value of proactive scheduling based on extensive simulations.

INDEX TERMS Energy management, power flow, microgrids, microgrid scheduling, power system
resilience, proactive resilient scheduling.

NOMENCLATURE
SETS AND DEDICATED INDICES

DG, a Set and index of controllable generators.
ST, b Set and index of storage units.
PV, c Set and index of Photovoltaic (PV) plants.
WT, w Set and index of Wind Turbines (WTs).
LD, l Set and index of volatile loads.
SC,s Set and index of scenarios.
T, t Set and Index of time instants.
LI, BS Set of all lines and buses.

REAL-TIME VARIABLES

Ui,t , ϕi,t Voltage magnitude and angle at bus i at
time t .

The associate editor coordinating the review of this manuscript and

approving it for publication was Jethro Browell .

Pvi,t , Q
v
i,t Total active/reactive power of asset i at

time t , having type v ∈ {DG,ST,
PV,WT,LD,EX,EM}.

PBSi,t , Q
BS
i,t Net active/reactive power injected

at bus i at t .
ODG
a,t Operational status of generator a at time t .

OLI
l,t Operational status of line l at time t .

EST
b,t Energy stored in b at time t .

Ii,t Current magnitude in line i at time t .
Si,t Total apparent power of asset i at time t .
CTOT
t Total operating costs at time t .

fi,t Frequency in island i at time t .

k f,STb,t Dynamic frequency droop of storage b at t .

PR,vi,t Reserve power request of asset i typed v at t .
ENS Unsupplied energy.
v• Primary control setpoint of variable v.
v◦ Secondary control setpoint of variable v.
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SCHEDULING VARIABLES

pva,t Active power of asset a at time t , having type
v ∈ {DG,ST,PV,WT,LD}.

oDGa,t Operational status of generators a at time t .

pCHGb,t Active charging power of storage b at time t .

pDCHb,t Active discharging power of storage b at
time t .

eSTb,t Energy in b stored after time step t .

oCHGb,t Charging indicator of storage b at time t .

pBUYt Bought active power at time t .

pSELLt Sold active power at time t .

oSELLt Selling mode of the upstream grid at time t .

cTOT Overall operating costs.

pE,DCHb,t Emergence power, storage b can provide at t .

pE,CHGb,t Emergence power, storage b can absorb at t .

pNetLDt Volatile net load at time t .

ui,t Predicted voltage at bus i and time t .

ιi,t Current magnitude in line i at time t .

vs Assignment of variable v in scenario s.

PARAMETERS AND EXTERNAL INPUTS

v̄, v Upper and lower limits of variable v.
v∗ Nominal value of variable v.
v�t Volatile maximum of variable v at time t .
v̄∗, v∗ Nominal range (min, max) of variable v.
|Y |i,j, θi,j Admittance matrix entry (magnitude and

angle) between bus i and j.
T St Duration of a single time step.
T Sta Maximum generator startup time.
T Sto Maximum generator stopping time.
νw,t , Vw,t Wind speed forecast and measurement at

WT w and time t .
gc,t , Gc,t Irradiance forecast and measurement in

plane of the PV array c at time t .
τPVc,t , T PV

c,t Temperature forecast and measurement of
PV array c at t .

kPVc Temperature coefficient of PV array c.
k f,va , ku,va Frequency and voltage droop of asset a, type

v.

k f,EMIB , k f,EMOB Emergency frequency droop constants.
ks,REa Reserve coefficient for asset a in scenario s.
cBUYt , cSELLt Cost of buying and benefits from selling

electricity from the upstream grid at time t .
cDGa Operating cost of generation unit a.
0vi Bus, asset i of type v is connected to.
0IL
i Island, asset i is connected to.

FUNCTIONS

µCHG
b (P) Charging efficiency curve of storage b.

µDCH
b (P) Discharging efficiency curve of storage b.

ρWT
w (ν) Turbine curve of WT w.

S(·) Scheduling function under test.

P̄Eb (E,T ) Maximum power of storage b at (E,T ).

PEb (E,T ) Minimum power of storage b at (E,T ).

E(e) Observed share of event e.

I. INTRODUCTION
Most power systems are faced with fundamental transitions
that will drastically alter the way electricity grids are planned
and operated. Microgrids and multi-microgrids provide one
solution to facilitate an increasing number of volatile Renew-
able Energy Sources (RES), to rigorously exploit the eco-
nomic potential of Distributed Energy Resources (DERs),
and simultaneously to strengthen the system resilience [1].
In favor of other competing definitions, this work defines
microgrids as tightly integrated electrical networks that
can be both operated as islanded and grid-connected
systems [2], [3]. Multi-microgrids extend the concept of
individual microgrids by jointly operating them within a
distribution system. Despite the high potential in integrating
renewables, several microgrid designs still heavily rely on
the presence of fossil-fueled generation [4]. Due to policies
towards a net-zero CO2 economy, the integration of large
shares of RES in microgrids and further reduction of CO2
emission became a priority in research [5]. In literature, a
multitude of control approaches are presented to preserve
or even increase system resilience while incorporating sig-
nificant amounts of stochastic generation. Several proactive
scheduling approaches, for instance, are presented which bal-
ance increasing reserve needs and strengthen the microgrid
operation before faults are encountered [3], [6].

Although most of the proactive algorithms follow an
optimization-based framework, a broad diversity of problem
formulations and solution methods are found. Common dif-
ferences between algorithms include the level of detail, i.e.
the number and abstraction of phenomena that are considered
at scheduling time. For instance, [7] focused on provisional
microgrids that depend on the grid-forming capabilities of
adjacent microgrids, but did not include physical power flow
restrictions beyond static bounds. On the contrary, [8] con-
sidered detailed voltage and current constraints based on
the highly nonlinear AC power flow equations. Commonly,
scheduling algorithms are deployed on top of a complex
control architecture that manages short-term disturbances,
coordinates transitions from and to the islanded mode, and
ensures a stable operation of the system [9]. It was shown
that scheduling and control decisions can have a significant
impact on the stable and safe operation of microgrids [10].
Therefore, several algorithms included physical constraints
in their scheduling decisions [11]. However, only very few
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of them considered the low-level control such as primary fre-
quency regulation or fault reconfiguration algorithms. One of
these approaches is introduced by [12] that includes primary
frequency control constraints to ensure successful island-
ing, but did not consider reactive power and voltage control
requirements. More recently, [3] proposed a hybrid schedul-
ing mechanism that considers both frequency and voltage
control requirements in day-ahead scheduling. Yet, storage
units are excluded from primary control and saturation effects
due to power limits are not covered in detail.

To evaluate such algorithms, several testbeds are imple-
mented that enable the assessment of critical aspects such as
islanding, synchronization, and stability [9], [13]. A broad
range of assessment methods including purely simulation-
based approaches, hardware-in-the-loop solutions, and field
trials can be found. For instance, [14] implements a purely
simulation-based testbed to study transient phenomena in
exclusively inverter-based microgrids, but does not focus
on long-term operation and scheduling. A laboratory-scale
testbed that specifically focuses on scheduling is described
in [15]. The authors compare the performance of an energy
management heuristic to an optimal scheduling formulation
and provide first insights into the economic benefits of the
optimization-based approach. Yet, only 15 operating scenar-
ios originating fromfive independentmeasurement dayswere
used in the economic assessment. Due to the focus on a small,
single-bus microgrid, grid reconfiguration actions and the
impact of scheduling on physical grid constraints are beyond
the scope of [15].

In general, very few approaches specifically target the
evaluation of scheduling algorithms in long-term operation.
Commonly, the approaches are evaluated on a very limited
set of environmental conditions without taking the impact of
failure scenarios, detailed forecasting models, and low-level
controls on the physical grid operation into account [11], [15].
Due to the limited evaluation, little quantitative evidence on
the long-term benefits of proactive and resilient scheduling
is collected. Specifically, in the presence of low-level con-
trols such as primary frequency control and heuristic grid
reconfiguration schemes, it is not well understood as to how
much intelligence regarding modeling details and solution
methodologies is needed on scheduling level to resiliently
operate microgrid and multi-microgrid systems. Still, pre-
vious studies give a first indication on possible resilience
improvements but also increased operation costs and consid-
erable computational burden [3], [4], [11], [16].

Dynamic, transient simulations are well suited to assess the
performance of low-level controls in detail [9], [14], but high
modeling efforts and the considerable computational costs
hinder their application in long-term assessment. Steady-
state power flow computations are a common method to
reduce the computational burden, but classical formulations
are not well suited for islanded microgrids [17], [18]. Several
methods that allow modeling of distributed frequency and
voltage control without dedicated slack nodes are already
developed. For instance, [17] presents a balanced power flow

formulation. Similarly, [18] introduces droop-based voltage
and frequency control for both balanced and unbalanced
grids. To improve convergence of the unbalanced net-
work equations, an extended Newton Raphson algorithm is
developed. Despite considerable effort, device constraints,
RES curtailment, dynamic droop coefficients, and out-
age conditions are rarely considered in islanded power
flows. However, detailed assessment methods covering these
aspects are needed to guide future implementation and
research efforts in proactive multi-microgrid scheduling.

A. CONTRIBUTIONS TO POWER SYSTEM RESILIENCE
This work investigates the operation performance of various
scheduling algorithms on a comprehensive simulation-based
testbed and specifically addresses the proactive consideration
of network failures, low-level controls and physical con-
straints. To the best of our knowledge, for the first time,
the impact of day-ahead scheduling formulations on system
resilience is quantified based on a large-scale assessment that
handles a broad range of operating conditions. A dedicated
focus is put on phenomena such as voltage constraints and
low-level controls that can, but may not be considered at
scheduling time. Due to the large-scale evaluation covering
hundred-thousands of scenarios, detailed quantitative insights
into the impacts of proactive scheduling are provided. Such
impacts include the system performance in case of asset
failures and the costs in normal operation. All performance
metrics are based on an independent set of simulation runs
and do not rely on indicators that are directly returned by the
scheduling algorithms.

To efficiently cover a broad range of operating condi-
tions traditional power flow computations are significantly
extended to consider dynamic droop controls, RES curtail-
ment, detailed device capabilities, and outage conditions in
an islanded grid. In contrast to dynamic simulations, the
presented steady-state formulations do not require modeling
of dynamic aspects such as time constants and were success-
fully applied in long-term assessments. Additional real-time
controls that are hardly considered in the related scheduling
literature include heuristic secondary control and fault rerout-
ing. Hence, this work provides a first indication whether such
facilities can reduce the need for resilience considerations at
scheduling time and the resulting computational burden.

In contrast to the state-of-the-art that commonly consid-
ers only simple statistical models to characterize forecast-
ing deviations, separate measurement and forecasting data
sources are used. Required scheduling inputs are based on
numerical weather prediction, while independent measure-
ment data are taken to assess the real-time performance.
Due to the clean separation, systematic and correlated fore-
casting deviations can be considered and common simplifi-
cations such as temporally independent errors are avoided.
A rich set of failure scenarios that far exceeds the conditions
reflected in the scheduling algorithms is induced. Such fail-
ures include single line outages that can be tackled by real-
time control but may result in unexpected topologies and
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FIGURE 1. Overview on the problem decomposition and the simulation-based microgrid testbed.

multiasset outages that split the grid into independent sub-
grids. Hence, the assessment specifically includes conditions
that are originally not foreseen by the scheduling algorithms.

B. ORGANIZATION
The remaining part of the work is organized as follows:
Section II gives a detailed, formal description of the micro-
grid operation problem including physical asset models and
considered control impacts. In section III, the simulation-
based assessment methods are thoughtfully described and in
section IV, the method is applied in a case study to evaluate
the value of proactive scheduling. Section V discusses the
study results and section VI concludes this work.

II. MICROGRID OPERATION PROBLEM FORMULATION
Microgrids are typically composed of an interlinked control
architecture that keeps parameters such as the system fre-
quency and bus voltages stable, mitigates faults, and ensures
economic operation. A brief overview on the control architec-
ture as well as the testbed that assesses the control approaches
of this work is provides in Fig. 1. Within the control architec-
ture, scheduling algorithms commonly optimize the micro-
grid operation with respect to the current state and predicted
conditions in advance [11]. At the end of the scheduling
horizon or as soon as updates are available, computations are
repeated and new setpoints are applied. To ensure amaximum
compatibility with existing approaches and to account for
daily updated forecasting data [19], this work assumes that
scheduling decisions are computed once and are not updated
afterwards.

Due to the high computational complexity of the schedul-
ing problem [3], low-level controls that quickly balance out
disturbances are needed. This study assumes that the system
frequency is controlled by P-of-f droop (i.e., P(f )) and that
nodal voltages are influenced by Q-of-U droop (i.e., Q(U ))
of participating generators. It is also assumed that storages
are elected as grid forming devices in the islanded mode
and that a transition into that mode is feasible. Since these
grid forming devices require reserve capacity to balance out
short-term fluctuations [15], a dynamic droop scheme is used
that alters the active power share each storage is providing,
according to the current State of Charge (SoC). On top of the

droop-based primary control, a heuristic secondary control is
established that modifies the high-level scheduling decisions
in case insufficient reserve capacity is detected. Additionally,
a reconfiguration algorithm modifies tie-line switch states to
mitigate the impact of tripping power lines and to reduce the
amount of unsupplied load. Since in a practical implementa-
tion, all low-level controls need to be operated in real-time,
only polynomial-time heuristics are applied.

It is assumed that all low-level controls stably operate the
microgrid. Hence, the assessment focuses on the steady-state
impact. Transient studies that are needed to ensure a stable
operation, islanding, and reconnection of the microgrid are
well beyond the scope of this work. In contrast to scheduling
that operates on forecasts only, it is also assumed that all low-
level controls have access to real-time measurements and the
previously calculated setpoints. In addition, it is assumed that
topological information including fault locations is available
in real-time. As illustrated in Fig. 1, the performance of the
microgrid is assessed by a series of power flow calculations
that incorporate the steady-state impact of low-level control
approaches and detailed device constraints. After each power
flow calculation, the storage states and secondary control
actions are updated and the subsequent calculation is started.

Although related work introduces, several specific asset
types such as controllable loads, Electric Vehicles (EVs)
and micro turbines [7], [20], [21], this study focuses on
the most common assets [11] to simplify the interpretation
of results. Two generic, schedulable asset types, Distributed
Generators (DGs) that can be freely controlled within their
limits and storage units that depend on the current SoC are
modeled. Additionally, two volatile RES (PV and WTs) as
well as uncontrollable loads are included. All asset types are
reflected in the scheduling formulations and in the indepen-
dent evaluation. However, the level of detail between input
data sources and considered failure modes differ significantly
in the scheduling and evaluation formulation.

A. VOLATILE RENEWABLES AND LOADS
Volatile RES and loads are modeled by two different sets of
input variables. One, p̄�,vi,t , v ∈ {PV,WT,LD} describes the
PV, WT, and load forecasts that are available at scheduling
time. On the contrary, P̄�,vi,t describes the measurements that
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are available in real-time only. It is assumed that load fore-
casts and measurements are directly available, e.g. in terms
of standard load profiles and smart meter measurements,
whereas the amount of PV and wind power is computed
based on meteorological forecasts and observations. Due to
the broad availability of meteorological measurements, this
study calculates both forecast and measurement based on
asset models. Nevertheless, the real-time RES models can be
substituted by direct power measurements, in case sufficient
on-site data is available.

The available output power of WT w, is calculated by
the turbine curve ρWT

w that translates the wind speed into
the turbines output power. Given the wind speed forecasts
and measurements at time t , νw,t and Vw,t , respectively, the

available power is given by p�,WT
w,t = ρ

WT
w (νw,t ) andP

�,WT
w,t =

ρWT
w (Vw,t ). Following related work [21], the PV output of

plant c is modeled proportionally to the in-plane irradiance
forecast gc,t and measurement Gc,t . Furthermore, outputs are
corrected by an optional temperature coefficient kPVc utilizing
the deviation of the array temperatures τPVc,t and T PV

c,t , respec-

tively from the nominal temperature T ∗,PVc . Equations (1)
and (2) show the PV generation model.

p�,PVc,t = P∗,PVc ·
gc,t
G∗
·

(
1+ kPVc ·

(
τPVc,t − T ∗,PVc

))
(1)

P�,PVc,t = P∗,PVc ·
Gc,t
G∗
·

(
1+ kPVc ·

(
T PV
c,t − T ∗,PVc

))
(2)

B. SCHEDULING MODEL
Based on the forecasts p�,WT

w,t , p�,PVc,t , and p�,LDl,t as well as
the initial storage conditions eSTb,−1, the scheduling algorithm
S(·) calculates the control setpoints pDGa,t , o

DG
a,t , and pSTb,t .

To model the level of details that are considered by an algo-
rithm S(·) and to assess the impact on themicrogrid operation,
different formulations based on prior work [3] are considered.
A detailed formulation of the algorithms can be found in the
original publication that assesses the computational perfor-
mance but does not focus on operational aspects.

1) ECONOMIC SCHEDULING SEC(·)
The least level of detail is modeled by a purely economic
Mixed Integer Linear Programming (MILP) formulation of
the scheduling problem that neither includes grid constraints
nor considers reserves that are needed for a successful island-
ing transition. Storage units b ∈ BS modeled in (3) to (7) are
constrained by their charging mode oCHGb,t ∈ B, the stored
energy eSTb,t and its bounds, as well as the device limits p̄CHGb

and p̄DCHb . Storage losses are included in a constant round-
trip efficiency µST

b .

0 ≤ pCHGb,t ≤ p̄
CHG
b · oCHGb,t (3)

0 ≤ pDCHb,t ≤ p̄
DCH
b ·

(
1− oCHGb,t

)
(4)

eSTb ≤ eSTb,t ≤ ē
ST
b (5)

eSTb,t = eSTb,t−1 +
(
pCHGb,t · µ

ST
b − p

DCH
b,t

)
· T St (6)

pSTb,t = pDCHb,t − p
CHG
b,t (7)

DG units a ∈ DG are constrained by theminimal andmaximal
active power, pDG

a
and pDG

a
as given in (8).

pDG
a
· oDGa,t ≤ p

DG
a,t ≤ p̄

DG
a · oDGa,t (8)

Loads and RES are included by their expected power demand
and output without considering any emergency measures.
Main grid transfers are considered by directional variables
pBUY, and pSELLt as well as a directional indicator oSELLt ∈ B
as shown in (9) and (10).

0 ≤ pBUYt ≤ p̄BUY ·
(
1− oSELLt

)
(9)

0 ≤ pSELLt ≤ p̄SELL · oSELLt (10)

For each time step, a simple active power balance (11)
reduces the topology to one single bus without including
topological information of physical effects such as losses.∑

a∈DG

pDGa,t +
∑
b∈ST

pSTb,t +
(
pBUYt − pSELLt

)
+

∑
c∈PV

p�PVc,t +
∑
w∈WT

p�WT
w,t −

∑
l∈LD

p�LDl,t = 0 (11)

The overall objective is to minimize the operating costs cTOT

determined by the power setpoints and theDG operating costs
cDGa as well as main grid transfer costs cBUYt and benefits
cSELLt within the scheduling horizon.

cTOT =
∑
t∈T

(
cBUYt · pBUYt − cSELLt · pSELLt

+

∑
a∈DG

cDGa · p
DG
a,t

)
· T St (12)

All computations are based on deterministic forecasts without
considering stochastic fluctuations and associated risks.

2) RESERVE-AWARE SCHEDULING SRE(·)
In addition to economic scheduling, SRE(·) includes further
constraints which ensure that enough storage capacity and
spinning reserve is available to sustain a main grid outage
until further DG can be started. The reserve constraints in [3]
are slightly extended by a scenario-based formulation that
introduces safety coefficients and accounts for secondary-
control delays. For each time step t ∈ T and storage b ∈ ST,
the emergency power pE,DCHb,t that can be provided until addi-
tional generation is started and the power that can be maxi-
mally absorbed pE,CHGb,t until excess generation is stopped is
modeled. Both variables are constrained by the storage state
and its power ratings as shown in (13) to (16).

0 ≤ pE,DCHb,t ≤
eSTb,t−1 − e

ST
b

T Sta (13)

pE,DCHb,t ≤ p̄DCHb (14)

0 ≤ pE,CHGb,t ≤
ēSTb − e

ST
b,t−1

T StoµST
b

(15)

pE,CHGb,t ≤ p̄CHGb (16)
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Given the reserve coefficients kv,REa of asset a and scenario v,

the net load including RES pv,NetLDt is first defined by (17).

pv,NetLDt =

∑
l∈LD

kv,REl · p�,LDl,t −
∑
c∈PV

kv,REc · p�,PVc,t

−

∑
w∈WT

kv,REw · p�,WT
w,t (17)

The reserve requirements are then modeled as (18) and (19).∑
a∈DG

p̄DGa,t · o
DG
a,t +

∑
b∈ST

pE,DCHb,t ≥ pv,NetLDt (18)∑
a∈DG

pDG
a,t
· oDGa,t −

∑
b∈ST

pE,CHGb,t ≤ pv,NetLDt (19)

3) PHYSICS CONSTRAINED SCHEDULING SPH(·)
In addition to the economic and reserve-constrained formula-
tion, the physics-constrained algorithm asserts that the power
flow must converge for the given setpoints and that voltage,
frequency, and loading limits are met. In contrast to [3]
that uses a commercial power system simulator to execute
the embedded power flow calculations, this work includes
the extended formulation as given in Sections II-C to II-G.
Nevertheless, all volatile inputs ps,PVc,t , ps,WT

w,t , ps,LDl,t are based
on a static set of worst-case scenarios s that is generated from
the available forecasts only. For each scenario, the AC power
flow is solved. The resulting bus voltage levels usi,t , i ∈ BS

and line current magnitudes ιsi,t , i ∈ LI are constrained as
u ≤ usi,t ≤ ū and ιsi,t ≤ ῑi, respectively. In addition, the
frequency f si,t on each island i and scenario s needs to be
within its permissible limits f ≤ f si,t ≤ f̄ .

C. SECONDARY CONTROL
To assess the impact of day-ahead scheduling decisions
on the emergency operation, the steady-state impact of the
most essential low-level controls is modeled. Primary con-
trol alters the active power generation setpoints to balance
out short-term fluctuations. Secondary control provides a
reserve heuristic that schedules new generation or shuts down
running DGs in case existing generation units are operated
close to their limits. For each DG a, the requested reserve
is defined by the power that exceeds the nominal operating
range P∗,DGa to P̄∗,DGa . The upwards reserve PR,UPa,t calculates
as PR,UPa,t = PDGa,t − P̄∗,DGa and the downwards reserve as
PR,DOa,t = P∗,DGa − PDGa,t . For storage units b, additionally,
the maximum power that can be supplied or absorbed until
secondary control actions take effect, is considered.

To estimate the maximum power that can be provided or
absorbed for a period of T , (20) and (21) define the power
limit heuristics, P̄Eb (E,T ) and P

E
b(E,T ), at a storage state E

and the efficiency curves µCHG
b (P) and µDCH

b (P).

P̄Eb (E,T ) =

(
E − EST

b

)
·minP

(
µDCH
b (P)

)
T

(20)

PEb(E,T ) =

(
E − ĒST

b

)
T ·maxP

(
µCHG
b (P)

) (21)

Algorithm 1 Secondary Control Heuristic Matching the
Reserve Requests of a Single Island

1: function Sec(Status OIN
i , nominal P∗i and reserve PR)

2: OOUT
← OIN

3: repeat
4: M← {i,¬OOUT

i ∧ P∗i ≤ P
R
}

5: ifM 6= ∅ then
6: n← argmaxi∈M(P∗i )
7: OOUT

n ← 1
8: PR← PR − P∗n
9: end if
10: untilM = ∅
11: return OOUT

12: end function

Since the storage efficiency depends on the output power
itself, a worst-case efficiency is assumed to limit convergence
issues while solving the equations. Given the dynamic power
limits based on the storage state, the reserve requests (22)
and (23) are calculated by the nominal output power range
and the power that cannot be provided due to energy limits.

PR,UPb,t = max
(
P̄STb − P̄

E
b (E

ST
b,t ,T

Sta),PSTb,t − P̄
∗,ST
b

)
(22)

PR,DOb,t = max
(
PEb(E

ST
b,t ,T

Sto)− PSTb ,P
∗,ST
b − PSTb,t

)
(23)

To compute the secondary control actions, first, the reserve
power requests for each island i, PR,vi,t are computed by (24).

PR,vi,t =
∑

j,0IL
j =i

max(PR,vj,t , 0) v ∈ {UP,DO} (24)

The secondary control algorithm SEC implements a greedy
heuristic that changes the DG status setpoints oDGa,t to closely
meet the reserve request. In each iteration, one DG status is
altered that shifts the remaining reserve requirement closest
to zero. Algorithm 1 defines the procedure for a single island
and one reserve request direction in more detail. Since the set
of candidate machines M decreases monotonically, it can be
seen that the computations terminate within polynomial time.

In case an island i shows a power surplus, i.e. fi > f ∗, SEC
is applied to the inverted operating status ¬oDGi,t of all DG
units on that island to compute the assets that need to be shut
down. Equation (25) models the secondary control outputs of
the operating status O◦,DGi,t .

O◦,DGi,t =


SEC

(
oDGi,t ,P

∗,DG
i ,PR,UP

i,t−T Sta

)
fi,t < f ∗

¬SEC
(
¬oDGi,t ,P

∗,DG
i ,PR,DO

i,t−T Sto

)
fi,t > f ∗

oDGi,t fi,t = f ∗

(25)

In case a DG unit a is newly scheduled, (26) will apply the
nominal output value as power set point P◦,DGa,t .

P◦,DGa,t =

{
P∗,DGa if O◦,DGa,t ∧ ¬o

DG
a,t

pDGa,t · O
◦,DG
a,t otherwise

(26)
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D. PRIMARY CONTROL
In islanded operation, short-term fluctuations are com-
monly balanced by droop-based real-time control [17], [18].
As illustrated in Fig. 1, the steady-state impacts of primary
control are considered in the extended load flow. Each oper-
ational DG a adjusts its active power setpoint P•,DGa,t accord-
ing to the locally measured frequency fi,t . Since the model
focuses on the steady state, for each electrically connected
island in the microgrid, a single frequency variable is intro-
duced. Given the topology function0IL

j that returns the island
of asset j as well as the droop coefficient k f,DGa the primary
frequency control is modeled as (27).

P•,DGa,t = P◦,DGa,t − k
f,DG
a · (f0IL

a ,t
− f ∗) (27)

In addition to DG, also storage units b directly contribute to
primary frequency control. However, the units implement a
dynamic scheme that gradually reduces the droop k f,STb,t in
case the nominal SoC limits E∗,STb and Ē∗,STb are exceeded.
To quickly enter the nominal operating range again, the
reduction further depends on the sign of the frequency devi-
ation as given in (28) and (29).

k f,STb,t =


k∗,f,STb ·

EST
b,t−1 − E

ST
b

E∗,STb − EST
b

if f
0ILb ,t
≤f ∗∧

EST
b,t−1≤E

∗,ST
b k∗,f,STb ·

ĒST
b − E

ST
b,t−1

ĒST
b − Ē

∗,ST
b

if f
0ILb ,t
≥f ∗∧

EST
b,t−1≥Ē

∗,ST
b k∗,f,STb otherwise

(28)

P•,STb,t = P◦,STb,t − k
f,ST
b,t · (f0IL

b ,t
− f ∗) (29)

In contrast to DG and storage units, it is assumed that
volatile RES do not participate in regular frequency con-
trol. However, a limited frequency sensitive mode for over-
frequency events following [22] is implemented to reduce the
infeed in case of severe over-frequency events. Considering
the nominal operating boundary f̄ ∗, the output power of asset i
type v ∈ {PV,WT} is calculated as (30).

P•,vi,t =

{
P�,vi,t

(
1− k f,vi (f0IL

i ,t
− f̄ ∗)

)
f0IL

i ,t
> f̄ ∗

P�,vi,t otherwise
(30)

For each asset j having type v, the topology function 0vj
specifies the bus j is connected to. The reactive power setpoint
Q•,vi,t of all generation units i typed v ∈ {DG,ST,PV,WT}
is controlled by a static Q-of-u droop ku,vi and the locally
measured voltage magnitudes U0vi ,t as modeled by (31).

Q•,vi,t = ku,vi ·

(
U∗0vi
− U0vi ,t

)
(31)

E. DEVICE CONSTRAINTS
For each generation unit i of type v a set of active and apparent
power limits is introduced to model saturation effects in
the power flow computations. In general, the active power
setpoints from the primary control,P•,vi,t are directly limited by
the minimal and maximal supported active power Pvi and P̄

v
i ,

respectively. The active power takes precedence over reactive
power outputs that are curtailed to limit the total apparent
power S̄vi , given |P

v
i|, |P̄

v
i | ≤ S̄vi . The active power output

of volatile RES is specifically defined by (32) that considers
optional inverter constraints by an additional limit P̄vi .

Pvi,t = min
(
P̄vi ,max(0,P•,vi,t )

)
, v ∈ {PV,WT} (32)

The DG model (33) additionally considers the operating
status O◦,DGi,t returned by secondary control to enforce zero
output power, in case the unit is switched off.

PDGa,t = min
(
P̄DGa O◦,DGa,t ,max(PDGa O◦,DGa,t ,P•,DGa,t )

)
(33)

The state of each storage plant b is modeled by the energyEST
b,t

that is stored at time t . Given the charging and discharging
efficiency curves µCHG

b (P) and µDCH
b (P) the storage state is

advanced by (34).

EST
b,t =

E
ST
b,t−1 −

PSTb,tT
St

µDCH
b (PSTb,t )

if PSTb,t ≥ 0

EST
b,t−1 − P

ST
b,tT

StµCHG
b (PSTb,t ) otherwise

(34)

Limited storage capacity is accounted for by the energy-
dependent power boundaries PEb(E,T ) and P̄

E
b (E,T ) as mod-

eled in (21) and (20), respectively. Hence, the active output
power is modeled as (35).

PSTb,t = min
(
P̄STb , P̄

E
b (E

ST
b,t ,T

St),

max(PSTb ,P
E
b(E

ST
b,t ,T

St),P•,STb,t )
)

(35)

Given the active output power of asset i, the reactive power
limit Q̄vi,t of all asset types v is calculated as (36) and the
reactive output power Qvi,t as (37).

Q̄vi,t =
√
(S̄vi )

2 − (Pvi,t )
2 (36)

Qvi,t = min
(
Q̄vi,t ,max(−Q̄vi,t ,Q

•,v
i,t )
)

(37)

F. PHYSICAL GRID MODEL
In case an electrically connected part of the grid i is itself con-
nected to the main grid, a Point of Common Coupling (PCC)
is modeled by two slack variables PEXi,t , Q

EX
i,t and a constant

voltageU0EX
i ,t on the connected bus. Simultaneously, the fre-

quency is fixed to fi = f ∗ in order to model inactive primary
and secondary controls. In case the electrically connected
island i is not itself connected to any external grid, fi is kept as
a free variable that models a distributed slack. To reduce non-
converging power flows due to the detailed saturation model,
for each island, an emergency model is introduced. As soon
as the system frequency exceeds the permitted range, the
virtual emergency power PEMi,t models the power that would
be needed to stabilize the system. To support the conver-
gence of the entire power flow, (38) introduces an emergency
droop k f,EMOB that determines the power in case the frequency
exceeds the permitted band and a small but positive droop
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heuristic k f,EMIB , k f,EMIB � k f,EMOB , that additionally supports
convergence.

PEMi,t =

({
k f,EMOB (f̄ − fi,t ) if fi,t > f̄
k f,EMOB (f − fi,t ) if fi,t < f

)
+k f,EMIB (f ∗ − fi,t ) (38)

The injected active and reactive net power of each bus,
PBSi,t and QBS

i,t , respectively is calculated as (39) and (40).
Note that V is defined as the set of all generation units
V = {DG,ST,PV,WT,EX,EM} including any external
grid connections and the virtual emergency power source.

PBSi,t =
∑
v∈V

∑
j,0vj =i

Pvj,t −
∑

l,0LD
l =i

PLDl,t (39)

QBS
i,t =

∑
v∈V

∑
j,0vj =i

Qvj,t −
∑

l,0LD
l =i

QLD
l,t (40)

The basis of the microgrid model is then given by the well-
known AC power flow equations. To strengthen the compa-
rability to related work [3], [11], [21], the balanced power
flow model is used. For each bus i ∈ BS, a voltage magnitude
Ui,t and angle ϕi,t is introduced. Given PBSi,t and QBS

i,t as well
as the admittance matrix entries for the buses i, j ∈ BS,
|Y |i,j 6 θi,j, the power flow equations can be given by (41)
and (42) [17], [18].

PBSi,t = Ui,t
∑
j∈BS
|Y |i,j Uj,t cos(ϕi,t − ϕj,t − θi,j) (41)

QBS
i,t = Ui,t

∑
j∈BS
|Y |i,j Uj,t sin(ϕi,t − ϕj,t − θi,j) (42)

G. EMERGENCY GRID RECONFIGURATION
A grid reconfiguration scheme models the effect of real-
time topology reconfiguration actions that isolate faults and
reconnect the remaining sections, if possible. It is assumed
that all tie-line switches can be remotely controlled well
below the simulation step size T St. Furthermore, it is assumed
that all faults can be located and isolated such that no healthy
section of the network is directly affected. At the beginning of
each scenario and after each topological change (i.e., faults or
repair actions), the reconfiguration heuristic is executed. The
main goal is to establish a maximally connected, healthy, and
radial network. Hence, islanding will be avoided, in case an
external grid connection is feasible and each island will be as
large as possible to share available power reserves. Since the
study focuses on the steady-state effects only, it is assumed
that all configurations can be stably operated and that grid
forming and black-start is adequately addressed within each
island having at least one operational DG or storage unit.
The grid reconfiguration task is mapped to a minimal

spanning forest problem that is solved in polynomial time
using Prim’s algorithm [23]. Each line l is mapped to an edge
of the graph and the edge weight cLIl,t is guided by the line
admittance after clearing the fault Yl,t . To limit the number of
switching operations and to account for lines that cannot be

isolated by remotely operated switches, the initial operating
status of line l connecting bus j and i, OLI

l,0 is considered in
the weight heuristic (43) as well.

cLIl,t =


∣∣∣∣ 1
Yl,t

∣∣∣∣ if ¬OLI
l,0

0 otherwise
(43)

III. BENCHMARKING METHODS
One of the research goals is to quantify the impact of schedul-
ing algorithms on the complex operation of a multi-microgrid
and the resulting system resilience. To study the long-term
effects, a simulation-based study that focuses on steady-
state phenomena is chosen. Fig. 1 shows the main com-
ponents of the assessment method including the dedicated
grid simulation. For all algorithms under test, a common
set of input conditions (e.g., forecasts and the corresponding
measurements) is generated and the impacts of the scheduling
decisions are independently evaluated. Due to the identical
inputs, the results can be directly compared without consid-
ering stochastic fluctuations among test runs. In contrast to
the preliminary work [24] that describes the concepts of a
microgrid testbed, this work significantly refines the models,
drastically increases the number of considered conditions,
and presents detailed results on several algorithms.

Since fault mitigation options and consequently the impact
on the system resilience largely depend on the considered
grid and included assets, the scheduling algorithm needs to
be chosen according to local requirements. For instance, a
network that is designed to accept all scheduling states needs
less consideration than a grid that is operated close to its lim-
its. The presented method targets the efficient case-specific
evaluation by a generalized assessment framework that solves
the system model given in Section II.

A. SCENARIO GENERATION
The assessment requires an extensive set of inputs including
dynamic grid prices, environmental conditions and load pro-
files. Since several inputs such as solar irradiation and wind
speed [25], [26] show a considerable temporal correlation,
first, a subset of scheduling time frames is selected from the
available days in the long-term measurement and forecast
series. According to each of the absolute time frames, the
input measurements and forecasts will be selected without the
need of reducing the long-term time series to a consecutive
period. Since the inputs are based on common time frames,
the correlations among different data sources such as seasonal
effects on energy consumption are modeled as well.

In contrast to the RES generation forecasts that are based
on numerical weather predictions targeting the particular
measurement time and location, generation forecasts are
based on generic profiles. Hence, possibly sensitive informa-
tion that is needed to model user behavior and load forecasts
can be kept at aminimum. Such information on loads includes
the type of load (e.g., households and agricultural load) and
the yearly energy consumption, only.
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The environment conditions are amended by a detailed set
of failure scenarios that are exposed to the real-time models
only. Each failure scenario temporarily alters the operating
status of selected assets such as lines and the external grid
connection and may trigger real-time actions such as grid
reconfiguration. All failure scenarios are considered as rare
events that cannot be well quantified in a limitedMonte Carlo
simulation. To specifically focus on the system resilience in
such rare events, for each set of environmental input con-
ditions, all failure scenarios as well as a reference scenario
without any fault are applied.

B. SIMULATION-BASED ASSESSMENT
For each previously defined input scenario, the RES gener-
ation is predicted and a dedicated scheduling run using the
algorithm under test is conducted. All algorithms under test
follow an optimization based approach and therefore the cost
minimization problems defined in Section II-B are solved. All
MILP formulations are directly solved by exact mathematical
programming techniques. In case a problem turns out to be
infeasible (e.g., due to its reserve requirements), a default
output that does not schedule any generation at all is returned
and the microgrid is operated by its real-time controls, only.
The highly nonlinear physical constraint formulation cannot
be solved by a MILP solver and therefore the hybrid heuristic
optimization technique defined in [3] is applied. In case no
feasible solution that satisfies all constraints is found by the
heuristicmethod, the best known schedule that may still result
in some constraint violations is used in the assessment.

Given the results of the scheduling run, the failure sce-
narios are applied and for each set of real-time conditions,
the independent evaluation of the real-time operation is con-
ducted. At the beginning of each scenario and after sta-
tus changes, the fault reconfiguration algorithm is executed
and the topological information including the admittance
matrix Y and connected assets are computed. Afterwards,
the system model including primary and secondary control is
solved in a series of power flow computations. For each time
step, a dedicated computation is triggered and the internal
states such as the secondary control setpoints as well as the
storage states are updated. The set of equations that describe
the system state as defined in Section II are numerically
solved by the hybrid root-finding algorithm of [27].

C. PERFORMANCE METRICS
The quality of all scheduling algorithms is quantified by the
impacts on real-time operation of the network and whether
the most important grid constraints can be met. As such, it is
evaluated whether the bus voltages are within the permitted
voltage range and whether overloading of assets such as
lines is observed. The occurrence of such constraint violation
events is addressed by the rate E(e) that counts the share
of events e on the total number of time instants in the set
of interest. For instance, E(U s

i,t < U i) gives the ratio of
undervoltage events to the total number of time steps at

bus i. Similar aggregations are conducted for overload events
E(I si,t > Īi) of line i as well.
Additionally, the fault mitigation rateE(mtg), i.e., the share

of time steps in the fault duration that can fully avoid any
voltage, frequency, and loading violation is defined as (44).

E(mtg) = E(∀i ∈ BS,U ≤ U s
i,t ≤ Ū ∧ f ≤ f

s
i,t ≤ f̄ ∧

∀j ∈ LI, I sj,t ≤ Īj) (44)

The mitigation rate indicates performance improvements
compared to statically operated distribution systems that
cannot automatically mitigate any fault. In contrast to the
other event rates, E(mtg) specifically focuses on the system
performance in times of induced failure conditions without
considering other outages due to improper operation and
scheduling decisions.

Although the event rates E(e) well quantify the number of
constraint violations, the impact of such events is not well
covered. One common metric to describe the impact of any
violation on the supplied loads is the (expected) energy not
served ENS,s that describes the amount of energy that cannot
be supplied due to outage conditions in scenario s [11], [28].
Since this work does not rely on probabilistic failure models,
the unsupplied energy ENS,s is always aggregated given a
certain failure mode such as main-grid outages. Following
the definition of E(mtg), outage conditions include severe
voltage and frequency band violations beyond a given thresh-
old as well as overload events that are assumed to trigger
an immediate shutdown of electrically connected subgrids.
Note that a detailed model of the protection system that
includes cascading faults exceeds the scope of this work by
far. Therefore, it is assumed that the status of all assets is
tightly monitored and that any constraint violation immedi-
ately triggers a complete loss of load on the subgrid without
considering further degraded states.

To assess the economic performance of any scheduling
algorithm, the total operating costs as encountered in the
independent grid simulation, CTOT,s of scenario s are taken.
Hence, CTOT,s incorporates forecasting deviations and does
not rely on the cost estimate committed at scheduling time.

IV. CASE STUDY
The case study aims at demonstrating the large-scale assess-
ment method and giving first detailed insights into the per-
formance of several scheduling algorithms. Three base algo-
rithms are selected that represent different levels of detail
and complexity. The first one implements simple economic
schedulingwithout considering resilience or forecasting devi-
ations, the second one includes linear sufficiency constraints
that target a successful islanding, and the most complex
algorithm adds nonlinear grid constraints. In addition, sev-
eral algorithmic variants that study the impact of worst-case
formulations and forecasting deviations are considered.

All algorithms were evaluated on a common test system
that is specifically designed to challenge the algorithm under
test and to trigger extreme cases thatmay not be found in other
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FIGURE 2. Network topology of the benchmark system extended from [3].

distribution systems. In contrast to related work, the case
study covers a rich set of operating conditions and performs
a large-scale assessment of manifold failure scenarios. In the
following, a detailed description of the test system as well as
the evaluation results of all algorithms are given.

A. BENCHMARK SYSTEM
The topology of the benchmark system is based on a com-
monly used test grid called Baran test feeder that was specif-
ically designed to challenge algorithms under test [3], [11],
[29]–[31]. Although the test system is widely used in schedul-
ing, several authors include extensions to fully support the
assessment of multi-microgrids. This work follows the exten-
sions of [3] but increases the share of volatile RES and
available storage capacity to specifically focus on highly
loaded, low-emission power systems. In addition, tie-lines
and switches that are present in the original Baran test feeder
[29] are modeled in this work as well. Fig. 2 shows the
network topology including loads, generation units, tie-lines,
and switches. It is assumed that every switch in the diagram
can be remotely operated by the reconfiguration algorithm.
The detailed parameters of all schedulable generation units
can be directly found in [3]. PV and WTs are increased
to a maximum apparent power of S̄ PV

i = 0.25 MVA and
S̄WT
i = 1.0 MVA, respectively. Both storage units were
extended to P̄ST

b = 1.5 MWwith a usable capacity of Ē ST
b =

1.5 MWh and E ST
b = 0 MWh, each. To avoid frequent

deep discharge and provide additional operation reserves, the
upper and lower capacity limits for scheduling are set to
95% and 5% of the total capacity, respectively. In addition
to a constant storage efficiency for scheduling as described
in [3], a detailed efficiency curve according to [32] and [33]
is included in the physical grid model.

FIGURE 3. Distribution of the total real-time RES generation in the input
scenarios.

Following [3] and [34], Q-of-U control scales (i.e., Q(U ))
the maximal reactive power between 0.92 p.u. and 1.08 p.u.
for all active generation units. Likewise, the P-of-f droop (i.e.,
P(f )) is chosen s.t. the whole operating range of all active DG
and storage units is covered within a ±200 mHz deviation
range. A nominal storage range Ē∗,STb to E∗,STb of 0.8 p.u.
to 0.2 p.u is configured for all storage units. The permis-
sible voltage and frequency limits that trigger loss of load
and generation are set to 0.9 p.u., 1.1 p.u. and ±400 mHz,
respectively.

The reforecasting dataset [19] that covers several decades
of state-of-the-art forecasting outputs with historic data rep-
resents the scheduling-time predictions. The forecasts are
spatially and temporally aligned with the measurements
from [35]–[39] which are taken to model the full dynamics
of meteorological phenomena in high temporal resolution.
WT curves are taken from [40] and the nominal inplane
irradiance G∗ is set to 1 kW

m2 . Fig. 3 illustrates the statistical
distribution of the accumulated volatile generation calculated
from the measurement series. For each daytime, the boxplot
shows the total generation quartiles excluding outliers as cal-
culated by [41] and the average generation over all scenarios
as green triangle. Clearly, the daytime pattern induced by the
PV generation is visible. Load forecasts are modeled by the
static load profiles [42] that match the measurement profiles
taken from [43]. For all scenarios, the total real-time load is
illustrated in the boxplot of Fig. 4. Day-ahead prices are avail-
able at [44] and illustrated in Fig. 5. The operating costs of
DGs are directly taken from [3]. Table 1 shows the forecasting
error for all asset types relative to themaximum output power.
For convenience and to ease comparison to other datasets, the
evaluation includes the standard error deviation and the Root-
Mean-Square Error (RMSE) in addition to mean absolute
error. For PV outputs, both the daytime and whole-day error
including trivial night-time predictions are given.

To assess the performance in case of contingencies, sev-
eral main grid, single line, and branch faults are modeled.
However, to keep the assessment computationally tractable,
no exhaustive failure definition is applied. Instead, Table 2
shows the faulty assets in each category. Note that all whole-
branch faults isolate a section of the grid that needs to be
operated in islanded mode. On the contrary, the studied single
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FIGURE 4. Distribution of the total real-time load in the input scenarios.

FIGURE 5. Distribution of the main grid transfer price for selling
electricity in the input scenarios.

TABLE 1. Forecasting error statistics relative to the nominal power.

line fault can always be compensated by grid reconfiguration.
According to related work, a fault clearance time of three
hours was modeled [21], [30]. For each faulty asset, eight
different incident times covering the entire scheduling period
result in 144 failure cases and one normal operating case.
Given the sample size of 365 environmental scenarios, a total
number of 52,925 scenarios per algorithm is covered. Similar
to the related work on complex power flow computations
in islanded systems [17], [18], a total share of 0.016% of
all power flows does not converge. Consequently, scenarios
with non-converging power flows were removed from the
evaluation and are not considered in the metrics.

B. ECONOMIC SCHEDULING
A purely economic scheduling algorithm SEC(·) that does not
include any resilience constraints at all establishes the base-
line for resilient multi-microgrid scheduling. Fig. 6 to 8 show
the constraint violation rates for overvoltage E(U s

i,t > Ū∗),
undervoltage E(U s

i,t < U∗), and overload events E(I si,t > Īi),
respectively. Note that the voltage-related events consider the
tighter scheduling-time bounds of Ū∗ = 0.95 p.u. and U∗ =
1.05 p.u. aligning to the same safety margins as physics-
constraint scheduling. Nevertheless, average unserved energy

TABLE 2. Faulty assets per contingency.

ENS shown in Fig. 9 considers the wider protection-related
limits to compute the amount of lost load. In case an algo-
rithm avoids all constraint violations of a particular type, no
statistics are shown in the graphics.

One can observe that the purely economic algorithm does
not adhere to the tight voltage band used for scheduling and
consequently shows a considerable number of overvoltage
events near WT2 for all failure types and normal operation.
Given the wider safety-related voltage limits, no violation in
normal operation mode and only a marginal maximum rate
event of 0.029% per asset in case of single-line faults are seen.
Similarly, only a few undervoltage events that mostly occur
on islanding faults are observed for both bounds. Since the
network is designed to host nominal loads without overload
events, all failures that do not involve grid reconfiguration
actions can be tolerated without overload events. However,
for single-line faults, a considerable overload rate of up
to 0.11% is observed. Fig. 8 indicates that due to the reconfig-
uration actions and the nature of the test grid in challenging
algorithms under test, small sized lines such as line 18 as well
as tie lines 35 and 36 are mostly affected. Similar overload
events can be observed on whole-branch failures that include
grid reconfiguration actions as well.

Fig. 9 shows the average unserved energy ENS per day
and failure type. No unserved load is observed in normal
operating scenarios and single-line faults do not trigger as
much loss of load as incidents that result in islanding actions.
To relate the observed loss ENS to the best known solutions, a
lower bound given all assessed algorithms is calculated. For
each input scenario, the best known solution having the least
unserved energy is taken. The lower bound itself also includes
reference runs that cannot be practically implemented and
therefore only serves as a theoretical guidance metric that
describes the best known system performance.

The fault mitigation rates of the economic scheduling
algorithm and all failure types are listed in Table 3. It can
be seen that a large share of single line faults are handled
by the grid reconfiguration algorithm without any indicated
voltage, frequency band, and loading violation but that some
failure conditions cannot be avoided. Specifically, for main-
grid and whole-branch failures that operate parts of the grid in
islandedmode, slightly reducedmitigation rates are observed.
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FIGURE 6. Share of overvoltage events on all time steps considering the tight scheduling-time limits.

FIGURE 7. Share of undervoltage events on all time steps considering the tight scheduling-time limits.

FIGURE 8. Share of overload events on all time steps.
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TABLE 3. Fault mitigation rates of the assessed algorithms and failures.

FIGURE 9. Average ENS of all scenarios.

FIGURE 10. Operating costs in normal operation.

Given the purely economic scheduling results, it can be seen
that already a large share of faults is compensated by the
low-level controls without the need of considering them in
scheduling.

Due to the economic scheduling formulation, no infeasible
scenario is detected and hence, no fallback schedule is used.
Fig. 10 shows a boxplot of the operating cost distribution
achieved in purely economic scheduling in normal operation.
One can see that due to the high share of RES, several days
have negative operating costs. In average, a financial baseline
of $674.89 per day is established.

C. RESERVE CONSTRAINT SCHEDULING
The reserve-aware scheduling formulation SRE(·) adds linear
sufficiency constraints that manage available storage and
spinning DG reserves until secondary control can take further
actions. Three variations of the sufficiency-based formulation
are assessed. The first one, deterministic sufficiency-based
scheduling, solely applies the constraints to the nominal

operation scenario as predicted without taking any deviations
into account. The second one, the robust sufficiency-based
algorithm defines two worst-case scenarios that both need to
be covered by scheduled reserves. Following relatedwork [3],
a maximum load case assumes 20% reduction of volatile RES
generation and 20% increase of all loads. Similarly, a maxi-
mum generation case alters all loads and RES power outputs
by a factor of 0.8 and 1.2, respectively. To specifically study
the impact of forecasting deviations on the results, a third
sufficiency-based scheduling run with perfect predictions is
added. Naturally, the perfect run only serves as a best-case
reference that cannot be reached with realistic forecasts.

Fig. 6 to 10 and Table 3 include the results of all
reserve-constraint scheduling runs. Similar to purely eco-
nomic scheduling, no overload event in normal operation is
seen. However, for deterministic, robust, and perfect schedul-
ing, maximum overload rates of 0.11%, 0.1%, 0.11%, respec-
tively are observed with single-line faults. Again, the nar-
row scheduling-related voltage band does not hold and all
algorithms show overvoltage events. However, in the safety-
related wider band, only at single-line faults, overvoltage
events are encounteredwith amaximum event rate of 0.029%,
and 0.026% per asset for the deterministic and robust case,
respectively. Most undervoltage-related events are observed
at whole-branch faults that are not targeted by the formulation
itself. Nevertheless, even with the 0.9 p.u. limit, undervolt-
age events at whole-branch faults are encountered for the
deterministic and perfect variations having maximum rates
per asset of 0.0017% and 0.0037%, respectively. Still, few
undervoltage events regarding the narrow scheduling-related
voltage band are seen at single-line faults (deterministic and
robust) and even at main grid faults (perfect forecasts), but
none of them are visible in the safety-related statistics.

Although the sufficiency-based variations consider main
grid outages, a considerable amount of lost load is encoun-
tered for all three variations. However, only a marginal
amount of 0.00%, 4.03% and 0.00% of all violations at
the deterministic, robust and perfect scheduling algorithm,
respectively can be traced back to infeasible problems.
In total, 100.00%, 96.99%, 100.00%, respectively of the
scheduling runs are feasible. Given the observation that even
perfect forecasting without any infeasible schedules shows
a significant amount of unserved energy, it is demonstrated
that the linear approximation does not fully prevent outages.
As illustrated in Fig. 10, the deterministic, robust and per-
fect sufficiency-based scheduling show the average operating
costs of $675.64, $679.93, and $642.02, respectively.

D. PHYSICS CONSTRAINT SCHEDULING
Physics-aware hybrid scheduling SPH(·) follows the same
worst-case assumption as the reserve-constraint formulation
SRE(·), but additionally considers voltage, frequency and
loading constraints of the detailed power flow model. Again,
the impact of forecasting deviations on the scheduling per-
formance is studied by a reference run that assumes a perfect
forecast instead of the detailed prediction data. Due to the
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comprehensive constraints, in total, 74.25% and 82.19% of
all hybrid and perfect hybrid runs, respectively, converge to a
feasible solution. For all other cases, the best known solution
instead of a generic default schedule is taken as a basis for
further evaluations.

Both hybrid variations show few violations of the
scheduling-related tight overvoltage bound, but none of the
algorithms manages to avoid constraint violations at all.
On the contrary, both configurations avoid undervoltage con-
straint violations except for whole-branch failures. Given the
wider voltage bounds, only a few overvoltage events (with a
maximum event rate of 0.011% per asset) in case of single-
line failures and even less undervoltage events (with a max-
imum rate of 0.0020% per asset) in whole-branch failures
actually lead to loss of load. Again, one can observe a con-
siderable number of overload events in case fault reconfigu-
ration actions are taken. In particular, the hybrid and perfect
hybrid algorithms show overload rates of up to 0.13%, 0.12%,
respectively in case of single line faults that are not covered
by the worst-case assumptions.

Fig. 9 still shows a considerable amount of lost load for
both algorithms in case of main-grid and whole-branch faults.
Nevertheless, only 40.18% and 34.80% of the main-grid
fault scenarios that show lost load for hybrid and perfect
hybrid scheduling can be accounted for by infeasible and
nonconvergent cases. In particular the hybrid optimization
run which uses perfect forecasts demonstrates the impact
of worst-case assumptions on the scheduling performance.
Although the real-time measurements in the reference run are
known, hybrid scheduling assumes a full-time outage asworst
case while the validation step asserts three hour fault duration.
Hence, the system state in the validation runs can differ from
the tolerable worst-case assumption and may lead to loss of
load.

As illustrated in Fig. 10, the hybrid and perfect hybrid
evaluation show the average operating costs of $883.01 and
$737.11, respectively. Despite the tight resilience constraints,
both variants still show several scenarios in which earnings
from selling excess energy or consuming electricity in case
of negative grid prices outweigh the cost of generating and
buying electricity.

V. DISCUSSION
In contrast to related work, this assessment covers a large
variety of operating conditions and failure modes. The
method includes an independent evaluation step cleanly sep-
arating the information that is available at scheduling and
real-time. Hence, this work shows several detailed effects
on the system resilience, such as the impact of failures that
are not directly covered by the scheduling algorithms. The
large-scale assessment is driven by an extended power flow
formulation considering a high level of detail such as indi-
vidual device constraints and low-level controls in partially
islanded power systems. Since the method is based on steady-
state power flows, an efficient replication without the need for
dynamic models is expected.

Due to a common set of input scenarios and system con-
figurations, the outcomes of each algorithm can be directly
compared without considering stochastic fluctuations among
single validation runs. Although the highly loaded benchmark
system that is specifically designed to challenge algorithms
under test does not show any safety-relevant events under nor-
mal operating conditions, the implemented fault mitigation
measures call for active grid capacity management in abnor-
mal cases. For instance, severe line overloading events of up
to 380% are observed after grid reconfiguration measures.
Since the grid is operated beyond static worst-case bound-
aries, either the scheduling algorithm or a dedicated dynamic
grid capacity management needs to assign save operating
limits for all relevant assets to avoid such violations.

Given the high fault mitigation rates of economic schedul-
ing ranging from 87.0% at whole-branch faults that include
partially islanded grids to 98.6% at single-line faults that
can be rerouted, it can be seen that even in the challenging
test grid a large share of events can already be handled by
appropriate low-level controls. Nevertheless, a considerable
influence of scheduling-time algorithms on the remaining
events that cannot be fully handled by low-level control
alone is found. For instance, the algorithmic choice shows
significant impact on the unserved energy ENS that incor-
porates severe voltage and frequency violations leading to
loss of load. Hybrid scheduling reduces the average lost load
in case of main-grid outages by 40.5% with respect to the
purely economic baseline. Similarly, robust sufficiency-based
scheduling already achieves an ENS reduction of 15.5% and
a slight decrease of 7.0% can still be seen in the deterministic
sufficiency-constrained case.

Note that all algorithms, except the purely economic base
case directly consider main grid outages but introduce dif-
ferent levels of abstraction to formulate the corresponding
constraints. As such, the least level of abstraction including
the highest level of detail (i.e., the hybrid scheduling formu-
lation) achieves the least unserved load. Nevertheless, even
in case of hybrid scheduling, necessary simplifications such
as whole-day grid outages lead to a significant lost load of in
average 66 kWh on all feasible hybrid scheduling runs. The
increasing share of nonconverging or infeasible scheduling
runs of up to 25.75% in hybrid scheduling and corresponding
lost load further indicates a considerable amount of unserved
energy, that cannot be avoided by studiedmeasures. The same
observation can be made by the lower bound shown in Fig. 9
indicating a significant amount of lost load scenarios that
cannot be avoided by any of the scheduling algorithms.

In contrast to failures that are directly considered by the
scheduling formulations, only a reduced impact of the algo-
rithms on the system performance in case of unconsidered
incidents is observed. Still, hybrid scheduling can reduce the
amount of lost load by 24.3% and 15.5% for single-line and
whole-branch faults, respectively. Nevertheless, other algo-
rithms show even less performance improvement and some
variations such as deterministic sufficiency-based scheduling
with whole branch faults even show a reduced performance.
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From a resilience point of view, all robust formulations can
well handle forecasting deviations and only show marginal
degradation to the idealistic counterparts that assume a per-
fect forecast. For instance, on main-grid faults, only a reduc-
tion in lost load of 2.5% and 2.4% for sufficiency-based and
hybrid scheduling is observed when eliminating forecasting
errors. In the overvoltage chart of Fig. 6, an average over-
voltage rate reduction of 27.9% and 56.0% was observed
for sufficiency-based and hybrid algorithms when assuming
perfect forecasts, but due to safety margins needed to account
for fluctuations such as those induced by the upstream grid,
no major reduction in the loss of load is observed.

A more severe impact of forecasting deviations can be
observed on the operating costs drawn in Fig. 10. Specif-
ically the hybrid scheduling algorithm shows a consider-
able increase in the average operating costs of 19.8% for
the robust variant compared to the perfect forecast. Hence,
advanced forecasting techniques that reduce corresponding
errors can have an impact on the economic performance of
hybrid scheduling. In case of the linear formulation, only a
cost increase of 5.9% of the robust variant compared to the
perfect reference is seen. In general, the observed resilience
gains come with an additional cost for robust sufficiency-
based and hybrid scheduling of 0.7% and 30.8%, respec-
tively. The presented large-scale evaluation method allows
balancing additional costs and benefits on a detailed per-case
basis.

VI. CONCLUSION AND OUTLOOK
Driven by the need of assessing the performance of resilient
(multi-)microgrid scheduling algorithms, this work presents
an extensive assessment method that specifically focuses
on resilience aspects and the impact of scheduling deci-
sions on real-time operation. It is successfully demon-
strated that despite the complex power system model that
includes primary and secondary control as well as emergency
response measures, a large variety of input conditions such as
failure scenarios and RES generation can be practically
covered. Hence, the need for strong simplifications includ-
ing limited operating scenarios is drastically reduced in
practice. Although the method focuses on the individual
assessment of microgrid installations, a detailed case study
already provides several insights into the resilient opera-
tion of (multi-)microgrids, the impact of scheduling algo-
rithms on the system performance, and promising research
perspectives.

Even on the test system that is specifically designed to
challenge scheduling algorithms under test, a large majority
of the assessed failures including 94.2% of all main grid
and 98.6% of all single-line faults can already be mitigated by
low-level control and real-time mitigation techniques alone
without considering resilience aspects in scheduling. Sev-
eral practical applications that tolerate the remaining chance
of lost load therefore justify to focus on purely economic
scheduling without considering resilience aspects.

Nevertheless, the choice of the scheduling algorithm shows
a considerable influence on the remaining outages that can-
not be avoided by low-level controls alone. Specifically, an
influence of the scheduling formulation including the rep-
resentation of physical phenomena and failure modes on
the remaining lost load is found. The advanced hybrid opti-
mization algorithm that considers physical grid constraints
and low-level control at scheduling time shows the greatest
potential in reducing the impact of failures. Hence, it can be
concluded that both future work on and evaluation of resilient
scheduling algorithms needs to put a strong focus on the
representation of physical aspects and on accurately model-
ing failure modes in scheduling. The independent validation
step of the presented assessment method allows to address
such modeling aspects without the need of directly relying
on scheduling-time metrics.

Given the results from references using perfect forecasts,
it can be seen that the forecasting quality has little impact on
the system resilience and that the stochastic phenomena such
as forecasting deviations can be well handled by a few worst-
case scenarios and static safety margins. However, a consid-
erable influence of forecasts on the economic performance
is found. To further reduce operating costs, future work can
put a lever on improving the accuracy of forecasts and on an
improved stochastic representation. Even under perfect fore-
casting conditions, the strict scheduling constraints that target
a full avoidance of any impacts lead to a considerable number
of infeasible problems. Further research on the assessment
of soft constraints permitting a certain level of degradation
and additional flexibility such as load shifting needs to be
undertaken to quantify the impact of such measures.

Future work on the assessment method itself includes
an advanced model of the protection system that allows
to consider cascading faults, more detailed models of the
upstream grid affecting the (multi-)microgrid, as well as
the implementation of additional real-time fault mitigation
and control techniques that can integrate further flexibility.
To include more detailed control and component models,
further improvements on the convergence of islanded power
flow computations are needed. Additionally, work on the
large-scale integration of dynamic simulations can further
raise the confidence in a stable operation in case stability
cannot be assured otherwise. Finally, the presented evidence
on the value of resilient scheduling is limited to a single
thoughtfully evaluated test grid. Further research is needed to
study the proactive scheduling on a large variety of networks
including related benchmarks and real-world systems. This
work in presenting the large-scale assessment framework lays
the foundation of such investigations and provides a tool for
an efficient case-specific analysis.

ABBREVIATIONS

DER Distributed Energy Resource
DG Distributed Generator
ENS Energy Not Supplied
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EV Electric Vehicle
MILP Mixed Integer Linear Programming
PCC Point of Common Coupling
PV Photovoltaic
RES Renewable Energy Sources
RMSE Root-Mean-Square Error
SoC State of Charge
WT Wind Turbine
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