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Abstract. Metamodeling platforms are an important cornerstone for building
domain-specific modeling languages in an efficient and effective way. Two promi-
nent players in the field are ADOxx and the Eclipse Modeling Framework (EMF)
which both provide rich ecosystems on modeling support and related technolo-
gies. However, until now, these two worlds live in isolation while there would
be several benefits of having a bridge to exchange metamodels and models for
different purposes (e.g., reuse of features and plugins that are only available on
one platform, access to additional modeler and developer communities). There-
fore, in this paper, we propose first steps toward establishing interoperability be-
tween ADOxx and EMF. For this, we thoroughly analyze the metamodeling con-
cepts employed by both platforms before proposing a bridge that enables bidirec-
tional exchange of metamodels. We evaluate the bidirectional bridge with several
openly available metamodels created with ADOxx and EMF, respectively. More-
over, we quantitatively and qualitatively analyze the bridge by an evaluation that
incorporates the instantiation and use of the metamodels on both platforms. We
show that the metamodels can be exchanged without information loss and similar
modeling experiences with respect to the resulting models can be achieved.

Keywords: Metamodeling · ADOxx · EMF · Language engineering · Tool inter-
operability.

1 Introduction

Modeling languages are ubiquitous in information systems, e.g., consider the different
process modeling languages, data modeling languages, or multi-viewpoint enterprise
modeling languages to mention just a few prominent examples. Metamodeling plat-
forms are an important cornerstone for building modeling languages in an efficient and
effective way [7, 8]. Such metamodeling platforms provide dedicated support to specify
the modeling concepts and their relationships, i.e., the abstract syntax of the modeling
language, as well as dedicated support to develop the visualization of the models in
terms of textual, graphical, or even hybrid languages, i.e., the concrete syntax of the
modeling language. In addition, several other technologies, such as transformation en-
gines, simulation frameworks, or code generators are provided based on the common
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abstraction referred to as the meta-metamodel. Although there are standards for meta-
metamodels [8], current metamodeling platforms still use different meta-metamodels
based on their particular development history, user base, or targeted use cases for the
hosted modeling languages.

Two prominent players in the field are ADOxx [1] and the Eclipse Modeling Frame-
work (EMF) [26] which both provide rich ecosystems on modeling support and related
technologies. However, until now, these two worlds live in isolation while there would
be several benefits of having a bridge to exchange metamodels and models for differ-
ent purposes. The main reason for this is that they employ different meta-metamodels.
However, thoroughly investigating if these meta-metamodels share similarities is of in-
terest as it would allow to exchange metamodels – and eventually models – between
these two worlds by dedicated model transformations [27] and benefit from reuse, par-
ticular support offered by a particular platform, and reaching additional users which are
operating in the other platform. As such the integration proposed in this paper not only
bridges the technological spaces but also the associated modeler and developer commu-
nities, it enables the creation of powerful tool-chains that span ADOxx and EMF, and
facilitates the mutual strengths while mitigating potential shortcomings.

In this paper, we propose first steps toward establishing interoperability between
ADOxx and EMF concerning the abstract syntax of the modeling languages, so to speak
the foundation of the languages. For this, we thoroughly analyze the metamodeling con-
cepts employed by both platforms before proposing a bridge that enables bidirectional
exchanges of metamodels. We evaluate the bidirectional bridge with several openly
available metamodels created with ADOxx and EMF, respectively. Moreover, we quan-
titatively and qualitatively analyze the bridge by an evaluation that incorporates the
instantiation and use of the metamodels on both platforms. Our results show that the
metamodels can be exchanged without information loss and also pragmatic issues such
as providing the same modeling experiences with respect to the instantiated models can
be achieved.

The rest of the paper is structured as follows. The foundations of metamodeling,
ADOxx, and EMF are introduced in Section 2. Related work on bridging metamodeling
platforms is presented in Section 3, before Sections 4 and 5 describe our approach of
bridging ADOxx and EMF in detail. Section 6 evaluates our approach based on different
characteristics. Finally, we conclude this paper in Section 7 and elaborate on future
research directions.

2 Foundations

In this section, we provide the foundations for this work: (i) the general metamodeling
architecture, and (ii) the two metamodeling platforms ADOxx and EMF.

2.1 Metamodeling

Metamodeling platforms support the development of modeling tools by providing an
abstract meta-metamodel that is adequate even for non-programmers to specify (domain-
specific) metamodels – and corresponding modeling tools – by modeling modeling lan-
guages, thus metamodeling [16].
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Fig. 1: Metamodeling stack: Macro view (left hand side), Micro view (right hand side)

Fig. 1 shows the metamodeling stack on a macro and micro view. Most metamodeling
platforms are based on three modeling layers. Let us start with the macro view. M3 – the
top layer – is providing the metamodeling language of a platform to define metamodels
on M2, i.e., the modeling languages. The models build with these languages are situated
on the next lower level M1. The relationships between the different artefacts on the dif-
ferent layers are very important. Between adjacent layers, the upper layer provides the
building plan for the lower layer. Thus, we speak about conformsTo (c2) relationships,
i.e., an artefact on layer n is valid with respect to the artefact on layer n + 1. Finally,
please note that M3 is reflexive in most platforms, i.e., it is defined by itself.

The right hand side of Fig. 1 shows the micro view, i.e., looking inside the artefacts
shown in the left hand side of Fig. 1. It shows a basic modeling concept called Activity
on M2. This concept is modeled as a class – a concept provided on M3. Then, the
activity concept is instantiated on M1 for defining the activity processOrder. Please note
that for the micro view, we have instance-of (iO) relationships between the elements of
different levels.

Furthermore, such platforms provide pre-configured, method agnostic functionality
like model management, user management, and user interaction which are attached
to abstract and generic meta-metamodel classes thereby considerable contributing to
the efficient realization of modeling tools with metamodeling platforms. The language
engineer only needs to adapt the platform’s meta-metamodel to her domain.

2.2 ADOxx

The ADOxx [1] metamodeling platform matured from industry and is nowadays widely
used in academia for the development of modeling tools [7]. ADOxx is focusing on
realizing graphical conceptual modeling tools with built-in generic features like graph-
based model simulation and support to define model queries that can be easily cus-
tomized to domain-specific modeling languages (cf. [6]). Moreover, a powerful lan-
guage to realize static and dynamic graphical concrete syntaxes that go beyond tree
structures is provided. ADOxx is open use and provides several extension mechanisms
to plug-in or interact with third-party services and tools. In order to realize a new mod-
eling tool with ADOxx, language engineers only need to [4]: (i) configure the specific
metamodel by referring its concepts to the meta-metamodel concepts of ADOxx, op-
tionally constrained using the platform-specific scripting language AdoScript; (ii) pro-
vide a visualization for the concepts; (iii) combine the concepts into logical chunks,
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i.e., ADOxx modeltypes; and (iv) realize additional model processing functionality
such as model transformations or simulations.
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Fig. 2: Excerpt of the ADOxx dynamic meta-metamodel [5]

ADOxx metamodels are composed of modeltypes which themselves compose pre-defined
and user-defined modeling classes and relation classes (Fig. 2). Modeling and relation
classes may both have attributes. Functionality in ADOxx is inherited from the abstract
pre-defined classes of the ADOxx meta-metamodel. The ADOxx metamodel is decom-
posed into two parts, a static part that features pre-defined abstract classes to represent
organizational structures like, departments, actors, and roles, and a dynamic part (visu-
alized in Fig. 3) that features pre-defined abstract classes that enable the realization of
graph-based process-like metamodels.

Fig. 3: Excerpt of the ADOxx metamodel

2.3 EMF

The Eclipse Modeling Framework (EMF) provides a meta-metamodel called Ecore3

which can be considered as the Java-based realization of the Meta-Object Facility (MOF)
standard [8]. With Ecore, language developers can define their own modeling languages
in terms of metamodels and use different code generators to produce model APIs to

3 https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
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Fig. 4: Excerpt of the Ecore meta-metamodel

load, store, and process models as well as to provide modeling editors. A rich set of ex-
tensions and plug-ins are available which build on EMF for different concerns. This is
due to the fact that EMF is entirely open source with a large Java developer community.
The Ecore meta-metamodel comes with a plethora of pre-defined meta-classes which
originate in MOF but also reflect their refinement for using Java as a code generation
target. Relevant for conceptual modeling are particularly the classes visualized in Fig. 4.
Ecore-based metamodels are clustered in EPackages which compose EClasses as com-
plex data types and EDataTypes for primitive data types. Every EClass itself is com-
posed of EStructuralFeatures. Two special kinds of features are further distinguished:
EReferences relate two EClass instances to each other, whereas EAttributes define addi-
tional intrinsic properties of EClasses. By defining an eSuperType relationship between
two EClasses, these EClasses are related by means of an inheritance relationship to one
another. Please note that in Ecore multiple inheritance is allowed.

An important concept in Ecore is the composition relationship, i.e., an EReference
with containment property set to true. By this concept, a corresponding model becomes
a primary tree structure which can be exploited in several scenarios. First, it allows
deletion propagation, but also other means are provided such as using reflective editors
which allow to fold/unfold parts of a model or when building generic transformations
which focus on container/containee relationships. Please note that features such as ref-
erences and attributes can be single valued or multi-valued based on their multiplicities,
see the attributes lowerBound and upperBound in the meta-class EStructuralFeature.

3 Related Work

Several previous works targeted interoperability concerns for different modeling plat-
form combinations. In the following, we summarize these previous efforts.

Concrete metamodeling platforms have been bridged in the past, especially when it
comes to EMF. For instance, the Microsoft DSL Tools have been integrated with EMF
in [9]. The bridge is based on model transformations which provides exchange capabil-
ities on the metamodel-level as well as on the model-level. A similar bridge has been
presented in [20] and further developed in [18] for achieving model exchange between
EMF and ARIS, MetaEdit+, and Visio, respectively. Another work which targeted EMF
is presented in [2] for the integration with the Generic Modeling Environment (GME).
Bridging metamodeling platforms such as EMF with UML modeling tools has been the
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subject in [28]. UML profiles are derived to exchange models from EMF to UML and
back again with the help of model transformations.
Going beyond concrete metamodeling platforms was first presented and discussed by
Bezivin et al. [3]. Their main idea is to introduce technical spaces which provide a
dedicated and representative meta-metamodel for a technical space as well as associ-
ated meta-modeling architecture and associated tools. This seminal work gave rise to
a bunch of work on bridging several concrete technical spaces. When it comes to the
modelware technical space, which is the technical space of metamodeling platforms,
concrete approaches for providing bridges with Grammarware [29], XMLware [23],
JSONware [11], and OntoWare [24] have been presented.

An approach that establish a new meta-layer on top of several existing metamodels
in the business process modeling domain is presented by Heidari et al. [15]. The authors
generalize and integrate the M2-level concepts of seven business process modeling lan-
guage by proposing a generic M3-level domain metamodel.

From the perspective of ADOxx, several integrations with third-party tools (e.g., [10])
and concepts for metamodel patterns [21] and method chunks [25] as foundations for
integrating heterogeneous metamodels have been proposed. To the best of our knowl-
edge, an integration between ADOxx and other metamodeling platforms has not been
discussed or realized in the past.

Synopsis To the best of our knowledge, there is a lack of approaches which consider
the establishment of a bridge between ADOxx and EMF for exchanging metamodels
and models between these two popular metamodeling platforms. However, previous in-
teroperability architectures exploiting metamodeling stacks in combination with model
transformations is a general solution scheme which is also employed in this paper. Nev-
ertheless, the focus of this work is on the concrete interoperability challenges between
the two modeling platforms as is discussed next.

4 Comparative Analysis of ADOxx and EMF Meta-Metamodels

In this paper, we are focusing on the abstract syntax definition exchange between both
platforms. Thus, we only consider ADOxx and EMF without additional plug-ins and
extensions – we leave these investigations as subject for future work. The compara-
tive analysis in the following thus focuses on a thorough investigation of the meta-
metamodels of the two platforms and their underlying metamodeling concepts. As can
already be grasped from the introduction of the platform foundations in Section 2,
ADOxx and EMF share many similarities while they also differ in some details. We
now focus our attention to the core of the two platforms, their meta-metamodels and
the metamodeling concepts they employ. The thorough analysis that follows is inspired
by previous works (cf., e.g., [17]) and the experiences of the authors in realizing mod-
eling tools with ADOxx and EMF.

Table 1 summarizes the findings of our analysis, differentiated along several cate-
gories. The table shows, whether and how a particular criteria is supported by the two
platforms. In the following, some of the most interesting differences will be highlighted
as they establish the major challenges for realizing interoperability – the concepts we
developed to address these challenges are discussed in detail in Section 5.
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Table 1: Comparison of M3 Level features of ADOxx and Ecore meta-metamodels

Criteria ADOxx Ecore

Core Modeling Concepts
Class Class EClass
Relationship Relation Class EReference
Attribute Attribute/Class Attribute EAttribute

Classes
Abstract Classes
User-defined root element 1

Relationships
Arity binary2 binary
Inverse 3

Composition 3 (only visual)
Multiplicity
Endpoints Class EClass
Unique Names (per Metamodel) (per Class)
Link to Model

Attributes
Applicable to Class/Relation Class EClass
Multiplicity single-/multi-valued single-/multi-valued
Unique
Ordered 3

Default Value
Custom Data Type 4

Inheritance
Single/Multiple single multiple
Instantiation single single
Class Inheritance
Relationship Inheritance

Grouping ModelTypes EPackage
1 every class in ADOxx inherits from a predefined abstract class
2 n-ary with Interref 3 realization via AdoScript possible 4 via Record Classes

Composition In EMF metamodels, composition plays an essential role. Any EMF
metamodel needs to have a user-defined root class that contains directly or transi-
tively any other metamodel class. On the ADOxx side, composition is not natively
supported. ADOxx features an abstract pre-defined class D container with addi-
tional abstract subclasses (see Fig. 3). These abstract classes feature an automated
detection mechanism that recognizes objects that are located geographically inside
a D container object. Additional behavior such as cascaded deletion of composite
objects is not natively supported.

Single- vs. multiple inheritance EMF supports multiple inheritance between classes
whereas ADOxx supports single inheritance.
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Relation Class Uniqueness Relation classes names in ADOxx are unique whereas for
Ecore metamodels, no uniqueness of EReferences names is required as they are
contained by the classes, thus having their own name space.

Pre-defined Metamodel The ADOxx metamodel comprises both, the abstract pre-
defined classes and the user-defined classes whereas Ecore metamodels are solely
composed of the user-defined classes, i.e., direct instantiations from M3.

5 Metamodel Transformation Approach

For operationalizing the mapping specified in Table 1, we implemented a bi-directional
transformation chain. In particular, to achieve bidirectional transformations between
ADOxx and EMF metamodels, we realized two unidirectional transformations (see
Fig. 5), one transforming an ADOxx metamodel into an equivalent EMF metamodel
and one the other way around. Note, that due to specific heterogeneities of the two
platforms, roundtrip transformations between ADOxx and EMF will not result in an
identical metamodel compared to the initial metamodel the roundtrip started from (see
a discussion of selected heterogeneities in the previous section). Our approach therefore
aims to achieve equivalence between the source and the target (i.e., transformed) meta-
model when being used in the source and target metamodeling platforms, respectively.
A detailed discussion on this matter is part of our evaluation in Section 6.

5.1 From ADOxx to EMF metamodels

For transforming ADOxx metamodels into EMF, we first use the XML export function-
ality provided by ADOxx. The derived XML-based metamodel specification is then
parsed and processed in Java using JAXB. Eventually, we use the EMF API to create
an equivalent Ecore metamodel and to serialize it into standardized XMI format which
enables direct loading into EMF.

Pre-defined metamodel As mentioned earlier already, ADOxx metamodels are com-
posed of abstract pre-defined classes and user-defined classes. In order to not ob-
scure the EMF metamodel and to enable focus on the user-defined metamodel, we
separated the two metamodels into two EPackages.

Fig. 5: Technological view on the two unidirectional transformations
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User-defined root class As any Ecore metamodel needs to have a single, user-defined
root class that has no counterpart in ADOxx metamodels, we generate a root class
with the name of the ADOxx library the transformation was initiated with.

Enumerations Enumerations in ADOxx are treated as conventional attributes of mod-
eling and relation classes whereas in Ecore-based metamodels, enumerations are
special classes. Consequently, all enumerations in an Ecore-based metamodel also
need to have unique names which is not ensured from the ADOxx side, as enumera-
tions attributes only need to have a unique name per class, not per library. We solve
this challenge by prefixing the name of a transformed enumerations class in Ecore
with the name of the ADOxx class the enumerations attribute originally belongs to.

Java Identifiers ADOxx allows to use various characters in class and attribute names
(e.g., dots and spaces), which are not allowed in Ecore where all names need to
follow the naming rules of Java identifiers. We solved this issue by replacing all
prohibited characters by either an underscore, or omitting them all together.

5.2 From EMF to ADOxx metamodels

For transforming EMF metamodels into ADOxx, we first use the standardized XMI
serialization. We then use the Java EMF API to process the Ecore-based metamodel
and apply the respective transformation rules. To generate the equivalent ADOxx meta-
model, we use the ADOxx ALL API4. Once the generation is concluded, the ALL2ABL
web service5 transforms the textual metamodel specification in ALL into an ADOxx
application library (.abl) file that can be imported into ADOxx.

Composition To simulate composition in ADOxx, we generate two AdoScript event
handlers for each composition in Ecore. One event handler is executed when a mod-
eler triggered the creation of a new instance of a modeling class (i.e., AfterCreate-
ModelingNode event in ADOxx) and one in cases where the modeler has triggered
the deletion of a modeling instance (i.e., BeforeDeleteInstance event in ADOxx).
Aside from the event handlers, the transformation creates a library attribute named
compositeClasses that stores all class names of composite classes and, for each
composite class in Ecore, an attribute compositumClass in the ADOxx metamodel.
These attributes are used in the event handlers to navigate from composite to com-
positum and vice versa. Algorithm 1 describes these two event handlers in pseudo
code. The first ensures, that each newly created composite needs to be linked to a
valid compositum, whereas the second ensures that the deletion of a compositum is
cascaded to all it’s composite objects.

Multiple Inheritance Several approaches have been proposed in the literature to trans-
late multiple inheritance structures into equivalent single inheritance structures
(cf. [12, 13]). After carefully studying potential solutions, we opted to apply an
adapted version of the expansion pattern originally proposed by Crespo et al. [12].
Fig. 7 visualizes the pattern in detail. Our transformation picks the first superclass
to inherit from, the properties of all remaining super classes are then reproduced

4 https://www.adoxx.org/live/adoxx-java
5 https://www.adoxx.org/live/all2abl-converter-service
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Algorithm 1: AdoScript code for handling composition.
Input: classid, objid, and modelid of the object o to be created

1 ON EVENT ”AfterCreateModelingNode”
2 compositeClasses← LibraryMetaData.compositeClasses()
3 if compositeClasses contains classid then
4 compositumClass← o.compositumClass()
5 availableCompositumObjects← GET ALL OBJS OF CLASSNAME(modelid, compositumClass)
6 if availableCompositumObjects.size() > 0 then
7 selectedCompositumObject← LISTBOX(availableCompositumObjects).selection()
8 ADD INTERREF(selectedCompositumObject, o)
9 else

10 DELETE OBJ(o)

Input: classid, objid, and modelid of the object o to be deleted
11 ON EVENT ”BeforeDeleteInstance”
12 compositeClasses← LibraryMetaData.compositeClasses()
13 compositumClasses← LibraryMetaData.compositumClasses()
14 if compositumClasses contains classid then
15 for Composite c : o.composedInstances() do
16 DELETE OBJ(c)
17 end
18 else if compositeClasses contains classid then
19 compositumClass← o.compositumClass()
20 availableCompositumObjects← GET ALL OBJS OF CLASSNAME(modelid, compositumClass)
21 for Compositum com : availableCompositumObjects do
22 if com.composedInstances().contains o then
23 REMOVE INTERREF(com, o)
24 end

Fig. 6: Illustrative multiple inheritance transformation example: EMF to ADOxx

to ensure that the subclass (class D in Fig. 7) has the same expressiveness as when
actually inheriting from multiple classes. Fig. 6 summarizes the explained mapping
by example. Note that Vehicle Condition is an enumeration, shipyard and seavehi-
cles are relationships.
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Fig. 7: Multi-inheritance example (a) and the adapted expansion pattern (b)

Additionally, we need to make sure to handle the incoming relationships of the
remaining super classes (class C in Fig. 7) as these shall be also valid for the inher-
iting class D. We decided to solve this by changing the endpoint of the relation class
from the specific class (in this case class C) to the abstract super class D Construc
in ADOxx (i.e., now this relation can be incoming to any user-defined class). To re-
strict the possible endpoints to the valid ones, we further generate an event handler
in AdoScript and create a LibraryMetaData multiInheritanceClasses attribute in
ADOxx that stores the class names of all remaining classes and the inheriting class
of multiple inheritance (i.e., the classes C and D in Fig. 7).
Algorithm 2 describes the event handler for realizing multiple inheritance in ADOxx.
It is executed when the modeler triggered the creation of a new relation and checks,
whether the class name of the to object of the newly created relation participates in
multiple inheritance. Then, the algorithm checks, whether the relation class is valid
to be connected with the from object by means of an incoming relation.

Algorithm 2: AdoScript code for handling multiple inheritance.
Input: classid, relationid, modelid, toObj, and fromObj of the relation r to be created

1 ON EVENT ”AfterCreateModelingConnector”
2 multiInheritanceClasses← LibraryMetaData.multiInheritanceClasses()
3 if multiInheritanceClasses contains classid then
4 validIncomingRelationClasses← toObj.validIncomingRelationClasses()
5 if !validIncomingRelationClasses contains classid then
6 DELETE CONNECTOR(r)
7 end
8 end

Relation class uniqueness As EReferences only require unique names on class level
and not in the entire Ecore metamodel, but Relation Class names in ADOxx are
unique in the entire metamodel, we adjusted the transformation in such a way, that
the name of the target Relation Class in ADOxx is composed as follows: <source-
classname><EReference-name><target-classname>.

6 Evaluation

For evaluating our transformation chain, we conducted a set of experiments and applied
different means of quantitatively and qualitatively testing the transformation.
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6.1 Research Questions & Evaluation Methods

With the evaluation, we aim to respond to the following three major research questions.

RQ1-Metamodel Validity: Does our transformation produce valid metamodels in the
target metamodeling platform? For testing the validity of the transformed meta-
models, we use platform-specific built-in functionality. For validating Ecore meta-
models, we first apply the EMF Validator and secondly register the metamodel. The
ADOxx metamodels are automatically validated once an .abl file is imported.

RQ2-Metamodel Expressivity: Is the expressivity of the source and target metamodel
equivalent? To test the expressivity equivalence, we imported the transformed meta-
models and manually investigated their expressivity on both platforms. We further
developed metrics on both platforms that enable the automated evaluation of the
metamodel expressivity.

RQ3-Model Processing Equivalence: Is the behavior of processing a model in the
two platforms equivalent? Here, we instantiated sample models using the source
and the target metamodels in their respective platforms. We then applied CRUD
operators to see, whether the models adhering to the transformed metamodel in
the target platform behave equivalent to the behavior of the model adhering to the
source metamodel in the source platform.

6.2 Study Setup

For the study we used 45 ADOxx metamodels, reported in [5], that were transformed
into Ecore metamodels. Furthermore, we used 33 randomly selected Ecore metamod-
els of the ATL zoo6, to transform them into equivalent ADOxx metamodels. Table 2
provides some descriptive statistics on the metamodels we used in our evaluation ex-
periments. It shows the minimal, median, and maximal number of classes, number of
abstract classes, number of classes with multiple inheritance, relationships, attributes,
enumerations, and the maximal inheritance depth of the metamodels.

6.3 Results

RQ1-Metamodel Validity. None of the generated metamodels yield errors or warnings
when being imported into EMF (see Table 3). The implementation of semantically ap-
propriate procedures for renaming classes and attributes in order to comply to naming
conventions, separating various elements into different packages in order to avoid name
clashes, have thus been validated. Initial tests pointed us to these issues. Another issue
was resolved by ensuring that attributes with the same name are neither defined in the
same class nor in one of its super classes.

One remaining issue we observed relates to the data types. In one instance, a cer-
tain value of an attribute is too long for the datatype STRING, which is limited to a
max length of 3699 symbols in ADOxx. This error occurs in the AttributeInterRefDo-
main facet, which has a non-changeable datatype of STRING. We set this facet for
defining all composed instances of a compositum class in order to enable composition

6 https://www.eclipse.org/atl/atlTransformations/
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on ADOxx side. For one particular library of our experiments, so many composed in-
stances exist, that the generated string is simply too long for this datatype. We already
have a workaround in mind but need to test it thoroughly in future experiments.

RQ2-Metamodel Expressivity. We have analyzed the expressivity of a rpresentat-
ice sample of the transformed metamodels by analyzing their structure and their created
classes, attributes, and relationships. We found that the mapping of the different ele-
ments corresponds to our specification. In some cases, such as in the ADOxx to EMF
transformation, we verified that the correct amount of additional Enum-Classes was
created and correctly assigned to the appropriate metamodel class. In other cases, we
verified that relations are correctly assigned from the source to the target class, as well
as their cardinalities are set correctly. Further, in the EMF to ADOxx transformation,
we verified that the correct metadata for multiple inheritance and composition is set in
the correct classes on ADOxx side.

RQ3-Model Processing Equivalence. As a final evaluation step, we have created
sample models by using the generated metamodels. Here, we could verify that the class
creation, attribute value modification, composition features, and multiple inheritance
features behave equivalent in both platforms. For the composition part on the ADOxx
side, we verified that the transformed event handlers work correctly. For this, we gen-
erated compositum and composite elements, then deleted the compositum element, and
verified, that all composite instances are deleted as well. For the multiple inheritance
transformation on ADOxx side, we checked, that for any class that inherits multiple
classes in the Ecore metamodel, the additional attributes from the non-inherited super
class are present in the corresponding ADOxx class instance. Additionally, we verified
the correct behaviour of our event handler in allowing also incoming relationships from
the other multi-inheritance super classes.

Limitations. Our study of course also comes with limitations, some of which will
be briefly discussed in the following. First, we need to limit the generalizability of
our outcomes. We cannot generalize our results to other metamodels having different
structures, sizes, etc. Our experiments incorporated 33 EMF and 45 ADOxx metamod-

Table 2: Metrics of the source ADOxx and EMF metamodels used in the experiments
ADOxx EMF

Min Med Max Min Med Max

Classes 5 30 180 1 7 93

Abstract Classes 0 2 24 0 1 12

Relations 1 11 81 0 2 59

Compositions 0 2 13 0 2 36

Attributes 2 86 1165 1 6 64

Inheritance Depth 1 3 6 0 1 4

Multi Inheritance Classes - - - 0 0 4

Enumerations 0 17 270 0 0 7
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Table 3: Outcomes of the conducted metamodel transformation experiments
Transformation Direction Cases No errors Error Success rate

ADOxx → Ecore 45 45 0 100 %

Ecore → ADOxx 33 32 1 96.97 %

els of different nature (see Tab. 2 for some statistics), still more experiments need to
be conducted to further generalize our findings. Second, our transformations may not
be representative or amenable for language engineers who may have other patterns in
mind to represent the metamodels in the other platform. We took deliberate decisions,
based on the literature and also the experience of the authors working with both plat-
forms, when designing the transformations, esp. for the challenging parts reported on
in Section 5, still others may prefer to, e.g., follow a different multi-to-single inheri-
tance transformation pattern, etc. Third, some metamodel functionalities provided by
ADOxx (e.g., conversion) and EMF (e.g., eOpposite and move) are not considered yet
in the transformation as we focus on information loss exchange between the platforms.
Future research will investigate how to consider such features in the transformation.

Future Research. In order to mitigate some of the limitations, a detailed analysis
at the transformed source and target metamodels will be conducted. Work on this task
has started, where we compare different features such as class size, relation size, enu-
meration size and so forth for each individual source and generated target metamodel.
These metrics provide a better understanding of the nature of the different metamodels
and were inspired from previous work [5, 14, 19, 22]. A comparison on the individual
metamodel-level will reveal the concrete impacts of a transformation, e.g., how many
attributes have been created in the target metamodel from a set of attributes in the source
metamodel. General findings about the complexity of the generated metamodels and the
performance of the transformation can be found this way.

On the other hand, this procedure can support the validation of the transformation
by comparing the different metrics in source and target metamodel to derive conclu-
sions. For instance, since our algorithm transforms Interrefs from an ADOxx source
metamodel to relationships in Ecore, we may verify that the total amount of expected
relationships in Ecore can be calculated as follows: Given the ADOxx relationships
count as |Rado| and the ADOxx Interrefs count |IRado|, the total amount of gener-
ated relationships in the target Ecore metamodel |Remf | would need to be |Remf | =
|Rado|+ |IRado|.

7 Conclusion

In this paper, we have presented a transformation-based framework to exchange meta-
models between ADOxx and EMF. We evaluated the resulting bridge by transforming
a representative set of metamodels and evaluated the outcomes with respect to valid-
ity, expressivity, and modeling equivalence. From a scientific point of view, this work
investigated the different concepts provided by ADOxx and EMF. Although, there are
several differences, we have also shown that there is a common core which can be used
to simulate the missing parts in both worlds. From a practical point of view, this work



Towards Interoperable Metamodeling Platforms: Bridging ADOxx and EMF 15

supports the exchange of metamodels between both platforms which allows for reuse of
existing metamodels available only for one platform as well as using a wide variety of
tools for the metamodels which are available in both platforms. The bridge is deployed
openly and can be used via: http://me.big.tuwien.ac.at/.

The evaluation conforms already a very high level of interoperability enabled by our
bridge. The single remaining error is minor and we already have ideas for solving it.
Future research will focus on mitigating this remaining issue, drilling down other edge
cases that we did not yet encounter, and extending the transformation in two ways.
First, we are currently investigating the extent to which the graphical concrete syntax
of the metamodel concepts can be transformed between the two platforms. Second, we
aim to extend the transformation to be also applicable to models instantiated from the
transformed metamodels to allow not only metamodel exchange between the platforms,
but model exchange as well.
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