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Abstract: The MATLAB package bvpsuite 2.0 is a numerical collocation code for the ap-
proximation of solutions of a broad range of boundary value problems in ordinary differen-
tial equations. In this article, its newly implemented pathfollowing module with automated
step-length control is presented. Two versions using the pseudo-arclength continuation
method, allowing pathfollowing beyond turning points, were developed, both taking ad-
vantage of the existing features of bvpsuite 2.0 such as error estimation and mesh adap-
tation. The first version is based on the Gauss-Newton method. The second version is
now contained in the package bvpsuite 2.0 and uses its built-in iterative method, the Fast
Frozen Newton method. Their operating principles are presented and their performance
is compared by means of the computation of some pathfollowing problems. Furthermore,
the results of computations with bvpsuite 2.0 for a problem with path bifurcations are
presented.
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1. Introduction

A continuation method refers to the process of computing successive points on a solution curve,
usually of a parameter-dependent system of nonlinear equations of the form

F(x;)) =0, (1)

where F': D C R?xR — R¢, d € N [1]. Here, x is the unknown variable and )\ is the pathfollowing
parameter.

bvpsuite2.0! is a software package for the numerical solution of boundary value problems
(BVPs) in ordinary differential equations (ODEs). In this work, we consider BVPs with pathfol-
lowing parameter A € R of the form?

0
a(p,z(a), 2 (a),..., 2"V (a), z(b), 2’(b),..., 2"V (b)) = 0,

where z is at least I-times continuously differentiable, z € C'[a,b], p € R is a parameter fixed by
the boundary conditions and a,b € R. Here, z : [a,b] — R", f : (a,b] x R” x ... x R" xR — R",
(I41) times
and g :R" x ... xR"xR*" x ... x R*" - R"™ [.neN.
l times l times
The bvpsuite solver is based on the collocation method [3, 4]. For m,N € N and a vector
p = (p1,--sPm), pi € (0,1) we have N + 1 mesh points a = 79 < ... < 75 = b, and m collocation

n the sequel we mostly refer to bvpsuite 2.0 as bvpsuite. A predecessor is bvpsuite1.1 [8].

2We refer to the manual [2] for the general form of BVPs bvpsuite was built to solve. This includes the
numerical solution of systems of mixed order with boundary conditions on the boundary or inside the interval,
eigenvalue problems and index-1 differential algebraic equations systems. These can be posed on a finite or semi-
infinite interval. An error estimate is computed and mesh adaptation is performed. Pathfollowing can be realized
for all these problems now also.



points t;; = 7; + p;j(T,41 — 7;) in between each two consecutive mesh points. Then, polynomial
collocation converts the pathfollowing problem (2) into the system of equations

Pi(r;) = Piyi(mi), i=1,...,N—1
P! V(r) = Pﬁif)(i), i=1,... N—1

9(p, Po(a), ..., Py (@), Py _1(b),..., PV (b)) =0,

where P(t) is a smooth piecewise polynomial function and P(t) := P;(t) for t € [r;,7;41]. The
collocation equations are reformulated as the underdetermined pathfollowing parameter-dependent
generally nonlinear function

F(x;)) =0, (3)
which is of the same form as (1), where & € RV (") represents the coefficients of the piecewise
polynomial P(t) and A is the pathfollowing parameter of the BVP (2).

The package bvpsuite provides a mesh adaptation strategy, based on asymptotically correct
error estimation. This was proposed and investigated in [5]. In the context of solving BVPs, the
goal of this mesh adaptation strategy is to determine the optimal mesh on which the solution
satisfies user-specified accuracy requirements. The tolerances for the absolute and relative global
errors of the approximate solution are prescribed by the user. Then, this optimal mesh is obtained
from an iterative process. In the first phase, the mesh points are relocated to appropriately reflect
the solution behavior. Next, mesh points are added to satisfy the tolerance prescribed by the user.

The implementations of the pathfollowing module described below take advantage of the
strengths of bvpsuite and incorporate them in a continuation method to solve the pathfollowing
problem (3) arising from (2). By doing so, the proposed continuation method for BVPs is based
on polynomial collocation equipped with adaptive mesh selection, which controls the residual and
the estimate of the global error of the approximate solution. In the next section we present the
two implemented numerical continuation methods. Then, we test these numerical approaches for
some examples.

2. Two numerical continuation methods for BVPs

2.1. Pathfollowing with Gauss-Newton

We implement the continuation via a predictor-corrector (PC) method as it is more compatible with
our purpose to trace the solution path of a parameter-dependent BVP. This first implementation
corresponds to the method described in [6], using Gauss-Newton iteration in the corrector step.

We assume that the function F' in (3) is sufficiently smooth. We also assume that the Jacobian
DF is of maximal rank, i.e., rank(DF(xo; \o)) = nN(m+1), when F(zq; \o) = 0. A _continuation
method yields a solution for the nonlinear system, denoted as the set S := { z,\): F(z,\) = 0}
A solution (xg, Ag) of (3) in D C R" x [a,b] is said to be regular if the Jacobian DF(x;\) has
maximal rank, otherwise, a solution is said to be singular. For a regular point (xg, Ag), the Implicit
Function Theorem implies that the solution near (xg, A\g) can be represented as a differentiable
curve [1]. We consider only solution curves composed of regular points. Different types of PC
methods are determined by the kind of predictor-step used in the algorithm. Classical and tangent
continuation are the two widely-used PC methods [1, 7]. In this study, we consider the tangent
continuation method.

A PC method starts with an initial estimate (&9, Ag). Ideally, (€9, Ao) is chosen such that the
value of F'(£0; o) is not far from 0. The algorithm uses Gauss-Newton iteration to obtain (g, Ao)
such that F(zo; \o) = 0. To obtain the next point (21, \;) in the solution set S of F(z;)) = 0, a
predictor step is implemented. This step calculates an approximation

(Z1,\1) == (@0, \o) + sto,

where s is the step-length for the parameter and %, is the tangent vector of the solution curve at
(zo, Ag). The Gauss-Newton method is then applied to obtain (1, A1) using (&1, A1) as the initial
guess. This is the corrector step, and the process is repeated iteratively.

© 2022 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



In a more general case, the partial derivative F, (z,\) may be singular, allowing for the oc-
currence of turning points [1, 7]. A turning point represents a relative extremum of A [8] and as
such, the solution curve cannot be locally expressed as a function of A. Without modification, the
tangent continuation method fails to cope with turning points. To address this, we proceed with a
modified tangent continuation. Here, the tangent vector ¢j in the k-th step is uniquely determined
by _

DF(xy, M)t = 0, ||tk|| =1, <t;€,t;€_1> > 0,

where t;_1 is the tangent vector of the preceding solution point [7]. We require that successive
tangents satisfy the condition (tg,tr_1) for & = 0,1,...kmnax, to ensure that we are not going
backward on the solution curve. For a detailed discussion of this continuation method we refer
to [1, 6].

To trace the solution curve of (3), we modify the above-mentioned tangent continuation PC
method by adding an extra process in the predictor step. This is done by using the solution
obtained in the predictor step as an initial guess. In this way, we are able to exploit the mesh
adaptation strategy of bvpsuite to guarantee that the accuracy of the solution is within the user-
specified tolerance. An algorithm for numerical continuation which shows the integration of the grid
generation strategy is summarized in the algorithm found in the appendix. The default bvpsuite
stopping criterion for the grid generation strategy is used. It indicates if there is appreciable
reduction in the number of mesh points, i.e. if the number of mesh points on the new mesh is at
least 90% of the previous mesh, then the mesh generation step finishes and the previous mesh is
taken as the final mesh.

2.2. Pathfollowing in bvpsuite 2.0

An alternative method is implemented in bvpsuite 2.0. It follows the description of the pseudo-
arclength continuation method in [6]. The main difference from the method described above, is in
the corrector step. There, we add an equation to (3) to ensure the orthogonality of the iterates in
the corrector step. In this way we obtain a system with the same number of equations and variables.
This allows us to use the built-in Fast Frozen Newton method implemented in bvpsuite. Building
on the implementation of the pathfollowing module in bvpsuite 1.1 [8], an automatic steplength
control was added, following the algorithm from [6].

Let F be given as in (3) and n = nN(m + ). To specify our method, similarly to the
above description, we assume to know a starting solution ag := (xg, A\g) € R7*! on an isolated
homotopy path, i.e., solution path, of Fin R In practice, the starting solution is obtained by
approximating the solution of the BVP in question by bvpsuite, for the fixed starting value Ag.
Also, in general the solution path need not be isolated, as is discussed in the examples below.

A single pathfollowing step consists of the predictor step followed by the corrector iteration. In
the predictor step, with the choice of a step-length s a predictor point ag := ag + st(ag) is chosen,
where t(ag) is the tangent in ag. To compute the tangent ¢(ag) of the solution path in the point
ay, we augment F' to ﬁ’p(cc, A) by the row A — Ag, in order to implicitly fix the value of A in the
equation Fp(x,\) = 0. Then, t(a) satisfies the equation 8, 9]

DFp(ao)t(ao) = (0,1)7,

where Dﬁ’p is the Jacobian of ﬁ'o.

In the first continuation step, bvpsuite uses the step-length prescribed by the user. Commenc-
ing in the subsequent continuation step, s is chosen according to the automatic step-length control
strategy. The step-length matters for the convergence of the iterative method in the corrector
step to a point on the isolated solution path. Since the step-length control strategy only starts
performing and predicting step-lengths from the second continuation step onwards, we describe
the corrector method first.

In the corrector step, we augment F to F¢ by adding the term
(a—ap) - t(ag) — s,

which when solving the equation Fe (a) = 0 implicitly ensures that the solution a of this equation
lies on the line orthogonal to the tangent t(ag), passing through the predictor point ag = ag +
s - t(ag). This prescribed orthogonality is the key element of the pseudo-arclength continuation
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method, allowing for pathfollowing beyond turning points. For the system of equations Fc=0,
the built-in solver methods in bvpsuite can be used. Starting from the predictor point ag, the
iteration converges towards the point a; further on the solution path, satisfying the user-prescribed
tolerances. To allow for better approximations, the mesh adaptation of bvpsuite can be applied
for pathfollowing problems as well. This offers a tool ensuring the approximations to satisfy the
prescribed tolerances and thus move further along the path.

For the second pathfollowing step, starting from a;, the tangent ¢(a1) in this point is computed
and the step-length control strategy helps determining a predictor point within the convergence
domain of the Fast Frozen Newton method. This control strategy follows closely the strategy
proposed in [6], adapting the strategy to the case of the simplified Newton method, on which the
Fast Frozen Newton method is based, see [9] for details. Assuming the two Lipschitz-type bounds

|Fe(a0) ™ (Fola) - Fo(an)|| < wlla - aol.
|Fo(@)™ (Fo(u+ sostlu) — Fow)t)| < orwlltw)]3

where 0 < o < 1 and wp,w; are constants, and u,u + sdot(u) are elements of the domain of
F¢. The maximal steplength, allowing for convergence from the predictor point back to the path,
depends on the a-priori unknown quantities wg and w;. These are estimated from known values
and from there, a prediction formula based on the step-length sq is deduced for the step-length s1,

namely ,
oo (20 Bl 7
3, bo llao — a4 ’

where c,, is the scalar product between t(ag) and t(a1), Ady is the first simplified Newton in-
crement in the iteration from the predictor point ag to a1, and 6y is the quotient of the norm
of the second simplified Newton increment divided by the norm of the first. Finally, 0.« is a
user-specified threshold that must satisfy 0,,.x < 1/4, and allows to control the convergence in the
first step of the corrector iteration.

This formula is used to find a predictor point @; on the tangent ¢(a;). This prediction formula
relies on the maximal step-length, which allows convergence from the predictor point back to
the solution path, in the ideal case. Therefore, for practical reasons some safety measures were
implemented, verified during and at the end of the computation of each continuation step, to reduce
the step-length if necessary. Details of the step-length control strategy and its implementation can
be found in [9].

In pathfollowing problems, often the evolution of a characteristic value of the solution under
variation of the pathfollowing parameter A is of interest. For the tracking of such a development
and the other features which can be performed with bvpsuite, we refer to the manual [2].

3. Numerical examples

3.1. Comparison of the two methods

We chose three examples to demonstrate the properties of the two numerical continuation methods.
These examples are ordered in an ascending manner according to their complexity.

Example 3.1. Bratu’s Problem is an elliptic partial differential equation recurring in applications
of science and engineering [10]. The one-dimensional Bratu problem is given by

2"(t) + Ne*) =0, for t € (0,1),
20)=0, =(1)=0.

Pathfollowing with Gauss-Newton was initialized on a mesh composed of 31 equidistant mesh points
with two Gaussian collocation points in each subinterval. Relative and absolute tolerances of 1076
for the Newton method were prescribed to compute the initial solution profile on the first iteration.
Similarly, relative and absolute tolerances of 107¢ were set for the mixed tolerance condition of
the mesh adaptation strategy. The maximal absolute error is of the order of magnitude of 1074,
The CPU time (in seconds) with grid generation is significantly larger due to repeated calls of the
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Figure 1: Example 3.1 with Gauss-Newton: Numerical continuation results for Example 3.1. Plot of 2/(0) vs. A
(left), and maximal error in each step (right).
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Figure 2: Example 3.1 with Gauss-Newton: Evolution of the mesh for Example 3.1 over 50 steps (left), and evolution
of the solution (right).

Gauss-Newton solver module and the refinement of the solution mesh. Figure 1 shows the path
of the dependent parameter z’(0) versus the free parameter A obtained via the modified tangent
continuation method. For this example, we illustrate how the solution mesh is updated for each
step of the continuation. Figure 2 shows the evolution of the mesh density over 50 continuation
steps.

For the pathfollowing module implemented in bvpsuite, the absolute and relative tolerances of
the Newton iteration are set to 1079, the absolute and relative tolerances of the mesh adaptation
to 107%. The computations are started with a mesh of 51 equidistant points on the interval [0, 1]
and 3 Gaussian collocation points in each subinterval. The evolution of z’(0) under variation of
A, starting at A = 0 in positive direction, is followed until z’(0) = 50. In order to illustrate how
Omax influences the pathfollowing behavior, this example is computed for the values fpay = 107!
and Opax = 1073, The resulting paths and the maximal error at the mesh points in each step are
displayed in Figure 3 and Figure 4, respectively. In both cases, mesh adaptation was activated but
not needed.

When 6.« is chosen to be small, the evaluation points along the path are concentrated. Along
the run in both cases, an adaptation of the step-length around the turning point and beyond is
visible. In the case fpnax = 1071, the computation reaches z/(0) = 50 after 46 continuation steps
and in the case of Oax = 1073 after 420 continuation steps. But when comparing the evolution of
the maximal error, the choice of 6,,. does not seem to have much influence.

© 2022 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 3: Example 3.1 in bvpsuite: Evolution of 2/(0) under variation of A with fmax = 1071 until 2/(0) = 50
(left), and estimation of the maximal error over the mesh in each step (right).
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Figure 4: Example 3.1 in bvpsuite: Evolution of 2’(0) under variation of A with @max = 1073 until 2/(0) = 50,
where the white crosses mark 50 continuation steps (left), and estimation of the maximal error on the mesh in each
step (right).

Example 3.2. We consider the forced nonlinear oscillator ODE [11]

AN\, 1 /A 1 8 4 2
(%) z (t)+2—5<%>z(t)——z(t)+—z(t) —gcos27rt, for t € [0,1],

z(0) = z(1), Z/(0) =2'(1).

This is a recommended benchmarking problem for testing numerical continuation methods due to
the complex dependence of the harmonic solution on the frequency parameter A\ [12].

The numerical simulation was initialized on a mesh composed of 21 equidistant mesh points with
two Gaussian collocation points in each subinterval. Relative and absolute tolerances of 10~3 for
the Newton method were set to compute the initial solution profile in the first iteration. Similarly,
relative and absolute tolerances of 10~3 were set for the mixed tolerance condition of the adaptive
mesh strategy. The path of z(0) is traced with respect to the inverse of the exciting frequency % to
enlarge the loops of the main solution branch resulting from the turning points encountered along
the path as shown in Figure 5. Also the error estimation of our numerical continuation method is
shown.

For the pathfollowing module in bvpsuite, the absolute and relative tolerances of the Fast
Frozen Newton iteration are set to 10~%, the absolute and relative tolerances of the mesh adaptation
to 107%. The computations are started with a mesh of 51 equidistant points on the interval [0, 1]
and 2 Gaussian collocation points in each subinterval. The characteristic value of the solution
which is followed along the path is z(0). Here, 0y Wwas set to 51072, and the computation was
started at the value A = 3 in negative direction. Following the evolution of the path, the solution of
the problem would exhibit a more and more oscillatory behavior. This triggers mesh adaptation,
increasing the number of mesh points to 694. Altogether, 413 pathfollowing steps were executed.

© 2022 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 5: Example 3.2 with Gauss-Newton: Evolution of z(0) under variation of A, with the white crosses marking
50 continuation steps (left), and estimation of the maximal error (right).

The results are displayed in Figure 6. The evolution of the mesh is displayed in Figure 7. See
also Figure 8 for the evolution of the solution along the path.

Due to the large number of bifurcation points, this example is an interesting challenge for any
pathfollowing code. The pathfollowing module in bvpsuite managed to get as far as it did due to
the various verifications which are performed in each step along the path, controlling different key
values of the computation, see [9] for details. This allows an automated computation of the path
for this example.

Example 3.3. The following singular parameter-dependent third-order BVP describes the flow
in a tube with accelerating surface velocity (referred to as “axisymmetric” flow) [13, 14]

22O (t) — 2" (t) + 2/ (t) — 3p — A (t2/(¢)? — tz(t)2"(t) + 2(t)2'(t)) =0, for t € (0,1),
2(0)=2'(0)=0, 2(1)=0, and 2/(1)=1.

The initial solution profile provided in [13] was used for our collocation method at the beginning
of the continuation algorithm. The numerical simulation was initialized on a mesh composed of
31 equidistant mesh points with two Gaussian collocation points in each subinterval. Relative
and absolute tolerances of 10~* for the Newton method were prescribed to compute the initial
solution profile on the first iteration. Similarly, relative and absolute tolerances of 10™% were set
for the mixed tolerance condition of the adaptive mesh strategy. The evolution of the pathfollowing
parameter and the solution are shown in Figure 9.

For the pathfollowing module implemented in bvpsuite, the constant function equal to 1 is
chosen as initial profile for the approximation of the solution in the case A = 0. The continuation is
started in positive direction. The evolution of the parameter p is observed. The evolution is followed
until the value p = —60 is reached. In the solver settings, a starting mesh with 101 equidistant
mesh points, and 3 Gaussian collocation points in each subinterval. The relative and absolute
tolerances for the nonlinear solver were set to 10~ and the relative and absolute tolerances for the
mesh adaptation to 107%. 0., was set to 1072, The run finishes after 15 tangent continuation
steps, without any mesh adaptation. The result is displayed in Figure 10. In Figure 11, the
approximation to the solution of the problem with A being equal to 0, 5 and 10 are shown.
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Figure 6: Example 3.2 in bvpsuite: Evolution of z(0) under variation of A, with the white crosses marking 50
continuation steps (left), and estimation of the maximal error (right).
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Figure 7: Example 3.2 in bvpsuite: Evolution of the mesh adjusted by the mesh adaptation algorithm in bvpsuite
along the path shown in Figure 6, where on the vertical axis the step number in which the mesh was adapted is
shown.
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Figure 8: Example 3.2 in bvpsuite: Evolution of the approximation of the solution of the BVP on the interval [0, 1].
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Figure 9: Example 3.3 with Gauss-Newton: Evolution of p under variation of A (left), and the estimation of the
maximal error (right).
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Figure 10: Example 3.3 in bvpsuite: Evolution of p until p = —60 (left), and estimation of the maximal error
(right).
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Figure 11: Example 3.3 in bvpsuite: Approximation to the solution of the BVP for A = 0,5,10 along the path
from Figure 10.
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3.2. Metal ball under hydrostatic pressure

This example shall demonstrate the difficulty of computing paths where bifurcation occurs and the
paths are not isolated, in contrast to Example 3.2. Consider the BVP

gcos(t — z1(t)) sin(t — z1(t)) — sin(¢)

) <z1’(t) + 21 (t) cot(t) + cot(t)

cos(t) cos(t)
4 2C08(t — 21 (t)) — cos(t)
03 . sin(t) )
= - - s (42

8 [ 25 (t) + 25(¢) cot(t) — za(t) <COt(t)2M —0.3(1—2, (t))Sin(t ! (U))

cos(t)? sin(t)

_ cos(t — zi(t)) — cos(t) + 5( — 4\ cot(t)z3(t)

sin(t)
. sin(2(t — 2z1(t))) o cos(t — 2z1(t))
( sin(2t) +03(1 = =(1)) cos(t) )
4 (sin(t)2(1 — 2} (t)) cos(t — zls(itrizt—)k 2sin(t) cos(t) sin(t — 21 (t))) , (4b)
25(t) = cos(t — z1(t)) sin(t), for t € [0, 7] (4c)
21(0) = z1(m) =0, 29(0) = z9(m) =0, 23(0) =0, (4d)

where ¢ = 0.00369.

This BVP describes the deformation of a metal ball under hydrostatic pressure. We consider
now the plot of the evolution of the pressure A versus the measure for the deformation ||zq |-
For pressures larger than the critical pressure A = 1, stable branches can be observed, where the
deformations of the metal ball due to the increased pressure are irreversible. For pressures smaller
than the critical pressure A = 1, the branch where no deformation occurs, can be observed as well
as branches where deformations occur. Under small perturbations, these disappear and the ball
jumps back into its original undeformed state.

The problem is a singular BVP and therefore it is more challenging than the previous ones. In
order to reproduce the computations performed in [8], the problem (4) is rewritten as an eigenvalue
problem to find an initial profile to start the pathfollowing close to the critical pressure A = 1.
The absolute and relative tolerances of the Newton iteration are set to 1076, the absolute and
relative tolerances of the mesh adaptation to 10~%. The computations are started on a mesh of
101 equidistant points on the interval [0, 7], and 3 Gaussian collocation points in each subinterval.
The characteristic value of the solution which is followed along the path is ||21||oc. AlSO, Oimax is set
to 5-1072 and the starting value for X to 0.98. The path is followed in decreasing direction of .
With mesh adaptation augmenting the mesh to 272 mesh points along the run, the computation
is stopped above ||21]|o0 = 4 after 95 continuation steps. The results are displayed in Figure 12.

A second computation with the same tolerance settings and 6,.x as above, is started at A =0
with the constant function 0 as initial profile. The evolution of |21 is followed with increasing A.
A mesh with 51 equidistant points and 3 Gaussian collocation points in each subinterval is chosen.
With some mesh adaptation moving the 51 mesh points on the interval [0, 7] such that the toler-
ances are satisfied along the run, the computation is stopped above A = 0, after 119 continuation
steps. The results are displayed in Figure 13.

The two paths that were recovered represent the path of the single dimple solution and the
double dimple solution, respectively. The shape of one half of the metal ball in each step along
those two paths is computed by solving the BVP

x'(t) = cos(t — z1(t)), y'(t) =sin(t — 2 (t)), fort € [0,n], (ha)

2(0)=0, y (g) =0, (5b)
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Figure 12: Shell buckling problem (4) in bvpsuite: Evolution of ||z1|/cc under variation of A with Omax = 5- 1072,
until ||z1]lcc = 4. This is the path of the single dimple solution (left). Estimation of the maximal error (right).
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Figure 13: Shell buckling problem (4) in bvpsuite: Evolution of |z1]|cc under variation of A with @max = 51072,
until A = 0. This is the path of the double dimple solution (left). Estimation of the maximal error (right).

with the function z; computed with bvpsuite in each step of the paths in Figures 12 and 13. The
solutions x and y are then the coordinates of the right half of the ball, as displayed in Figure 15 in
the case of the single dimple solution and in Figure 14 in the case of the double dimple solution.

The verification procedure for each step to be accepted, which is implemented in the pathfol-
lowing module in bvpsuite, allowed the pathfollowing in this example, where near to the critical
pressure A = 1 many paths intersect and are close to each other. The pathfollowing module in
bvpsuite was not designed to recognize bifurcation points, but in some examples the features
implemented in the code allow the pathfollowing beyond bifurcation points.

4. Conclusion and outlook

The two presented pathfollowing methods differ in the corrector step, where in the first one the
Gauss-Newton method was used, in the second one the algorithm relies on the Fast Frozen Newton
method, which is the main approximation method in bvpsuite. Relying on the already imple-
mented and well-tested algorithms of the bvpsuite package over the years, was the deciding factor
for the method using the Fast Frozen Newton method to be released with the package bvpsuite.
The pathfollowing module is compatible with the other problem types, for which bvpsuite is able
to compute approximations to their solutions. These include linear and nonlinear BVPs, eigenvalue
problems and index-1 differential algebraic systems of equations, either on finite or semi-infinite
intervals. Furthermore, the pathfollowing module can be used with the error estimate and mesh
adaptation implemented in bvpsuite, as well as the solver methods implemented for nonlinear
problems. Lastly, many safety features and parameters adjustable by the user before the start
of, as well as during, the pathfollowing computations, can enable the computation of more com-
plicated examples. These have already proven themselves to be helpful in the computation of
problems such as those shown in Section 3.1. We refer to the manual [2] for the instructions on
how to use bvpsuite and the full description of its features.
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Figure 14: Shell buckling problem (4) in bvpsuite: A deformation state of the half of the ball along the path of the
double dimple solution.
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Figure 15: Shell buckling problem (4) in bvpsuite: A deformation state of the half of the ball along the path of the
single dimple solution.
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