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Advertisement: Contextuality by nonembeddibility

KS, “Varieties of contextuality based on probability and structural
nonembeddability”, Theoretical Computer Science 924 117-128
(2022) DOI 10.1016/j.tcs.2022.04.039

• Kochen and Specker’s Theorem 0 in DOI
10.1512/iumj.1968.17.17004 serves as a demarcation criterion
for embeddibility into “extended” Boolean algebras; eg, via
partition logics obtained from the set of all two-valued states.
• This (as well as nonunitality etc) can be associated with

strong forms of contextuality even in the presence of
two-valued states.

https://doi.org/10.1016/j.tcs.2022.04.039
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1512/iumj.1968.17.17004


Advertisement and challenge: Find a True-Implies-False
(TIFS) gadget with “aperture” π/2

Mohammad H. Shekarriz and KS, “Noncontextual coloring of
orthogonality hypergraphs”, Journal of Mathematical Physics 63
(3), 032104 (2022) DOI 10.1063/5.0062801

Connections between

• the set of two-valued states and coloring of (hyper)graphs;
• the set of two-valued states and reconstruction of

(hyper)graphs.

https://doi.org/10.1063/5.0062801


Interesting hypergraph: Greechie’s G32
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Advertisement and challenge: Find a True-Implies-False
(TIFS) gadget with “aperture” π/2

In 1965 Kochen & Specker introduced the “Specker bug” gadget
graph in DOI 10.1007/978-3-0348-9259-9_19.

In their better known 1967 paper DOI 10.1512/iumj.1968.17.17004
they used the “Specker bug” gadget to construct a
True-Implies-True (TITS) gadget.

They employed the latter in proofs of (i) “the Kochen & Specker
theorem”, as well as a (ii) configuration of quantum observables
that cannot be separated by classical means (ie, two-valued states),
indicating non-imbeddibility, a very strong form of “contextuality”.

(Subsequently this “Specker bug” has been independently
re-discovered a couple of times.)

https://doi.org/10.1007/978-3-0348-9259-9_19
https://doi.org/10.1512/iumj.1968.17.17004


Challenge (spontaneous & unrelated to main topic of talk):
Find a True-Implies-False (TIFS) gadget with “aperture”
π/2 cntd.

For all True-Implies-False gadgets known so far—eg, reviewed in

• Cabello, Portillo, Solís and KS, DOI
10.1103/PhysRevA.98.012106,
• Abbott, Calude and KS, DOI 10.1063/1.4931658,
• Ramanathan, Rosicka, Pironio, Karol, Michal, and Pawel

Horodecki, DOI 10.22331/q-2020-08-14-308,

the TIFS “aperture” beween its end points is less than π/2.

(TITS with “aperture” π/2 exist plentiful “by serial composition”
and are used in proofs of “the Kochen & Specker theorem”.)

https://doi.org/10.1103/PhysRevA.98.012106
https://doi.org/10.1103/PhysRevA.98.012106
https://doi.org/10.1063/1.4931658
https://doi.org/10.22331/q-2020-08-14-308
https://doi.org/10.22331/q-2020-08-14-308


Challenge (spontaneous & unrelated to main topic of talk):
Find a True-Implies-False (TIFS) gadget with “aperture”
π/2 cntd.

Challenge of Mohammad H. Shekarriz and KS, “Noncontextual
coloring of orthogonality hypergraphs”, Journal of Mathematical
Physics 63 (3), 032104 (2022) DOI 10.1063/5.0062801:

“Find a TIFS containing no TITS as subgadget whose
“aperture” is exactly π/2.

Or, alternatively, prove that this is impossible.”

ps: trivial TIFS like a single context—there should at least be two
intertwining contexts, or TITS-TIFS combos, are excluded.

pps: Any proof that a faithful orthogonal representation of a TIFS
with aperture π/2 might ultimately require geometric means.

https://doi.org/10.1063/5.0062801


Category formation by different views on the same physical
entity in the presence of complementarity

• Schrödinger, on p. 15 of “My View of the World”, quoted the
Vedantic analogy of a “many-faceted crystal which, while
showing hundreds of little pictures of what is in reality a single
existent object, does not really multiply that object. . . . A
comparison used in Hinduism is of the many almost identical
images which a many-faceted diamond makes of some one
object such as the sun.”

• An example is the coordinatization or coding and encryption of
a vector relative to and “viewed from” different bases.
• Another example from partition logic—aka automaton logik aka

Wright’s generalized urn model: the different “ball states” (aka
partitions referring to collections of ball types) when “viewed by
different color filters”.
• This is about epistemology, since either the ontology “remains

hidden” as it cannot be accessed by physical means in the
presence of complementarity, or is restricted to merely one
maximal observable aka context.
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Informal notion of maximal observables aka contexts

A “view” or (used synonymously) “frame” or “context” will be in full
generality and thus informally (glancing at heuristics from quantum
mechanics and partition logic) characterized as some domain or set
of observables or properties which are

(i) largest or maximal in the sense that any extension yields
redundancies,

(ii) yet at the same time in the finest resolution in the sense that
the respective observables or properties are “no composite” of
“more elementary” ones,

(iii) mutually exclusive in the sense that one property or
observation excludes another, different property or observation,
as well as

(iv) contains only simultaneously measurable, compatible
observables or properties.



Generalization of Kolmogorov’s axioms to arbitrary event
structures

Suppose two arbitrary contexts C1 = {e1, . . . en} and
C2 = {f1, . . . fm}. The conditional probabilities P(fj |ei ), with
1 ≤ j ≤ m and 1 ≤ i ≤ n, which alternatively can be considered as
either measuring the Bayesian degree of reasonable expectation
representing a state of knowledge or as quantification of a personal
belief or the frequency of occurrence of “fj given ei ”, can be
arranged into a (n ×m)-matrix whose entries are P(fj |ei ), that is,

[P(C2|C1)] = [P({f1, . . . fm}|{e1, . . . en})]

≡

P(f1|e1) · · · P(fm|e1)
· · · · · · · · ·

P(f1|en) · · · P(fm|en)

 . (1)



Generalization of Kolmogorov’s axioms to arbitrary event
structures cntd.

Assume that the conditional probabilities of the elements of the
second context with respect to an arbitrary element ek ∈ C1 of the
first context C1 are non-negative, additive, and that, if this sum is
extended over the entire second context C2, it adds up to one:

P(fi |ek) + P(fj |ek) = P[(fi ∪ fj)|ek ]∑
fi∈C2

P(fi |ek) = P

 ⋃
fi∈C2

fi

 |ek
 = 1.

(2)

That is, the row sum taken within every single row of [P(C2|C1)]
adds up to one.

This generalises Kolmogorov’s axioms as it allows cases in which
both contexts do not coincide.



Examples: Quantum bistochasticity

The multi-context quantum case has been studied in great detail
with emphasis on motivating and deriving the Born rule from
elementary foundations by Alexia Aufféves and Philippe Grangier,
eg (among others),

• DOI 10.1038/srep43365
• DOI 10.1098/rsta.2017.0311

Please look at their papers!

https://doi.org/10.1038/srep43365
https://doi.org/10.1098/rsta.2017.0311


Examples: Two intertwining three-atomic contexts—the
“firefly” logic L12

Hypergraph of the L12 “firefly” logic. (a) The associated (quasi)classical partition logic

representation obtained through in inverse construction using all two-valued measures

thereon; (b) a faithful orthogonal representation rendering a quantum double; (c)

“classical” two-valued measure number 1; (d) a pure quantum state prepared as(
1, 0, 0

)ᵀ. A red square and gray and green circles indicate value assignments 1, 1
2 and

0, respectively.
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Examples: Classical probabilities on two intertwining
three-atomic contexts—the “firefly” logic L12

The L12 “firefly” logic labels the atoms (aka elementary propositions)
obtained by an “inverse construction” using all five two-valued
measures thereon. By design, it will be very similar to the earlier
logic with four atoms. With the identifications e1 ≡ {1, 2},
e2 ≡ {3, 4}, e3 = f3 ≡ {5}, f1 ≡ {1, 3}, and f2 ≡ {2, 4} we obtain
all classical probabilities by identifying i → λi > 0. The respective
conditional probabilities are

[P(C2|C1)] = [P({f1, f2, f3}|{e1, e2, e3})]

≡


P({1})
P({1,2})

P({2})
P({1,2})

P(∅)
P({1,2})

P({3})
P({3,4})

P({4})
P({3,4})

P(∅)
P({3,4})

P(∅)
P({5})

P(∅)
P({5})

P({5})
P({5})

 =

 λ1
λ1+λ2

λ2
λ1+λ2

0
λ3

λ3+λ4
λ4

λ3+λ4
0

0 0 1

 , (3)

as well as

[P(C1|C2)] = [P({e1, e2, e3}|{f1, f2, f3})]

≡


P({1})
P({1,3})

P({3})
P({1,3})

P(∅)
P({1,3})

P({2})
P({2,4})

P({4})
P({2,4})

P(∅)
P({2,4})

P(∅)
P({5})

P(∅)
P({5})

P({5})
P({5})

 =

 λ1
λ1+λ3

λ3
λ1+λ3

0
λ2

λ2+λ4
λ4

λ2+λ4
0

0 0 1

 . (4)



Examples: classical probabilities on
House/Pentagon/Pentagram hyperdiagram

Hypergraph of the pentagon/pentagram/house logic with partition
logic labelling (also available: vertex labelling by vectors aka
faithful orthogonal representations).
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Examples: classical probabilities on
House/Pentagon/Pentagram hyperdiagram cntd.

With the identifications e1 ≡ {1, 2, 3}, e2 ≡ {4, 5, 7, 9, 11},
e3 ≡ {6, 8, 10}, f1 ≡ {2, 7, 8}, f2 ≡ {1, 3, 9, 10, 11}, and
f3 ≡ {4, 5, 6}. The respective conditional probabilities are

[P(C2|C1)] = [P({f1, f2, f3}|{e1, e2, e3})]

≡


P({2,7,8}∩{1,2,3})
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

=


P({2})
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P({6})
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
=


λ2

λ1+λ2+λ3
λ1+λ3

λ1+λ2+λ3
0

λ7
λ4+λ5+λ7+λ9+λ11

λ9+λ11
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λ4+λ5
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λ8
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λ10
λ6+λ8+λ10

λ6
λ6+λ8+λ10

 .
(5)



Examples: “exotic” probabilities on
House/Pentagon/Pentagram hyperdiagram

Despite the aforementioned 11 two-valued states there exists another
dispersionless state on cyclic pastings of an odd number of contexts; namely, a
state being equal to 1

2 on all intertwines/bi-connections; cf.
Greechie DOI 10.1007/978-94-010-2274-3,
Wright DOI 10.1016/B978-0-12-473250-6.50015-7
This state and its associated probability distribution are neither realizable by
quantum nor by classical probability distributions.

Hypergraph with overlaid “exotic” dispersionless state on the
pentagon/pentagram/house logic:
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https://doi.org/10.1016/B978-0-12-473250-6.50015-7


Examples: “exotic” probabilities on
House/Pentagon/Pentagram hyperdiagram

In this case the conditional probabilities of any two distinct
contexts Ci and Cj , for 1 ≤ i , j ≤ 5 are

[P(Ci |Cj)] ≡

1
2 0 1

2
0 0 0
1
2 0 1

2

 . (6)



Summary

Kolmogorov’s axioms of probability theory are extended to
conditional probabilities among distinct (and sometimes
intertwining) contexts. Formally, this amounts to row stochastic
matrices whose entries characterize the conditional probability to
find some observable (postselection) in one context, given an
observable (preselection) in another context. As the respective
probabilities need not (but, depending on the physical/model
realization, can) be of the Born rule type, this generalizes
approaches to quantum probabilities by Aufféves and Grangier,
which in turn are inspired by Gleason’s theorem.



Thank you for your attention!

˜ ˜ ˜
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