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A B S T R A C T   

A reinforcement learning strategy is applied to find a reliable switching scheme for deterministic switching of a 
perpendicularly magnetized spin-orbit torque magnetoresistive memory cell. Current pulses sent along orthog
onal metal wires allow the field-free reversal of the magnetization. The current pulses are optimized such that 
reliable switching can be achieved over a wide range of material parameters. Micromagnetic simulations confirm 
the reliability of the presented approach.   

1. Introduction 

The continuous downscaling of CMOS devices has reached a stage at 
which leakage currents become increasingly problematic, as they lead to 
an increase in standby power consumption. Spin-orbit torque magne
toresistive random access memory (SOT-MRAM), being nonvolatile, as 
well as possessing high endurance and fast operation speed, is a prom
ising candidate to replace CMOS-based devices in high-level caches [1]. 

The downscaling of semiconductor devices has at the same time led 
to an increase in available computational power, which, among other 
fields, has enabled scientific simulations to generate ever more and 
better data. The adoption of machine learning (ML) has allowed not only 
to handle this large amount of information but has also helped in making 
scientific advancements. Reinforcement learning [2], a sub-branch of 
ML, most well-known for its application to games like chess or Go [3], 
was already successfully applied in scientific research, e.g. [4]. 

This work is a follow-up of [5] and an extension to the results pre
viously published in [6]. It presents the application of RL to SOT-MRAM 
switching in order to achieve more reliable switching, even under the 
unavoidable variability of material properties due to the imperfection of 
fabrication processes. 

2. Spin-orbit torque memory 

The core element of MRAM devices is the magnetic tunnel junction 
(MTJ), which is formed by two ferromagnetic layers sandwiching a non- 

magnetic tunnel barrier. The orientation of the magnetization is free to 
move only in one of the ferromagnetic layers, enabling a parallel and 
anti-parallel configuration of the two layers. The difference in electrical 
resistance between these two states can be sensed by an electric current 
flowing through the structure, and represents the binary information 
stored in the memory cell. The two main types of MRAM devices are 
spin-transfer torque MRAM (STT-MRAM) and SOT-MRAM. 

In SOT-MRAM, the layer in which the magnetization is free to move, 
the free layer (FL), is placed on top of a heavy metal wire exhibiting a 
large spin Hall angle. A charge current passing through this heavy metal 
wire produces a transverse spin current which enters the FL and results 
in a torque being exerted on the magnetization. If current and torque are 
large enough, the precessional reversal of the magnetization is initiated. 
Thus, contrary to STT-MRAM, the read and write paths are separated in 
SOT-MRAM, reducing the susceptibility to oxide reliability issues due to 
high write currents through the MTJ. 

Perpendicularly magnetized SOT-MRAM, however, still faces chal
lenges for deterministic magnetization reversal. The torque generated 
by a current pulse is enough to bring the magnetization to an in-plane 
orientation. For deterministic switching, an external magnetic field is 
still needed [7]. In the last years, several approaches to achieve field-free 
switching have been proposed [8], of which we want to focus on a so
lution presented in [9]. Here, in addition to the heavy metal wire below 
the FL, another heavy metal wire, orthogonal to the first one, is placed 
on top of the FL (cf. Fig. 1). It was shown that by sending current pulses 
through the two metal wires, the perpendicularly magnetized FL can 
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reliably and deterministically be switched. 
The dynamics of the magnetization in this memory cell is described 

by the following extended version of the Landau-Lifshitz-Gilbert equa
tion: 

∂m
∂t

= − γμ0m × Heff + αm ×
∂m
∂t

− γ
ℏ
2e

θSHj1

MSd
[m × (m × y) ]f1(t)

+γ
ℏ
2e

θSHj2

MSd
[m × (m × x) ]f2(t)

(1)  

m is the normalized magnetization, γ is the gyromagnetic ratio, μ0 is the 
vacuum permeability, α is the Gilbert damping factor, and MS is the 
saturation magnetization. There are several contributions to the effec
tive field Heff, namely the exchange field, the uniaxial perpendicular 
anisotropy field, the demagnetizing field, the current-induced field, and 
a stochastic thermal field at 300 K. ℏ is the Planck constant, e is the 
electron charge, θSH is the spin Hall angle, and j1, 2are the current 
densities of the pulses in the NM1 and NM2 wires along the directions x 
and y, respectively. The two functions f1 and f2 define when the NM1 
pulse and the NM2 pulse are active. The proper choice of f1 and f2 is of 
paramount importance as they determine the switching performance 
and reliability of the memory cell. However, an additional uncertainty 
factor is the underlying variability of MRAM manufacturing processes. 
Material parameters can vary up to ±10% [10], impacting the critical 
current of the memory cell. A first investigation of the influence of 
varying material parameters on the pulsed SOT-MRAM cell was already 
performed in [11]. 

3. Reinforcement learning 

Contrary to supervised and unsupervised learning algorithms, the 
data used for RL is generated during the training phase. Through 
repeated interaction of a so-called RL agent with an environment the 
agent shall learn how best to apply actions in this environment in order 
to achieve a certain objective. After taking an action in the environment, 
the agent receives a reward signal as well as information about the new 
state the environment has transitioned to. Value-based RL algorithms, 
like Q-learning [2], use the information gathered during training to 
build up an approximation of the so-called action-value function Qπ: 

Qπ(s, a) = E

[
∑T

t=0
γtRt | St = s,At = a

]

(2) 

The action value function Qπ thus is the expected value of the reward 
Rt, discounted by the discount factor γt, accumulated over the length of 
the task, T, given that the current state St is s and the current action At is 
a. A good approximation of this function allows making the optimal 

action choice in every state. The more different state-action combina
tions the RL agent encounters during training, the more refined its 
action-value function gets. An important advantage of RL compared to 
conventional optimization methods is that the result is a trained model 
which was exposed to many different environment states and can 
dynamically adjust its actions based on the given situation. Conven
tional optimization methods optimize for a specific scenario and have to 
be re-run, if the scenario changes. 

In the here-described experiments, the deep Q-network (DQN) al
gorithm [12] was employed, which is an advancement of the original Q- 
learning algorithm using a neural network to approximate the action- 
value function. 

4. RL for SOT switching 

The main components of the RL setup presented in Fig. 2 were 
implemented in Python using the RL library Stable Baselines 3 [13]. The 
environment is based on an in-house developed finite differences 
simulator [14]. The parameters used in the micromagnetic simulations 
are given in Table I. 

4.1. State 

The number of input nodes of the agent’s neural network is deter
mined by the state vector. This consists of 11 variables which are 
returned from the environment after each iteration. The returned vari
ables are the average values of the vector components of the magneti
zation, mx/y/z, the difference of these values to the previous iteration, 
Δmx/y/z, the average vector components of the effective magnetic field, 
Heff,x/y/z, and two values indicating whether the two pulses can currently 
be turned on. 

4.2. Actions 

The DQN agent is allowed to perform four different actions, i.e., 
turning both pulses on, both pulses off, NM1 pulse on and NM2 pulse off, 
and NM1 pulse off and NM2 pulse on. Thus, the output layer of the DQN 
agent’s neural network contains four nodes. In order to prevent arbi
trarily fast switching of the two pulses, a minimum pulse period of 100 
ps was defined. Previous publications have shown that the critical cur
rent for this memory cell is 120 μA [11]. The current value of the NM1 
pulse was thus set a little higher to 130 μA. In [11] it was also shown that 
the current value of the NM2 pulse can be reduced without compro
mising the switching reliability and therefore in this work the NM2 
current value was set to 100 μA. 

4.3. Reward 

The rewards returned by the environment after every iteration are 
calculated based on the following formula: 

Fig. 1. SOT-MRAM cell for switching based on two orthogonal current pulses. 
The pulses are sent through the structure via two non-magnetic heavy metal 
wires, of which one is fully overlapping the FL (NM1) and one only 
partially (NM2). 

Fig. 2. General setup of the reinforcement learning simulation: A simulation of 
the SOT-MRAM cell acts as the environment which an agent interacts with to 
build up a policy based on a neural network. 
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r = mz,target − mz,current (3)  

mz, target corresponds to the target value the z-component of the 
magnetization should reach and is set to − 1. mz, current is the current 
value of the average z-component of the magnetization. The reward is 
always negative, unless the magnetization is perfectly aligned with the 
negative z-axis, at which point it would be zero, and it is more negative 
the farther away the current value of the magnetization is from the 
target value. As the DQN agent tries to maximize its overall accumulated 
reward over a switching simulation, this rewarding scheme ensures that 
the agent tries to bring the magnetization towards the target value as fast 
as possible to not accumulate more negative reward. 

5. Results 

Using the approach depicted in Fig. 2, which combines a finite dif
ferences micromagnetic simulation with an RL framework, a DQN agent 
was trained with the objective to learn fast switching of an SOT-MRAM 
cell. After completing a training period, this same setup can be used to 
perform simulations, in which the DQN agent applies pulses according 
to the policy it has learned. Fig. 3 shows a set of 50 realizations in which 
the agent at simulation time decided, when to apply pulses. The slight 
transparency of each plot line allows getting a qualitative idea of when 
pulses were applied in the various realizations. If the plot appears more 
solid, there are more lines overlapping, meaning that more realizations 
followed this trajectory. It can be seen that the first NM1 pulse, as well as 
the first two NM2 pulses are very solid lines and thus have been applied 
by the agent in all of the realizations. At around 1 ns, however, some 
variation can be observed: Due to the slight differences in the magne
tization trajectories, the time at which the pulses were applied varies. 
The DQN agent successfully learned to apply the two pulses to switch the 
memory cell, as in all the realizations the magnetization crosses the 
threshold of − 0.9, at which point the memory cell is considered 
switched, and remains below it. 

To test the flexibility of the trained agent, a set of 441 simulations 
were performed in which the saturation magnetization MS and the 
anisotropy constant K were varied individually by ±10%. Figs. 4 and 5a 
show the pulses applied by the trained model and the resulting 
magnetization trajectories, respectively. In Fig. 4 one can see that the 
time at which pulses were applied varied a lot, but within the first 500 ps 
there is a cluster of overlapping pulses, suggesting that in many simu
lations the pulses were applied at the same time. The same holds for the 
magnetization trajectories shown in Fig. 5a: Many of them coincide in 
the first 500 ps, but diverge later. Some of the simulations never even 
reach the threshold value of − 0.9 at the end of the 2 ns simulation time. 
Fig. 5b presents the distribution of final mz values reached in the sim
ulations. A large part of the trajectories (42%) reaches a final value 
below − 0.9. 14.5%, however, remain close to the initial position of +1. 
In 11.8% of the simulations the agent is able to bring the trajectories in 
the xy-plane. 

A different quantitative view of the results of this experiment is 
presented in Fig. 6. As the setup with the simulator and RL agent in the 
loop was employed, at the end of each such simulation an overall 
accumulated reward is returned, which correlates with how good the 
DQN agent could bring the magnetization towards the target value. In 
Fig. 6 this information is represented by the color-coding. It can be 
observed that a large part of the performed simulations achieved a high 
overall reward (yellow/light green). Towards the upper-left and bottom- 
right corners, though, the achieved reward declines. The behavior in the 
upper-left corner was already observed in [11] and is due to the fact that 
the critical current in this regime is higher. Overall, in 42% of the sim
ulations the magnetization is successfully switched. For the same num
ber of trajectories, 42%, it was not possible to bring them below the xy- 
plane, and 16% of the trajectories reached a final value between 0 and 
− 0.9. 

In [15] it was shown that, using the data presented in Fig. 6, a static 
pulse sequence can be extracted, which performs equally well over the 
parameter variation range. Said static pulse sequence can be seen in 
Fig. 7: It consists of a single NM1 pulse which is applied for 100 ps and 
two NM2 pulses, one started shortly after the NM1 pulse with a duration 
of 143 ps and another one starting 100 ps later, which is turned off again 
after 106 ps. We note that for demonstration purposes the static pulse 
scheme in Fig. 7 is defined with a very precise timing. Although we 
expect the scheme to also work, when the precise requirements are 
relaxed, additional studies beyond the scope of this manuscript incor
porating rise and fall times as well as inexactness of timing and their 
influence on the reliability should be performed. Further investigating 

Table I 
SOT cell simulation parameters.  

Parameter Value 

Saturation magnetization, MS 1.1 × 106 A/m 
Perpendicular anisotropy, K 8.4 × 105 J/m3 

Exchange constant, A 1.0 × 1011 J/m 
Gilbert damping factor, α 0.035 
Spin Hall angle, θSH 0.3  

Fig. 3. Results of 50 realizations for fixed material parameters using the trained 
neural network model. Results of the single runs are plotted slightly trans
parent, such that regions where multiple lines overlap appear more solid. 

Fig. 4. Pulses applied to NM1 and NM2 during 441 realizations with varying 
material parameters. The results of the single runs are plotted slightly trans
parent, such that regions where multiple lines overlap appear more solid. 
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the robustness of this static pulse sequence, we performed experiments 
with a ±10% variation of the FL thickness. Fig. 8 shows the achieved 
switching times depending on the different FL thicknesses. For each FL 
thickness, five simulations were performed. The color-coding indicates 
whether switching was achieved. There appears to be a sweet spot be
tween 1.13 nm and 1.19 nm, for which switching is achieved signifi
cantly faster than above and below. For FL thicknesses above 1.26 nm 
switching could not be achieved anymore. 

For reliable device operation, another aspect of the given SOT- 
MRAM cell in combination with the static pulse sequence has to be 
investigated. In a crossbar arrangement of memory cells, as depicted in 
Fig. 9, multiple cells are attached to a single heavy metal wire NM2, as 
the memory cell is selected using the NM1 wire, while the NM2 wire 
completes the switching of the cell. It has to be ensured, however, that 
the magnetization in the memory cells not intended to be switched is not 
accidentally reversed. We investigated the impact on the other memory 
cells attached to the NM2 wire by only applying the NM2 pulses and 
leaving the NM1 pulse turned off. The results of these experiments can 
be seen in Fig. 10. There is almost no observable difference between the 
50 performed realizations, and the largest deviation from the stable state 
only reaches a value of ~0.95. The impact of the NM2 current pulses on 
the neighboring memory cells can thus be considered to be not critical. 

Fig. 5. (a) Average z-component of the magnetization for 441 realizations with varying material parameters. Results of the single runs are plotted slightly trans
parent, such that regions where multiple lines overlap appear more solid. (b) Percentage of trajectories, which reaches a certain final mz value. 

Fig. 6. Accumulated reward achieved for anisotropy constant K and saturation 
magnetization MS varied by ±10%. Results are shown for a total of 441 
realizations. 

Fig. 7. Static pulse sequence extracted from successfully switched simulation 
runs with varying anisotropy constant and saturation magnetization. Fig. 8. Switching times achieved by applying the derived static pulse sequence 

to FL thickness variations of up to ±10%. 
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6. Conclusion 

We demonstrated that RL can successfully be used to increase the 
reliability of a field-free SOT-MRAM switching scheme by optimizing 
the applied sequence of current pulses. We showed how an RL agent 
trained on fixed material parameters is able to generalize and find 
effective pulse sequences for switching over a wide material parameter 
range. Variations of saturation magnetization, anisotropy constant as 
well as FL thickness were investigated. Finally, the impact on neigh
boring memory cells in a crossbar architecture was studied, showing 
that only the memory cells selected by the first pulse are affected by the 
second pulse, proving the reliability of the scheme. 
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