Talks and Poster Presentations (without Proceedings-Entry):

M. Beiglböck:
"The geometry of Skorokhod embedding";
Talk: Seminar at IST, Institut of Science and Technology, Klosterneuburg (invited); 2016-02-22.

English abstract:
The Skorokhod embedding problem is to represent a given probability as the distribution of Brownian motion at a chosen stopping time. Over the last 50 years this has become one of the important classical problems in probability theory and a number of authors have constructedsolutions with particular optimality properties. These constructions employ a variety of techniques ranging from excursion theory to potential and PDE theory and have been used in many different branches of pure and applied probability.
We develop a new approach to Skorokhod embedding based on ideas and concepts from optimal mass transport. In analogy to the celebrated article of Gangbo and McCann on the geometry of optimal transport, we establish a geometric characterization of Skorokhod embeddings with desired optimality properties. This leads to a systematic method to construct optimal embeddings. It allows us, for the first time, to derive all known optimal Skorokhod embeddings as special cases of one unified construction and leads to a variety of new embeddings.

Electronic version of the publication:

Created from the Publication Database of the Vienna University of Technology.