[Back]


Publications in Scientific Journals:

T. Meurer, D. Thull, A. Kugi:
"Flatness-based tracking control of a piezoactuated Euler-Bernoulli beam with non-collocated output feedback: theory and experiments";
International Journal of Control, 81 (2008), 3; 475 - 493.



English abstract:
This paper considers the combination of flatness-based motion planning and feedforward control with output feedback to achieve robust tracking of prescribed trajectories for the tip displacement of a multi-layered piezoelectric cantilever beam. Thereby, the flatness property of the distributed-parameter beam model is exploited to derive the infinite-dimensional tracking error system, which serves as the basis for the design of the output error feedback control. The stability of the resulting closed-loop system involving the Infinite-dimensional beam model is proven in an input/output sense by utilizing a Nyquist-type stability criterion. Experimental results illustrate the high tracking performance in view of exogenous
disturbances. The presented approach provides a systematic extension of the two-degreesof-freedom control concept to distributed-parameter systems.


"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)
http://dx.doi.org/10.1080/00207170701579429


Created from the Publication Database of the Vienna University of Technology.