[Zurück]


Zeitschriftenartikel:

W. Auzinger, R. Frank, G. Kirlinger:
"Extending convergence theory for nonlinear stiff problems, part I";
BIT Numerical Mathematics, 36 (1996), 4; S. 635 - 652.



Kurzfassung englisch:
Existing convergence concepts for the analysis of discretizations of nonlinear stiff problems suffer from considerable drawbacks. Our intention is to extend the convergence theory to a relevant class of nonlinear problems, where stiffness is axiomatically characterized in natural geometric terms.

Our results will be presented in a series of papers. In the present paper (Part I) we motivate the need for such an extension of the existing theory, and our approach is illustrated by means of a convergence argument for the Implicit Euler scheme.


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1007/BF01733784


Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.