Publications in Scientific Journals:

W. Auzinger, R. Frank, G. Kirlinger:
"Extending convergence theory for nonlinear stiff problems, part I";
BIT Numerical Mathematics, 36 (1996), 4; 635 - 652.

English abstract:
Existing convergence concepts for the analysis of discretizations of nonlinear stiff problems suffer from considerable drawbacks. Our intention is to extend the convergence theory to a relevant class of nonlinear problems, where stiffness is axiomatically characterized in natural geometric terms.

Our results will be presented in a series of papers. In the present paper (Part I) we motivate the need for such an extension of the existing theory, and our approach is illustrated by means of a convergence argument for the Implicit Euler scheme.

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Created from the Publication Database of the Vienna University of Technology.