Publications in Scientific Journals:

B. Düring, G. Toscani:
"Hydrodynamics from kinetic models of conservative economies";
Physica A: Statistical Mechanics and its Applications, 384 (2007), 2; 493 - 506.

English abstract:
In this paper, we introduce and discuss the passage to hydrodynamic equations for kinetic models of conservative economies, in which the density of wealth depends on additional parameters, like the propensity to invest. As in kinetic theory of rarefied gases, the closure depends on the knowledge of the homogeneous steady wealth distribution (the Maxwellian) of the underlying kinetic model. The collision operator used here is the Fokker-Planck operator introduced by J.P. Bouchaud and M. Mezard [Wealth condensation in a simple model of economy, Physica A 282 (2000) 536-545], which has been recently obtained in a suitable asymptotic of a Boltzmann-like model involving both exchanges between agents and speculative trading by S. Cordier, L. Pareschi and one of the authors [S. Cordier, L. Pareschi, G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys. 120 (2005) 253-277]. Numerical simulations on the fluid equations are then proposed and analyzed for various laws of variation of the propensity.

German abstract:
s. engl. Abstract

Wealth and income distributions; Boltzmann equation; Hydrodynamics; Euler equations

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Related Projects:
Project Head Ansgar Jüngel:
Numerik und Modellierung nichtlinearer partieller Differentialgleichungen zur Beschreibung von Kredit- und Preisrisiken

Created from the Publication Database of the Vienna University of Technology.