[Back]


Publications in Scientific Journals:

J. Fidler, P. Speckmayer, T. Schrefl, D. Süss:
"Numerical micromagnetics of an assembly of (Fe,Co)Pt nanoparticles";
Journal of Applied Physics, 97 (2005), 10E5081 - 10E5083.



English abstract:
micromagnetic model has been developed describing the influence of the K1 and the particle size on the magnetization reversal processes in (Co,Fe)Pt nanoparticles on the order of 4 to 80 nm in diameter The magnetostatic interactions between the particles are calculated using an accelerated boundary element method. From the comparison of the results of the finite-element simulations with "macrospin" calculations in which only precessional rotational magnetization processes are possible, it is obvious that inhomogeneous rotational magnetization and nucleation processes are dominant in larger particles. Depending on the K1 values and the volume fraction of the hard (fct) and soft (fcc) (Co,Fe)Pt nanoparticles, the calculated coercive field values are on the order of µ0Hc=0,1 to 1,2 T, in good agreement with experimental results.


Online library catalogue of the TU Vienna:
http://aleph.ub.tuwien.ac.at/F?base=tuw01&func=find-c&ccl_term=AC05938190

Electronic version of the publication:
http://scitation.aip.org/jhtml/doi.jsp


Created from the Publication Database of the Vienna University of Technology.