S. Ivanovici, G. Kickelbick:
"Synthesis of hybrid polysiloxane-MO2 (M = Si, Ti, Zr) nanoparticles through a sol-gel route";
Journal of Sol-Gel Science and Technology, 46 (2008), 3; S. 273 - 280.

Kurzfassung englisch:
Polysiloxanes in combination with metal oxides show interesting properties as nanocomposites for optical or medical applications. The formation of covalent connections between the metal oxide and the polysiloxane is an important method to overcome phase separation between the two components, but it also can have an influence on the morphology of the final materials. In this contribution we report a method for the synthesis of hybrid materials based on polysiloxanes and various metal oxides in which both components are tightly connected to each other. Alkoxysilane modified polysiloxanes were obtained by hydrosilation reactions between vinyl triethoxysilane and poly(dimethylsiloxane-co-methylhydrosiloxane) (PDMS-co-PMHS). The thus functionalized polymers were used in a sol-gel process applying Stöber conditions and hybrid nanoparticles were obtained. Following the same pathway, different metal alkoxides (M(OR)4; M = Ti, Zr; R = ethyl, isopropyl) were coordinated to allyl acetoacetate (AAA) and the resulting complexes were applied in a hydrosilation reaction with PDMS-co-PMHS. Metal oxide hybrid nanoparticles were obtained through a sol-gel process.

Polysiloxanes - Block copolymers - Nanoparticles - Silica - Titania - Zirconia

"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)

Erstellt aus der Publikationsdatenbank der Technischen Universitšt Wien.