[Back]


Publications in Scientific Journals:

C. Adam, R. Heuer, A. Jeschko:
"Flexural vibrations of elastic composite beams with interlayer slip";
Acta Mechanica (invited), 125 (1997), 17 - 30.



English abstract:
The objective of the present paper is to analyze the dynamic flexural behavior of elastic two-layer beams with interlayer slip. Bernoulli-Euler hypothesis is assumed to hold for each layer separately, and a linear constitutive equation between the horizontal slip and the interlaminar shear force is considered. The governing sixth-order initial-boundary value problem is solved by separating the dynamic response in a quasistatic and in a complementary dynamic response. The quasistatic portion that may also contain singularities or discontinuities due to sudden load changes is determined in a closed form. The remaining complementary dynamic part is non-singular and can be approximated by a truncated modal series of fast accelerated convergence. The solution of the resulting generalized decoupled single-degree-of-freedom oscillators is given by means of Duhamel's convolution integral, whereby the velocity and acceleration of the loads are the driving terms. Light damping is considered via modal damping coefficients. The proposed procedure is illustrated for dynamically loaded layered single-span beams with interlayer slip, and the improvement in comparison to the classical modal analysis is demonstrated.

German abstract:
The objective of the present paper is to analyze the dynamic flexural behavior of elastic two-layer beams with interlayer slip. Bernoulli-Euler hypothesis is assumed to hold for each layer separately, and a linear constitutive equation between the horizontal slip and the interlaminar shear force is considered. The governing sixth-order initial-boundary value problem is solved by separating the dynamic response in a quasistatic and in a complementary dynamic response. The quasistatic portion that may also contain singularities or discontinuities due to sudden load changes is determined in a closed form. The remaining complementary dynamic part is non-singular and can be approximated by a truncated modal series of fast accelerated convergence. The solution of the resulting generalized decoupled single-degree-of-freedom oscillators is given by means of Duhamel's convolution integral, whereby the velocity and acceleration of the loads are the driving terms. Light damping is considered via modal damping coefficients. The proposed procedure is illustrated for dynamically loaded layered single-span beams with interlayer slip, and the improvement in comparison to the classical modal analysis is demonstrated.

Created from the Publication Database of the Vienna University of Technology.