Diploma and Master Theses (authored and supervised):

A. Fotiadou:
"Analysis of Design Support for Kinetic Structures";
Supervisor: G. Suter; Continuing Education Center, 2007; final examination: 2007-07-05.

English abstract:
This thesis attempts the formation and systemization of a basis of knowledge and information, which is indispensable to turn a design support for kinetic structures into representation by means of a 3d animating program. Representation of kinetic structures by means of the existing ordinary software sources is possible; Nevertheless, such representation lacks of different important features and functions and results eventually in the total absence of a real model of the construction, which is valuable to the user of the program especially in the field of the kinetics, where everything depends on the movement: design not only requires, but demands for visualisation. A personal interest in kinetic architecture and therefore in the physical movement of structural elements in a building, as well as an attempt to "fathom" the possibility of changing this concept to visualization and modern reality by the use of a software are the main incentives of this master thesis. First, a general research will be performed in order to check the existence of similar or semisimilar proposals. The area in which the research will be held is the Bibliography in kinetic architecture and parametric design. A comparison of animation and 3D prototype software in well-known programs will focus on whether virtual weather conditions are considered as a parameter to the animation of the structure of the programs and case studies of several existing kinetic structures will be performed, in order to point out flaws and/or helpful commands in the programs in connection with the presentation of kinetic architecture. Criteria for the choice of the software: ability to customise and to produce geometric modelling, animation in relation to time (video animation) and the simulation after taking into consideration weather factors. Finally, using the computer and the scripting language, based probably on the theory of parametric design and primitive instancing, a realistic simulation of different elements will be performed in relation to variable measurements of luminance, ventilation and temperature so as to render feasible the construction of a whole structure. The results of the thesis will be used in the future as the basic knowledge in the creation of software for simulation of kinetic architecture. This program will be used as a tool for the architect to present a building, where kinetic architecture will be applied and to create simulation of the kinetic movement through a library of the existing prefabricated elements which will be created with the help of this thesis.

Kinetic architecture, 3D designing software, scripting, programming

Electronic version of the publication:

Created from the Publication Database of the Vienna University of Technology.