[Back]


Contributions to Proceedings:

A. Woesz, M. Rumpler, I. Manjubala, I. Pilz, F. Varga, J. Stampfl, P. Fratzl:
"The influence of the thermal treatment of hydroxylapatite scaffolds on the physical properties and the bone cell ingrowth behaviour";
in: "Structure and Mechanical Behavior of Biological Materials", P. Fratzl et al. (ed.); issued by: Symp.Proc. Vol 874; Materials Research Society, Warrendale, PA, 2005, L7.9.1.



English abstract:
The material bone consists of a biopolymer matrix (collagen) reinforced with mineral nanoparticles (carbonated hydroxylapatite), forming a natural composite which builds up a dense shell on the exterior and a network of struts with a mean diameter of 200µm in the core of many bones. The architecture of the foamy inner part of bones (spongiosa) is determined by loading conditions. The architecture strongly influences the mechanical properties of cellular solids together with the apparent density and the material it consists of. In addition, the ingrowth of bone cells into porous implants depends on pore size, size distribution and interconnectivity. From this it is clear that the possibility to design the architecture of a bone replacement material is beneficial from a biological as well as a mechanical point of view. Our approach uses rapid prototyping methods, ceramic gelcasting and sintering to produce cellular structures with designed architecture from hydroxylapatite and other bioceramics. The influence of sintering temperature and atmosphere on the physical properties of these scaffolds was investigated with x-ray diffraction and scanning electron microscopy. Furthermore, the cell ingrowth behaviour was determined in cell culture experiments, using the praeosteoblastic cell line MC3T3-E1, derived from mouse calvariae. The cell ingrowth behaviour was evaluated during a culture period of two and three weeks, by light microscopy and afterwards by histology after embedding and Giemsa-staining. The phase composition of the material was found to change with increasing sintering temperature and its surface characteristics was influenced by the sintering atmosphere. These changes also affected the cell ingrowth behaviour. In some experiments, the osteoblasts-like cells were found to cover the whole external and internal surface of the scaffold. The cells produced extracellular matrix consisting of collagen, which eventually filled nearly all the pores. In particular, the cells had the tendency to fill any crack or opening in the scaffolds, and to generally smooth the surfaces. In conclusion, rapid prototyping and ceramic gelcasting allows the freeform fabrication of porous bioceramics with controlled architecture. Such structures made of hydroxylapatit were found to support the growth of mouse osteoblasts.


Electronic version of the publication:
http://publik.tuwien.ac.at/files/pub-mb_4120.pdf


Created from the Publication Database of the Vienna University of Technology.